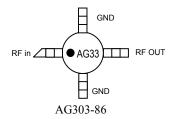
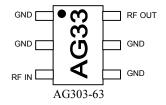


Product Features

- DC 5000MHz
- +13 dBm P1dB at 900MHz
- +27 dBm OIP3 at 900MHz
- 20.5 dB Gain at 900MHz
- Single Voltage Supply
- SOT-363 or SOT-86 SMT Package
- Internally matched to 50 Ω


Product Description


The AG303 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG303 typically provides 20.5 dB of gain, +27 dBm Output IP3, and +13 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85°C and is housed in a SOT-363 & SOT-86 industry standard SMT packages.

The AG303 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG303 will work for other various applications within the DC to 5 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

Specifications

Parameters ¹	Units	Min	Тур	Max
Frequency Range	MHz		DC-5000	
S21 - Gain	dB		20.5	
S11 - Input Return Loss	dB		-15	
S22 - Output Return Loss	dB		-15	
Output P1dB	dBm		+13	
Output IP3	dBm		+27	
Noise Figure	dB		3.6	
Device Voltage	V		4.0	
Device Current	mA		35	

Test conditions unless otherwise noted

- T = 25°C, Supply Voltage = +5 V, R_{blas} = 30 Ω, Frequency = 900MHz, 50 Ω System.
 3OIP measured with two tones at an output power of -5 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

Absolute Maximum Ratings

Parameters	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-40 to +125 °C

Operation of this device above any of there parameters may cause permanent damage

Application Circuit Vs = +5 V Is = 35 mA C3 **Bypass Capacitor** RF Choke RF IN RF OUT AG303 C1 C2 Blocking Blocking

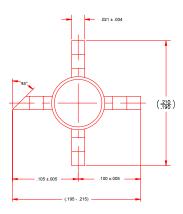
Typical Parameters

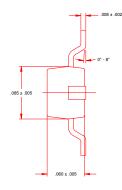
Parameter ¹	Units	Тур	ical
Frequency	MHz	900	1900
S21	dB	20.5	19
S11	dB	-20	-15
S22	dB	-20	-20
Output P1dB	dBm	+13	+12
Output IP3	dBm	+27	+25
Noise Figure	dB	3.6	3.6
Supply Voltage	V	5	5
Device Current	mA	35	35

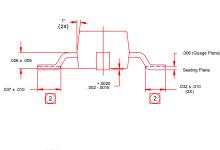
1. Data represents typical performance in an application board with

Ordering Information

Part No.	Description
AG303-63	InGaP HBT Gain Block SOT-363 Style Package (Available in Tape & Reel)
AG303-86	InGaP HBT Gain Block SOT-86 Style Package (Available in Tape & Reel)
AG303-63PCB AG303-86PCB	Fully Assembled Application Board Fully Assembled Application Board

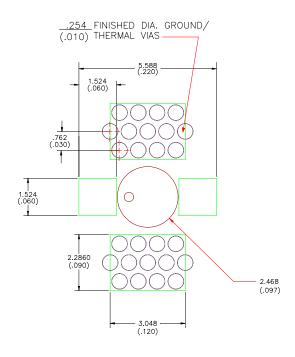

This document contains information on a new product.


T = 25°C, V_s = +5 V, and R_{bias} = 30 Ω in a 50 Ω system.



AG303-86 Package Information

Outline Drawing



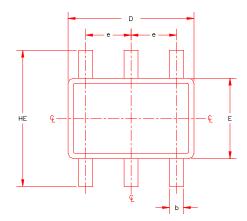
NOTES:

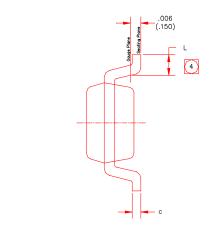
1. DIMENSIONS ARE IN INCHES.

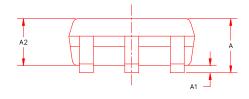
2 THE FOOT LENGTH MEASURING
BASED ON GAUGE PLANE METHOD.

Land Pattern

Mounting Configuration Notes

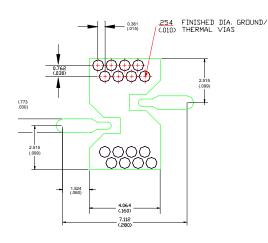

NOTES:


- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .010".
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- MOUNTING SCREWS ARE RECOMMENDED NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 OZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS / (INCHES).



AG303-63 Package Information

Outline Drawing


SYMBOL	MIN	MAX
Е	.045 (1.15)	.053 (1.35)
D	.073 (1.85)	.089 (2.25)
HE	.079 (2.0)	.090 (2.30)
Α	.031 (.80)	.043 (1.10)
A2	.031 (.80)	.039 (.10)
A1	.000 (00.)	.004 (.10)
e	.026 (.65	BSC BSC)
Ь	.006 (.15)	.012 (.30)
c	.003 (.08)	.010 (.25)
L	.008 (.21)	.016 (.41)

NOTES:

- ALL DIMENSIONS ARE IN INCHES.
 (MM)
- 2. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND GATE BURR.
- 3. ALL SPECIFICATIONS COMPLY TO JEDEC SPEC MO-203 ISSUE A.
- THE FOOT LENGTH MEASURING BASED ON GAUGE PLANE METHOD.

Land Pattern

Mounting Configuration Notes

NDTES:

- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .010".
- ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- 3. ADD MOUNTING SCREWS NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- 4. DD NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 DZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS (INCHES).

This document contains information on a new product. Specifications and information are subject to change without notice