

Current Transducer HX 05 .. 15-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 R_{OUT}

I _{PN}	=	Э	••	13	H

Electrical	data			
Primary nominal current rms I _{PN} (A)	Primary current, measuring range $\mathbf{I}_{_{\mathrm{PM}}}$ (A)	Primary conductor diameter x turns (mm)	Type	RoHS since date code

Serial	Parallel	Series	Parallel				
± 5 ± 10 ± 15	± 10 ± 20 ± 30	± 15 ± 30 ± 45	± 30 ± 60 ± 90	0.8d x (6T+6T) 1.0d x (3T+3T) 1.2d x (2T+2T)	HX 05-NP HX 10-NP HX 15-NP	planned planned 46047	
V_{OUT} Output voltage (Analog) @ ± I_{PN} , $R_L = 10$ kΩ, $T_A = 25$ °C ± 4					,	V	

$R_{\scriptscriptstyle L}$	Load resistance	≥ 10	$k\Omega$
V _C	Supply voltage (± 5 %) ¹⁾	± 15	V
I _c	Current consumption	< ± 15	mΑ
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min		
	Primary to secondary	> 3	kV
	Primary 1 to primary 2	> 1	kV
V _o	Partial discharge extinction voltage rms @ 10 pC	≥ 1	kV
Ŷ.,	Impulse withstand voltage, 1.2/50 µs	≥ 6	kV

Accuracy-Dynamic performance data

Output internal resistance

X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (excluding offset)	< ± 1	% of $\mathbf{I}_{\scriptscriptstyle{\mathrm{PN}}}$
$\mathbf{e}_{\scriptscriptstyle\! oxdot}$	Linearity error (0 ± I _{PN})	< ± 1	% of $\mathbf{I}_{\scriptscriptstyle{PN}}$
\mathbf{V}_{OE}	Electrical offset voltage @ T _A = 25°C	$< \pm 40$	mV
V _{OH}	Hysteresis offset voltage		
	after an excursion of 1 x I _{PN}	< ± 15	mV
TCV _{OE}	Temperature coefficient of V _{OE}	< ± 1.5	mV/K
TCV _{OUT}	Temperature coefficient of V _{OE} (% of reading)	± 0.1	%/K
t,	Response time to 90% of I _{PN} step	≤ 3	μs
BW	Frequency bandwidth (- 3 dB) ²⁾	50	kHz

General data

Cont	Jiui uutu	
\mathbf{T}_{A}	Ambient operating temperature	- 25 + 85 °C
$T_{\rm S}$	Ambient storage temperature	- 25 + 85 °C
m	Mass	8 g
dCp	Creepage distance	≥ 5.5 m m
	Isolation material group	1
	Standards	EN50178: 1997

Notes: 1) Also operate at ±12V power supplies, measuring range reduced to ±2.5x Ippu

²⁾ Small signal only to avoid excessive heating of the magnetic core

Features

< 50

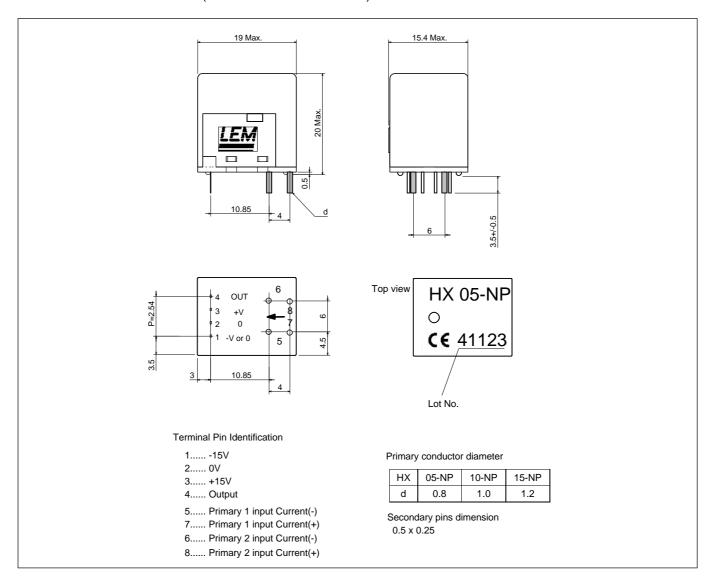
Ω

- Galvanic isolation between primary and secondary circuit
- Hall effect measuring principle
- Isolation voltage 3000V
- 2 isolated primary windings
- Low power consumption
- Extended measuring range(3 x I_{PN})
- Power supply from ±12V to ±15V
- Insulated plastic case recognized according to UL94-V0.

Advantages

- Low insertion losses
- Easy to mount with automatic handling system
- Only one design for wide current ratings range
- · Small size and space saving
- High immunity to external interference.

Applications


- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Electrical appliances
- Battery supplied applications
- DC motor drives

Application domain

Industrial

Dimensions HX 05..15-NP (in mm. 1 mm = 0.0394 inch)

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Page 2/2