FEATURES

Compact size
$7.4 \times(\mathrm{L}) 15.0 \times(\mathrm{H})$
9.4 mm (W) . $291 \times(\mathrm{L}) .591 \times(\mathrm{H}) .370$ inch.

- Surge withstand voltage of $1,500 \mathrm{~V}$ (between contact and coil)
Conforms to FCC Part 68.
- High-density mounting is possible
- High reliability

The use of a gold-clad bifurcated structure for the movable contacts, and a low gas material for the forming materials and coil wiring ensures high contact reliability.

SPECIFICATIONS

Contact

Arrangement		2 Form C
Initial contact resistance (By voltage drop 6 V DC 1 A)		Max. $100 \mathrm{~m} \Omega$
Contact material		Gold-clad silver alloy
Rating	Nominal switching capacity (resistive load)	1 A 30 V DC, 0.3 A 125 V AC
	Max. switching power (resistive load)	30 W (DC), 37.5 VA (AC)
	Max. switching voltage	110 V DC, 125 V AC
	Max. switching current	1 A
	Min. switching capability 米1	1 mA 1 V DC
Nominal operating power		320 mW
Expected life (min. operations)	Mechanical (at 180 cpm)	10^{7}
	Electrical (at 20 cpm)	$\begin{gathered} 10^{5} \\ \text { (1 A 30 V DC, } \\ 0.3 \mathrm{~A} 125 \mathrm{~V} \text { AC resistive) } \end{gathered}$

Note:

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Measurement at same location as "Initial breakdown voltage" section.
${ }^{\text {*2 }}$ By resistive method, nominal voltage applied to the coil; contact carrying current: 1A.
${ }^{* 3}$ Nominal voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ Half- wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$
${ }^{*}$ Half- wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 61)

Characteristics

Initial insulation*1 resistance			Min. 1,000 M
Initial breakdown voltage	Between contacts		750 V rms for 1 min .
	Between contact and coil		$1,000 \mathrm{Vrms}$ for 1 min .
	Between contacts sets		$1,000 \mathrm{~V} \mathrm{rms}$ for 1 min .
Temperature rise*2			Max. $60^{\circ} \mathrm{C}$
Operate time*3 (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 6 ms (Approx. 4 ms)
Release time(without diode)*3 (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 5 ms (Approx. 3 ms)
Shock resistance		Functional*4	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10G\}
		Destructive*5	Min. 1,000 m/s² $\{100 \mathrm{G}\}$
Vibration resistance		Functional*6	10 to 55 Hz at double amplitude of 1.0 mm
		Destructive	$\begin{gathered} 10 \text { to } 55 \mathrm{~Hz} \\ \text { at double amplitude of } 1.5 \mathrm{~mm} \\ \hline \end{gathered}$
Conditions for opetation, transport and storage*7		Ambient temperature	$\begin{aligned} & -40 \text { to }+70^{\circ} \mathrm{C} \\ & -40 \text { to }+158^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
		Atmospheric pressure	86 to 106 kPa
Unit weight			Approx. 2g . 07 oz

TYPICAL

APPLICATIONS

- Telephone exchange, transmission equipment
- Communications devices
- Measurement devices
- Home appliances, and audio/visual equipment
- Office equipment

ORDERING INFORMATION

Note: $2,500 \mathrm{~V}$ Surge (Bellcore) type is also available. Please consult us for details.

TYPES AND COIL DATA

Contact arrangement	Coil rating, V DC	Part No.	Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage, V DC (min.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Normal operating current, $m A(\pm 10 \%)$(at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil Resistance, ohm ($\pm 10 \%$) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power, mW	Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
		Standard PC board terminal arrangement						
2 Form C	1.5	HX2-1.5V	1.13	0.15	214	7.0	320	1.65
	3	HX2-3V	2.25	0.3	107	28.1	320	3.3
	4.5	HX2-4.5V	3.38	0.45	71.1	63.3	320	4.95
	5	HX2-5V	3.75	0.5	64.0	78.1	320	5.5
	6	HX2-6V	4.5	0.6	53.6	112	320	6.6
	9	HX2-9V	6.75	0.9	35.6	253	320	9.9
	12	HX2-12V	9	1.2	26.7	450	320	13.2
	24	HX2-24V	18	2.4	13.3	1,800	320	26.4

Standard packing: Tube; 40 pcs.; Case : 1,000 pcs.

DIMENSIONS

PC board pattern (Bottom view)
Schematic (Bottom view)

General tolerance: $\pm 0.3 \pm .012$

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (1 A 30 V DC resistive load)

Tested sample: HX2-12 V, 6 pcs.
Operating frequency: 20 cpm
Change of pick-up and drop-out voltage

\longrightarrow No. of operations, $\times 10^{4}$
2. Life curve

3. Mechanical life

Tested sample: HX2-12 V, 10 pcs

5. Coil temperature rise

Tested sample: HX2-12 V
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6. Operate/release time characteristics Tested sample: HX2-12V, 10 pcs.

7. Distribution of pick-up and drop-out voltage Tested sample: HX2-12V, 50 pcs.

10.-(1) High frequency characteristics Isolation characteristics

8. Ambient temperature characteristics Tested sample: HX2-12V, 5 pcs.

9. Distribution of contact resistance

Tested sample: HX2-12V, 25 pcs. (25×4 contacts)

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Cleaning

In automatic cleaning, cleaning with the boiling method is recommended. Avoid ultrasonic cleaning which subject the relay to high frequency vibrations. It may cause the contacts to stick.
It is recommended that a fluorinated hydrocarbon or other alcoholic solvent be used.

3. Packing style

- Packing direction

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.
Take note of the relay orientation when mounting relays on the printed circuit board.

The temperature range is -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$

4. Automatic insertion

To maintain the internal function of the relay, the chucking pressurre should not exceed the values below.
Chucking pressure in direction A:
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in direction C:
$4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less

Please chuck the سWIa portion.
Avoid chucking the center of the relay.

For Cautions for Use, see Relay Technical Information (Page 48 to 76).

