

Contents

Page	Section	Title
6	1.	Introduction
6	1.1.	Features
7	1.2.	Features of the MSP 34x2G Family
7	1.3.	MSP 34x2G Version List
8	1.4.	MSP 34x2G Versions and their Application Fields
9	2.	Functional Description
11	2.1.	Architecture of the MSP 34x2G Family
11	2.2.	Sound IF Processing
11	2.2.1.	Analog Sound IF Input
11	2.2.2.	Demodulator: Standards and Features
12	2.2.3.	Preprocessing of Demodulator Signals
12	2.2.4.	Automatic Sound Select
12	2.2.5.	Manual Mode
14	2.3.	Preprocessing for SCART and I ² S Input Signals
14	2.4.	Source Selection and Output Channel Matrix
14	2.5.	Audio Baseband Processing
14	2.5.1.	Automatic Volume Correction (AVC)
14	2.5.2.	Loudspeaker and Headphone Outputs
14	2.5.3.	Subwoofer Output
14	2.5.4.	Quasi-Peak Detector
15	2.6.	Surround Processing
15	2.6.1.	Output Configuration
15	2.6.1.1.	HP/CS Switch
15	2.6.1.2.	Channel Configuration
15	2.6.2.	Surround Processing Mode
15	2.6.2.1.	Decoder Matrix
16	2.6.2.2.	Surround Reproduction
16	2.6.2.3.	Center Modes
16	2.6.2.4.	Useful Combinations of Surround Processing Modes
17	2.6.3.	Examples
18	2.6.4.	Application Tips for using 3D-PANORAMA
18	2.6.4.1.	Sweet Spot
18	2.6.4.2.	Clipping
18	2.6.4.3.	Loudspeaker Requirements
18	2.6.4.4.	Cabinet Requirements
18	2.6.5.	Input and Output Levels in Dolby Surround Pro Logic Mode
19	2.6.6.	Subwoofer in Surround Mode
19	2.6.7.	Equalizer in Surround Mode
19	2.0.7.	-
19	2.7. 2.7.1.	SCART Signal Routing SCART DSP In and SCART Out Select
	2.7.1. 2.7.2.	
19 10		Stand-by Mode I ² S Bus Interface
19 20	2.8.	
20	2.9.	ADR Bus Interface
20	2.10.	Digital Control I/O Pins and Status Change Indication
20	2.11.	Clock PLL Oscillator and Crystal Specifications

Contents, continued

Page	Section	Title
21	3.	Control Interface
21	3.1.	I ² C Bus Interface
21	3.1.1.	Device and Subaddresses
21	3.1.2.	Internal Hardware Error Handling
22	3.1.3.	Description of CONTROL Register
22	3.1.4.	Protocol Description
23	3.1.5.	Proposals for General MSP 34x2G I ² C Telegrams
23	3.1.5.1.	Symbols
23	3.1.5.2.	Write Telegrams
23	3.1.5.3.	Read Telegrams
23	3.1.5.4.	Examples
23	3.2.	Start-Up Sequence: Power-Up and I ² C Controlling
23	3.3.	MSP 34x2G Programming Interface
23	3.3.1.	User Registers Overview
27	3.3.2.	Description of User Registers
28	3.3.2.1.	STANDARD SELECT Register
28	3.3.2.2.	Refresh of STANDARD SELECT Register
28	3.3.2.3.	STANDARD RESULT Register
30	3.3.2.4.	Write Registers on I ² C Subaddress 10 _{hex}
31	3.3.2.5.	Read Registers on I ² C Subaddress 11 _{hex}
32	3.3.2.6.	Write Registers on I ² C Subaddress 12 _{hex}
46	3.3.2.7.	Read Registers on I ² C Subaddress 13 _{hex}
47	3.4.	Programming Tips
47	3.5.	Examples of Minimum Initialization Codes
47	3.5.1.	SCART1 Input to Loudspeaker in Stereo Sound
47	3.5.2.	B/G-FM (A2 or NICAM)
47	3.5.3.	BTSC-Stereo
48	3.5.4.	BTSC-SAP with SAP at Loudspeaker Channel
48	3.5.5.	FM-Stereo Radio
48	3.5.6.	Automatic Standard Detection
48	3.5.7.	Dolby Surround Pro Logic Example
48	3.5.8.	Virtual Dolby Surround Example
48	3.5.9.	Noise Sequencer for Dolby Pro Logic
48	3.5.10.	Software Flow for Interrupt driven STATUS Check
50	4.	Specifications
50	4.1.	Outline Dimensions
51	4.2.	Pin Connections and Short Descriptions
54	4.3.	Pin Descriptions
57	4.4.	Pin Configurations
60	4.5.	Pin Circuits
62	4.6.	Electrical Characteristics
62	4.6.1.	Absolute Maximum Ratings
63	4.6.2.	Recommended Operating Conditions (T _A = 0 to 70 °C)
63	4.6.2.1.	General Recommended Operating Conditions
63	4.6.2.2.	Analog Input and Output Recommendations
64	4.6.2.3.	Recommendations for Analog Sound IF Input Signal

Contents, continued

Page	Section	Title
65	4.6.2.4.	Crystal Recommendations
66	4.6.3.	Characteristics
66	4.6.3.1.	General Characteristics
67	4.6.3.2.	Digital Inputs, Digital Outputs
68	4.6.3.3.	Reset Input and Power-Up
69	4.6.3.4.	I ² C-Bus Characteristics
70	4.6.3.5.	I ² S-Bus Characteristics
72	4.6.3.6.	Analog Baseband Inputs and Outputs, AGNDC
74	4.6.3.7.	Sound IF Inputs
74	4.6.3.8.	Power Supply Rejection
75	4.6.3.9.	Analog Performance
78	4.6.3.10.	Sound Standard Dependent Characteristics
81	5.	Appendix A: Overview of TV-Sound Standards
81	5.1.	NICAM 728
82	5.2.	A2-Systems
83	5.3.	BTSC-Sound System
83	5.4.	Japanese FM Stereo System (EIA-J)
84	5.5.	FM Satellite Sound
84	5.6.	FM-Stereo Radio
85	6.	Appendix B: Manual/Compatibility Mode
86	6.1.	Demodulator Write and Read Registers for Manual/Compatibility Mode
87	6.2.	DSP Write and Read Registers for Manual/Compatibility Mode
87	6.3.	Manual/Compatibility Mode: Description of Demodulator Write Registers
87	6.3.1.	Automatic Switching between NICAM and Analog Sound
87	6.3.1.1.	Function in Automatic Sound Select Mode
88	6.3.1.2.	Function in Manual Mode
89	6.3.2.	A2 Threshold
89	6.3.3.	Carrier-Mute Threshold
90	6.3.4.	Register AD_CV
91	6.3.5.	Register MODE_REG
93	6.3.6.	FIR-Parameter, Registers FIR1 and FIR2
93	6.3.7.	DCO-Registers
95	6.4.	Manual/Compatibility Mode: Description of Demodulator Read Registers
95	6.4.1.	NICAM Mode Control/Additional Data Bits Register
95	6.4.2.	Additional Data Bits Register
95	6.4.3.	CIB Bits Register
96	6.4.4.	NICAM Error Rate Register
96	6.4.5.	PLL_CAPS Readback Register
96	6.4.6.	AGC_GAIN Readback Register
96	6.4.7.	Automatic Search Function for FM-Carrier Detection in Satellite Mode
97	6.5.	Manual/Compatibility Mode: Description of DSP Write Registers
97	6.5.1.	Additional Channel Matrix Modes
97	6.5.2.	Volume Modes of SCART1/2 Outputs
97	6.5.3.	FM Fixed Deemphasis
97	6.5.4.	FM Adaptive Deemphasis

Contents, continued

Page	Section	Title
97	6.5.5.	NICAM Deemphasis
98	6.5.6.	Identification Mode for A2 Stereo Systems
98	6.5.7.	FM DC Notch
98	6.6.	Manual/Compatibility Mode: Description of DSP Read Registers
98	6.6.1.	Stereo Detection Register for A2 Stereo Systems
98	6.6.2.	DC Level Register
99	6.7.	Demodulator Source Channels in Manual Mode
99	6.7.1.	Terrestric Sound Standards
99	6.7.2.	SAT Sound Standards
99	6.8.	Exclusions of Audio Baseband Features
99	6.9.	Compatibility Restrictions to MSP 34x0D
101	7.	Appendix D: Application Information
101	7.1.	Phase Relationship of Analog Outputs
102	7.2.	Application Circuit
104	8.	Appendix E: MSP 34x2G Version History
104	9.	Data Sheet History

License Notice:

Supply of this implementation of Dolby Technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this implementation in any finished end-user or ready-to-use final product. Companies planning to use this implementation in products must obtain a license from Dolby Laboratories Licensing Corporation before designing such products.

^{1) &}quot;Dolby", "Virtual Dolby Surround", and the double-D Symbol are trademarks of Dolby Laboratories.

Multistandard Sound Processor Family with Dolby Surround Pro Logic

The hardware and software description in this document is valid for the MSP 34x2G version A1 and following versions.

1. Introduction

The MSP 34x2G family of single-chip Multistandard Sound Processors covers the sound processing of all analog TV-Standards worldwide, as well as the NICAM digital sound standards. The full TV sound processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed on a single chip.

The family's latest member, the MSP 3452G has all functions of the MSP 3450G with the addition of Dolby Surround Pro Logic and Virtual Dolby Surround sound processing (See License Notice on page 5). The MSP 3452G forms a superset of the functions of the MSP 3451G, which contains the virtualizer algorithms but does not contain any multi-channel processing.

Additional output pins DACM_C and DACM_S have been defined which deliver the Dolby Surround Pro Logic processed Center and Surround channels. When DACM_C and DACM_S are active, the headphone outputs DACA_L and DACA_R are muted and vice versa. Simultaneous processing of Headphone signals and Dolby Surround Pro Logic is not possible.

Surround sound can be reproduced to a certain extent with only two loudspeakers. The MSP 3452G includes a Micronas virtualizer algorithm which has been approved by the Dolby¹⁾ Laboratories for compliance with the "Virtual Dolby Surround" technology. This algorithm is called "3D-PANORAMA" and enables convincing acoustical sensations. Virtual Dolby Surround can be processed together with headphone signals.

The ICs are produced in submicron CMOS technology. The MSP 34x2G is available in the following packages: PSDIP64, PQFP80, and PLQFP64.

1.1. Features

- All MSP 3450G features
- All MSP 3451G features as there are
 - the 3D-PANORAMA virtualizer algorithm
 - the PANORAMA virtualizer algorithm
 - Noise Generator
- Dolby Surround Pro Logic processing
- Various other multichannel sound modes
- Additional pins for Center and Surround channels
- Virtualizer able to work with 2 or 3 front loudspeakers
- Pin and software compatible to MSP 34x0G

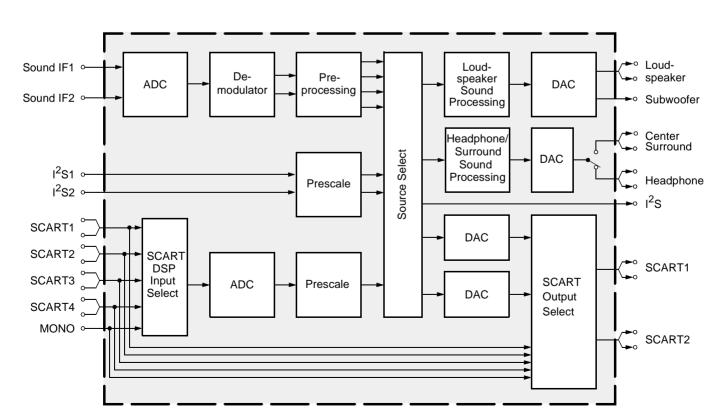


Fig. 1-1: Block diagram of the MSP 34x2G

1.2. Features of the MSP 34x2G Family

Feature	3402	3412	3422	3442	3452
Dolby Surround Pro Logic	Х	Х	Х	Х	Х
3D-PANORAMA virtualizer (approved by Dolby Laboratories) with noise generator	Х	Х	Х	Х	Х
PANORAMA virtualizer algorithm	Х	Х	Х	Х	Х
Standard Selection with single I ² C transmission	Х	Х	Х	Х	Х
Automatic Standard Detection of terrestrial TV standards	Х	Х	Х	Х	Х
Automatic Sound Selection (mono/stereo/bilingual)	Х	Х	Х	Х	Х
Two selectable sound IF (SIF) inputs	Х	Х	Х	Х	Х
Automatic Carrier Mute function	Х	Х	Х	Х	Х
Interrupt output programmable (indicating status change)	Х	Х	Х	Х	Х
Loudspeaker / Headphone channel with volume, balance, bass, treble, loudness	Х	Х	Х	Х	Х
AVC: Automatic Volume Correction	Х	Х	Х	Х	Х
Subwoofer output with programmable low-pass and complementary high-pass filter	Х	Х	Х	Х	Х
5-band graphic equalizer for loudspeaker channel	Х	Х	Х	Х	Х
Spatial effect for loudspeaker channel	Х	Х	Х	Х	Х
Four Stereo SCART (line) inputs, one Mono input; two Stereo SCART outputs	Х	Х	Х	Х	Х
Complete SCART in/out switching matrix	Х	Х	Х	Х	Х
Two I ² S inputs; one I ² S output	Х	Х	Х	Х	Х
All analog FM-Stereo A2 and satellite standards; AM-SECAM L standard	Х	Х			Х
Simultaneous demodulation of (very) high-deviation FM-Mono and NICAM		Х			Х
Adaptive deemphasis for satellite (Wegener-Panda, acc. to ASTRA specification)	Х	Х			Х
ASTRA Digital Radio (ADR) together with DRP 3510A	Х	Х			Х
All NICAM standards		Х			Х
Demodulation of the BTSC multiplex signal and the SAP channel			Х	Х	Х
Alignment free digital DBX noise reduction for BTSC Stereo and SAP				Х	Х
Alignment free digital Micronas Noise Reduction (MNR) for BTSC Stereo and SAP			Х		
BTSC stereo separation (MSP 3422/42G also EIA-J) significantly better than spec.			Х	Х	Х
SAP and stereo detection for BTSC system			Х	Х	Х
Korean FM-Stereo A2 standard	Х	Х	Х	Х	Х
Alignment-free Japanese standard EIA-J			Х	Х	Х
Demodulation of the FM-Radio multiplex signal			Х	Х	Х

1.3. MSP 34x2G Version List

Version	Status	Description
MSP 3402G	not confirmed	FM Stereo (A2) Version
MSP 3412G	planned	NICAM and FM Stereo (A2) Version
MSP 3422G	not confirmed	NTSC Version (A2 Korea, BTSC with Micronas Noise Reduction (MNR), and Japanese EIA-J system)
MSP 3442G	not confirmed	NTSC Version (A2 Korea, BTSC with DBX noise reduction, and Japanese EIA-J system)
MSP 3452G	available	Global Version (all sound standards)

1.4. MSP 34x2G Versions and their Application Fields

Table 1–1 provides an overview of TV sound standards that can be processed by the MSP 34x2G family. In addition, the MSP 34x2G is able to handle the terrestrial FM-Radio standard. With the MSP 34x2G, a com-

plete multimedia receiver covering all TV sound standards together with terrestrial and satellite radio sound can be built; even ASTRA Digital Radio can be processed (with a DRP 3510A coprocessor).

Table 1–1: TV Stereo Sound Standards covered by the MSP 34x2G IC Family (details see Appendix A)

	ISP V	ersic	ion TV- Position of Sound Sound System Carrier /MHz Modulation			Color System	Broadcast e.g. in:				
3402				B/G	5.5/5.7421875	FM-Stereo (A2)	PAL	Germany			
				D/G	5.5/5.85	FM-Mono/NICAM	PAL	Scandinavia, Spain			
				L	6.5/5.85	AM-Mono/NICAM	SECAM-L	France			
				1	6.0/6.552	FM-Mono/NICAM	PAL	UK, Hong Kong			
					6.5/6.2578125	FM-Stereo (A2, D/K1)	SECAM-East	Slovak. Rep.			
3402		3412				D/K	D/K	6.5/6.7421875	FM-Stereo (A2, D/K2)	PAL	currently no broadcast
		Ř	7	D/K	6.5/5.7421875	FM-Stereo (A2, D/K3)	SECAM-East	Poland			
			3452		6.5/5.85	FM-Mono/NICAM (D/K, NICAM)	PAL	China, Hungary			
3402				Satellite	6.5 7.02/7.2 7.38/7.56 etc.	FM-Mono FM-Stereo ASTRA Digital Radio (ADR) with DRP 3510A	PAL	Europe Sat. ASTRA			
	~				4.5/4.724212	FM-Stereo (A2)	NTSC	Korea			
	3442			M/N	4.5	FM-FM (EIA-J)	NTSC	Japan			
	3422,				4.5	BTSC-Stereo + SAP	NTSC, PAL	USA, Argentina			
	.,			FM-Radio	10.7	FM-Stereo Radio		USA, Europe			

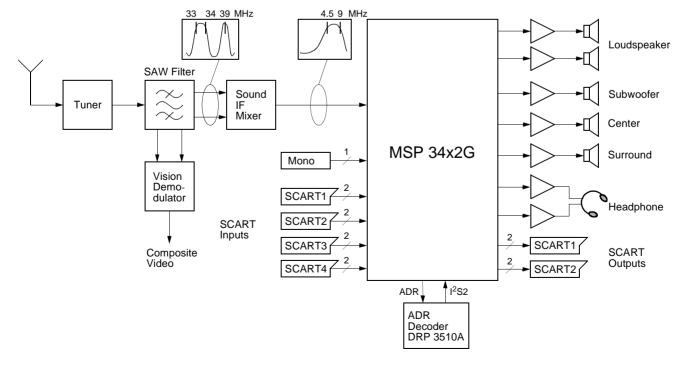


Fig. 1-2: Typical MSP 34x2G application

PRELIMINARY DATA SHEET

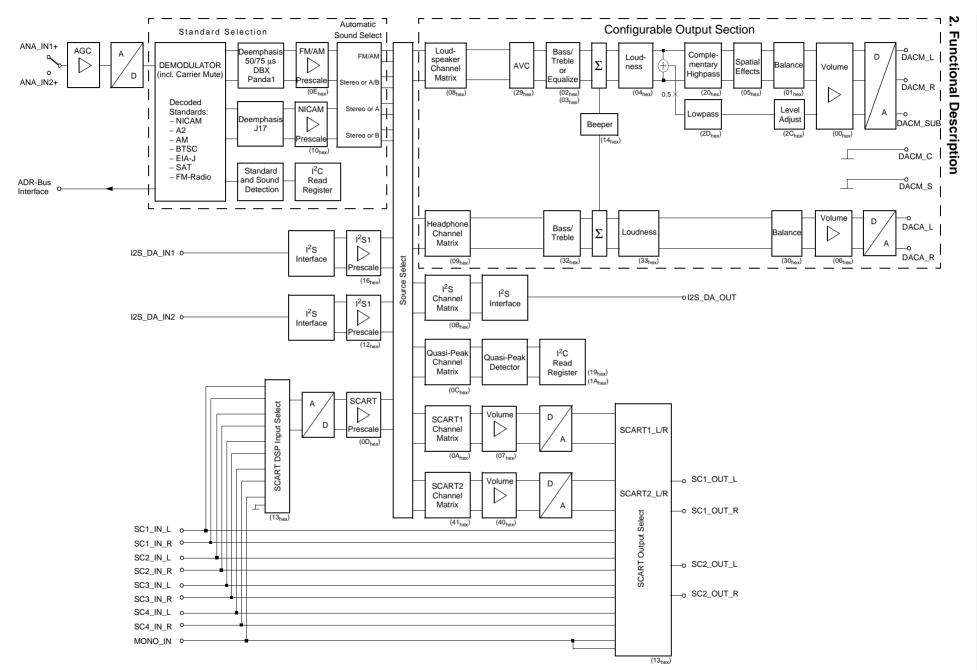


Fig. 2–1: Signal flow block diagram of the MSP 3452G without any surround processing: Output Configuration (register 48_{hex}) = 0000_{hex}

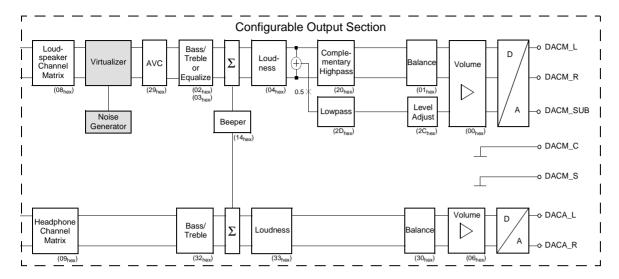


Fig. 2–2: Output section in virtual mode: Output Configuration (register 48_{hex}) = 0100_{hex}

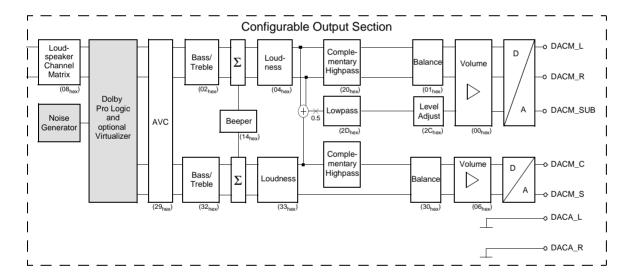


Fig. 2–3: Output section with multi-channel surround: Output Configuration (register 48_{hex}) = 8200_{hex}

2.1. Architecture of the MSP 34x2G Family

The block diagrams in Fig. 2–1, Fig. 2–2, and Fig. 2–3 show the signal flow in the MSP 34x2G in three modes that can be set in the Output Configuration register.

- Standard mode (see Fig. 2–1).
 The IC is compatible to the MSP 34x0 family.
- Virtual mode (see Fig. 2–2).
 The IC is compatible to the Virtual Dolby MSP 34x1 family.
- Dolby Surround Pro Logic mode (see Fig. 2-3).

The three block diagrams show the features of the MSP 3452G family member.

Other members of the MSP 34x2G family do not have the complete set of features: The demodulator handles only a subset of the standards presented in the demodulator block; NICAM processing is only possible in the MSP 3412G and MSP 3452G.

2.2. Sound IF Processing

2.2.1. Analog Sound IF Input

The input pins ANA_IN1+, ANA_IN2+, and ANA_IN-offer the possibility to connect two different sound IF (SIF) sources to the MSP 34x2G. The analog-to-digital conversion of the preselected sound IF signal is done by an A/D-converter. An analog automatic gain circuit (AGC) allows a wide range of input levels. The high-pass filters formed by the coupling capacitors at pins ANA_IN1+ and ANA_IN2+ see Section 7.2. "Application Circuit" on page 102 are sufficient in most cases to suppress video components. Some combinations of SAW filters and sound IF mixer ICs, however, show large picture components on their outputs. In this case, further filtering is recommended.

2.2.2. Demodulator: Standards and Features

The MSP 34x2G is able to demodulate all TV-sound standards worldwide including the digital NICAM system. Depending on the MSP 34x2G version, the following demodulation modes can be performed:

A2 Systems: Detection and demodulation of two separate FM carriers (FM1 and FM2), demodulation and evaluation of the identification signal of carrier FM2.

NICAM Systems: Demodulation and decoding of the NICAM carrier, detection and demodulation of the analog (FM or AM) carrier. For D/K-NICAM, the FM carrier may have a maximum deviation of 384 kHz.

Very high deviation FM-Mono: Detection and robust demodulation of one FM carrier with a maximum deviation of 540 kHz.

BTSC-Stereo: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, AM demodulation of the (L-R)-carrier and detection of the SAP subcarrier. Processing of DBX noise reduction or Micronas Noise Reduction (MNR).

BTSC-Mono + SAP: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, detection and FM demodulation of the SAP subcarrier. Processing of DBX noise reduction or Micronas Noise Reduction (MNR).

Japan Stereo: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Demodulation and evaluation of the identification signal and FM demodulation of the (L–R)-carrier.

FM-Satellite Sound: Demodulation of one or two FM carriers. Processing of high-deviation mono or narrow bandwidth mono, stereo, or bilingual satellite sound according to the ASTRA specification.

FM-Stereo-Radio: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Detection and evaluation of the pilot carrier and AM demodulation of the (L-R)-carrier.

The demodulator blocks of all MSP 34x2G versions have identical user interfaces. Even completely different systems like the BTSC and NICAM systems are controlled the same way. Standards are selected by means of MSP Standard Codes. Automatic processes handle standard detection and identification without controller interaction. The key features of the MSP 34x2G demodulator blocks are

Standard Selection: The controlling of the demodulator is minimized: All parameters, such as tuning frequencies or filter bandwidth, are adjusted automatically by transmitting one single value to the STANDARD SELECT register. For all standards, specific MSP standard codes are defined.

Automatic Standard Detection: If the TV sound standard is unknown, the MSP 34x2G can automatically detect the actual standard, switch to that standard, and respond the actual MSP standard code.

Automatic Carrier Mute: To prevent noise effects or FM identification problems in the absence of an FM carrier, the MSP 34x2G offers a configurable carrier mute feature, which is activated automatically if the TV sound standard is selected by means of the STAN-DARD SELECT register. If no FM carrier is detected at one of the two MSP demodulator channels, the corresponding demodulator output is muted. This is indicated in the STATUS register.

2.2.3. Preprocessing of Demodulator Signals

The NICAM signals must be processed by a deemphasis filter and adjusted in level. The analog demodulated signals must be processed by a deemphasis filter, adjusted in level, and dematrixed. The correct deemphasis filters are already selected by setting the standard in the STANDARD SELECT register. The level adjustment has to be done by means of the FM/AM and NICAM prescale registers. The necessary dematrix function depends on the selected sound standard and the actual broadcasted sound mode (mono, stereo, or bilingual). It can be manually set by the FM Matrix Mode register or automatically set by the Automatic Sound Selection.

2.2.4. Automatic Sound Select

In the Automatic Sound Select mode, the dematrix function is automatically selected based on the identification information in the STATUS register. No I²C interaction is necessary when the broadcasted sound mode changes (e.g. from mono to stereo).

The demodulator supports the identification check by switching between mono compatible standards (standards that have the same FM mono carrier) automatically and non-audible. If B/G-FM or B/G-NICAM is selected, the MSP will switch between these standards. The same action is performed for the standards: D/K1-FM, D/K2-FM, and D/K-NICAM. Switching is only done in the absence of any stereo or bilingual identification. If identification is found, the MSP keeps the detected standard.

In case of high bit-error rates, the MSP 34x2G automatically falls back from digital NICAM sound to analog FM or AM mono.

Table 2–1 summarizes all actions that take place when Automatic Sound Select is switched on.

To provide more flexibility, the Automatic Sound Select block prepares four different source channels of demodulated sound (see Fig. 2–4). By choosing one of the four demodulator channels, the preferred sound mode can be selected for each of the output channels (loudspeaker, headphone, etc.). This is done by means of the Source Select registers.

The following source channels of demodulated sound are defined:

- "FM/AM" channel: Analog mono sound, stereo if available. In case of NICAM, analog mono only (FM or AM mono).
- "Stereo or A/B" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains both languages A (left) and B (right).

- "Stereo or A" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language A (on left and right).
- "Stereo or B" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language B (on left and right).

Fig. 2–4 and Table 2–2 show the source channel assignment of the demodulated signals in case of Automatic Sound Select mode for all sound standards.

Note: The analog primary input channel contains the signal of the mono FM/AM carrier or the L+R signal of the MPX carrier. The secondary input channel contains the signal of the second FM carrier, the L-R signal of the MPX carrier, or the SAP signal.

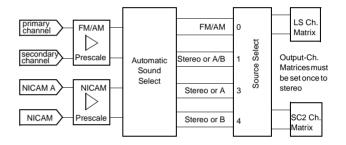
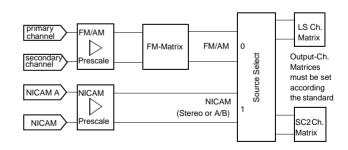



Fig. 2–4: Source channel assignment of demodulated signals in Automatic Sound Select Mode

2.2.5. Manual Mode

Fig. 2–5 shows the source channel assignment of demodulated signals in case of manual mode. If manual mode is required, more information can be found in Section 6.7. "Demodulator Source Channels in Manual Mode" on page 99.

Fig. 2–5: Source channel assignment of demodulated signals in Manual Mode

Table 2-1: Performed actions of the Automatic Sound Selection

Selected TV Sound Standard	Performed Actions
B/G-FM, D/K-FM, M-Korea, and M-Japan	Evaluation of the identification signal and automatic switching to mono, stereo, or bilingual. Preparing four demodulator source channels according to Table 2–2. Identification is acquired after 500 ms.
B/G-NICAM, L-NICAM, I-NICAM, and D/K-NICAM	Evaluation of NICAM-C-bits and automatic switching to mono, stereo, or bilingual. Preparing four demodulator source channels according to Table 2–2. NICAM detection is acquired within 150 ms.
	In case of bad or no NICAM reception, the MSP switches automatically to FM/AM mono and switches back to NICAM if possible. A hysteresis prevents periodical switching.
B/G-FM, B/G-NICAM or D/K1-FM, D/K2-FM, D/K3-FM, and D/K-NICAM	Automatic searching for stereo/bilingual-identification in case of mono transmission. Automatic and non-audible changes between Dual-FM and FM-NICAM standards while listening to the basic FM-Mono sound carrier. Example: If starting with B/G-FM-Stereo, there will be a periodical alternation to B/G-NICAM in the absence of FM-Stereo/Bilingual or NICAM-identification. Once an identification is detected, the MSP keeps the corresponding standard.
BTSC-STEREO, FM Radio	Evaluation of the pilot signal and automatic switching to mono or stereo. Preparing four demodulator source channels according to Table 2–2. Detection of the SAP carrier. Pilot detection is acquired after 200 ms.
BTSC-SAP	In the absence of SAP, the MSP switches to BTSC-Stereo if available. If SAP is detected, the MSP switches automatically to SAP (see Table 2–2).

Table 2-2: Sound modes for the demodulator source channels with Automatic Sound Select

			Source	ce Channels in Auto	matic Sound Selec	ct Mode
Broadcasted Sound Standard	Selected MSP Standard Code ³⁾	Broadcasted Sound Mode	FM/AM (source select: 0)	Stereo or A/B (source select: 1)	Stereo or A (source select: 3)	Stereo or B (source select: 4)
M-Korea	02 03, 08 ¹⁾	MONO	Mono	Mono	Mono	Mono
B/G-FM D/K-FM	04, 05, 07, 0B ¹⁾	STEREO	Stereo	Stereo	Stereo	Stereo
M-Japan	30	BILINGUAL: Languages A and B	Left = A Right = B	Left = A Right = B	A	В
B/G-NICAM L-NICAM	08, 03 ²⁾ 09	NICAM not available or error rate too high	analog Mono	analog Mono	analog Mono	analog Mono
I-NICAM D/K-NICAM	0A 0B, 04 ²⁾ , 05 ²⁾ 0C	MONO	analog Mono	NICAM Mono	NICAM Mono	NICAM Mono
D/K-NICAM (with high		STEREO	analog Mono	NICAM Stereo	NICAM Stereo	NICAM Stereo
deviation FM)		BILINGUAL: Languages A and B	analog Mono	Left = NICAM A Right = NICAM B	NICAM A	NICAM B
BTSC	20, 21	MONO	Mono	Mono	Mono	Mono
		STEREO	Stereo	Stereo	Stereo	Stereo
	20	MONO+SAP	Mono	Mono	Mono	Mono
		STEREO+SAP	Stereo	Stereo	Stereo	Stereo
	21	MONO+SAP	Left = Mono Right = SAP	Left = Mono Right = SAP	Mono	SAP
		STEREO+SAP	Left = Mono Right = SAP	Left = Mono Right = SAP	Mono	SAP
FM Radio	40	MONO	Mono	Mono	Mono	Mono
		STEREO	Stereo	Stereo	Stereo	Stereo

¹⁾ The Automatic Sound Select process will automatically switch to the mono compatible analog standard.
2) The Automatic Sound Select process will automatically switch to the mono compatible digital standard.
3) The MSP Standard Codes are defined in Table 3–7 on page 27.

2.3. Preprocessing for SCART and I²S Input Signals

The SCART and I^2S inputs need only be adjusted in level by means of the SCART and I^2S prescale registers.

2.4. Source Selection and Output Channel Matrix

The Source Selector makes it possible to distribute all source signals (one of the demodulator source channels, SCART, or I²S input) to the desired output channels (loudspeaker, headphone, etc.). All input and output signals can be processed simultaneously. Each source channel is identified by a unique source address.

For each output channel, the sound mode can be set to sound A, sound B, stereo, or mono by means of the output channel matrix.

If Automatic Sound Select is on, the output channel matrix can stay fixed to stereo (transparent) for demodulated signals.

2.5. Audio Baseband Processing

2.5.1. Automatic Volume Correction (AVC)

Different sound sources (e.g. terrestrial channels, SAT channels, or SCART) fairly often do not have the same volume level. Advertisements during movies usually have a higher volume level than the movie itself. This results in annoying volume changes. The AVC solves this problem by equalizing the volume level.

To prevent clipping, the AVC's gain decreases quickly in dynamic boost conditions. To suppress oscillation effects, the gain increases rather slowly for low-level inputs. The decay time is programmable by means of the AVC register (see page page 36).

For input signals ranging from -24 dBr to 0 dBr, the AVC maintains a fixed output level of -18 dBr. Fig. 2-6 shows the AVC output level versus its input level. For prescale and volume registers set to 0 dB, a level of 0 dBr corresponds to full scale input/output. This is

- SCART input/output 0 dBr = 2.0 V_{rms}
- Loudspeaker and Aux output 0 dBr = 1.4 V_{rms}

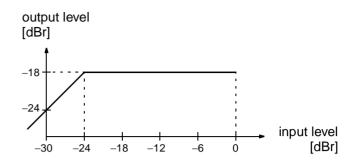


Fig. 2-6: Simplified AVC characteristics

2.5.2. Loudspeaker and Headphone Outputs

The following baseband features are implemented in the loudspeaker and headphone output channels: bass/treble, loudness, balance, and volume. A square wave beeper can be added to the loudspeaker and headphone channel. The loudspeaker channel additionally performs: equalizer (not simultaneously with bass/treble), spatial effects, and a subwoofer crossover filter.

2.5.3. Subwoofer Output

The subwoofer signal is created by combining the left and right channels directly behind the loudness block using the formula (L+R)/2. Due to the division by 2, the D/A converter will not be overloaded, even with full scale input signals. The subwoofer signal is filtered by a third-order low-pass with programmable corner frequency followed by a level adjustment. At the loud-speaker channels, a complementary high-pass filter can be switched on. Subwoofer and loudspeaker output use the same volume (Loudspeaker Volume Register).

2.5.4. Quasi-Peak Detector

The quasi-peak readout register can be used to read out the quasi-peak level of any input source. The feature is based on following filter time constants:

attack time: 1.3 ms decay time: 37 ms

2.6. Surround Processing

2.6.1. Output Configuration

Like the MSP 34x1G ICs, the MSP 34x2G can be used for virtual surround sound on the left and right loud-speaker outputs. For multichannel outputs (more than 2 channels), extra output pins have been defined (DACM_C and DACM_S pins). For processing of these output channels, internal resources are shared with the headphone processing. As a result, headphone output is not possible together with multi-channel surround processing. When headphone output pins are active, the surround outputs are muted and vice versa. There are two options: the HP/CS switch and the channel configuration. The output configuration is controlled by means of register $48_{\rm hex}$ on $1^2{\rm C}$ subaddress $12_{\rm hex}$.

2.6.1.1. HP/CS Switch

This switch defines which output pin pair is driven by the D/A converters that are used for headphone or surround processing. The unselected pins are muted. This makes it convenient to connect the center/surround amplifiers or outputs to the MSP 34x2 without external switches.

Mute the Headphone/Surround channel by setting register 06_{hex} to 0000_{hex} before switching. Allow at least 2 s for settling to avoid audible plops.

2.6.1.2. Channel Configuration

The channel configuration defines whether surround processing is switched on and what resources of the IC are to be used for surround sound processing. There are 3 options:

- STEREO:

The IC is in the normal stereo processing mode. No surround processing takes place. In this mode, the IC is compatible to the MSP 34x0G.

- TWO CHANNEL:

Surround sound processing is switched on, but only left and right loudspeaker channels are used for output. This mode is used for virtual surround sound.

- MULTI CHANNEL:

Surround sound processing is switched on, left and right loudspeaker channels together with left and right headphone channels are used for output. The following relationship applies: Center corresponds to the left headphone channel; Surround corresponds to the right headphone channel.

2.6.2. Surround Processing Mode

Surround sound processing is controlled by three functions:

The "Decoder Matrix" defines which method should be used to create a multichannel signal (L, C, R, S) out of a stereo input.

The "Surround Reproduction" determines whether the surround signal "S" is fed to surround speakers. If no surround speaker is actually connected, it defines the method that should be used to create surround effects.

The "Center Mode" determines how the center signal "C" is to be processed. It can be left unmodified, distributed to left and right, discarded or high pass filtered, whereby the low pass signals are distributed to left and right.

The surround processing mode is controlled by means of register $4B_{hex}$ on I^2C subaddress 12_{hex} .

2.6.2.1. Decoder Matrix

The Decoder Matrix allows three settings:

– ADAPTIVE:

The adaptive matrix is used for Dolby Surround Pro Logic. Even sound material not encoded in Dolby Surround will produce good surround effects in this mode. The use of the adaptive matrix requires a license from Dolby Laboratories (See License Notice on page 5).

- PASSIVE:

A simple fixed matrix is used for surround sound.

- EFFECT:

A fixed matrix that is used for mono sound and special effects. In adaptive or passive mode no surround signal is present in case of mono, moreover in adaptive mode even the left and right output channels carry no signal (or just low frequency signals in case of Center Mode = NORMAL). If surround sound is still required for mono signals, the effect mode can be used. This forces the surround channel to be active. The effect mode can be used together with 3D-PANORAMA. The result will be a pseudo stereo effect or a broadened stereo image respectively.

2.6.2.2. Surround Reproduction

Surround sound can be reproduced with four choices:

- REAR SPEAKER:

If there are any surround speakers connected to the system, this mode should be used. Useful loud-speaker combinations are: (L, C, R, S) or (L, R, S).

– FRONT SPEAKER:

If there is no surround speaker connected, this mode can be used. Surround information is mixed to left and right output but without creating the illusion of a virtual speaker. It is similar to stereo but an additional center speaker can be used. This mode should be used with the adaptive decoder matrix only. Useful loudspeaker combinations are: (L, C, R) (Note: the surround output channel is muted).

- PANORAMA:

The surround information is mixed to left and right in order to create the illusion of a virtual surround speaker. Useful loudspeaker combinations are: (L, C, R) or (L, R) (Note: the surround output channel is muted).

– 3D-PANORAMA:

Like PANORAMA with improved effect. This algorithm has been approved by the Dolby Laboratories for compliance with the "Virtual Dolby Surround" technology. Useful loudspeaker combinations are: (L, C, R) or (L, R) (Note: the surround output channel is muted).

2.6.2.3. Center Modes

Four center modes are supported:

- NORMAL:

small center speaker connected, L and R speakers have better bass capability.

- WIDE:

L,R, and C speakers all have good bass capability.

_ PHANTOM

No center speaker used. Center signal is distributed to L and R (Note: the center output channel C is muted).

_ OFF

No center speaker used. Center signal C is discarded (Note: the center output channel C is muted).

2.6.2.4. Useful Combinations of Surround Processing Modes

In principle, "Decoder Matrix", "Surround Reproduction", and "Center Modes" are independent settings (all "Decoder Matrix" settings can be used with all "Surround Reproduction" and "Center Modes") but there are some combinations that do not create "good" sound. Useful combinations are

Surround Reproduction and Center Modes

- REAR SPEAKER:

This mode is used if surround speakers are available. Useful center modes are NORMAL, WIDE, PHANTOM, and OFF.

- FRONT SPEAKER:

This mode can be used if no surround speaker but a center speaker is connected. Useful center modes are NORMAL and WIDE.

– PANORAMA or 3D-PANORAMA:

No surround speaker used. Two (L and R) or three (L, R, and C) loudspeakers can be used. Useful center modes are NORMAL, WIDE, PHANTOM, and OFF.

Center Modes and Decoder Matrix

- PHANTOM:

Should only be used together with ADAPTIVE Decoder Matrix.

– NORMAL and WIDE:

Can be used together with any Surround Decoder Matrix.

- OFF:

In special cases, this mode can be used together with the PASSIVE and EFFECT Decoder Matrix (no center speaker connected).

2.6.3. Examples

Table 2-3 shows some examples of how these modes can be used to configure the IC. The list is not intended to be complete, more modes are possible.

Table 2-3: Examples of Surround Configurations

Configurations	Speaker Config- uration ¹⁾	Output Register	Configuration (48 _{hex})	Surround F Register (4B ₁	Processing Mode	
		HP/CS Switch [15]	Channel Configuration [14:8]	Decoder Matrix [15:8]	Surround Reproduction [7:4]	Center Mode [3:0]
Stereo IC is compatible to the MSP34x0G.						
Stereo	(L,R)	HP	STEREO	-	-	_
Surround Modes as defined by Dolby	Laboratorie	es ²⁾				
Dolby Surround Pro Logic	(L,C,R,S)	cs	MULTI_CHANNEL	ADAPTIVE	REAR_ SPEAKER	NORMAL WIDE
	(L,R,S)	CS	MULTI_CHANNEL	ADAPTIVE	REAR_ SPEAKER	PHANTOM
Dolby 3 Stereo	(L,C,R)	cs	MULTI_CHANNEL	ADAPTIVE	FRONT_ SPEAKER	NORMAL WIDE
Virtual Dolby Surround	(L,R)	HP	TWO_CHANNEL	ADAPTIVE	3D_PANORAMA	PHANTOM
Surround Modes that use the Dolby Pr	o Logic Ma	ıtrix ²⁾				
3-Channel Virtual Surround	(L,C,R)	cs	MULTI_CHANNEL	ADAPTIVE	3D_PANORAMA	NORMAL WIDE
Passive Matrix Surround Sound						
4-Channel Surround	(L,C,R,S)	cs	MULTI_CHANNEL	PASSIVE	REAR_ SPEAKER	NORMAL WIDE
3-Channel Surround	(L,R,S)	cs	MULTI_CHANNEL	PASSIVE	REAR_ SPEAKER	OFF
2-Channel Micronas Perfect 3D Sound	(L,R)	HP	TWO_CHANNEL	PASSIVE	3D_PANORAMA	OFF
3-Channel Micronas Perfect 3D Sound	(L,C,R)	cs	MULTI_CHANNEL	PASSIVE	3D_PANORAMA	NORMAL WIDE
Special Effects Surround Sound						
4-Channel Surround for mono	(L,C,R,S)	CS	MULTI_CHANNEL	EFFECT	REAR_ SPEAKER	NORMAL WIDE
2-Channel Virtual Surround for mono	(L,R)	HP	TWO_CHANNEL	EFFECT	3D_PANORAMA	OFF
3-Channel Virtual Surround for mono	(L,C,R)	CS	MULTI_CHANNEL	EFFECT	3D_PANORAMA	NORMAL WIDE

¹⁾ Speakers not in use are muted automatically.
2) The implementation in products requires a license from Dolby Laboratories Licensing Corporation (see note on page 5).

2.6.4. Application Tips for using 3D-PANORAMA

2.6.4.1. Sweet Spot

Good results are only obtained in a rather close area along the middle axis between the two loudspeakers: the sweet spot. Moving away from this position degrades the effect.

2.6.4.2. Clipping

For the test at Dolby Labs, it is very important to have no clipping effects even with worst case signals. That is, 2 Vrms input signal must not clip. The SCART input prescale register has to be set to values of max $19_{\rm hex}$ ($25_{\rm dec}$). This is sufficient in terms of clipping.

However, it was found, that by reducing the prescale to a value lower than 25_{dec} more convincing effects are generated in case of very high dynamic signals. A value of 18_{dec} is a good compromise between overall volume and additional headroom.

Test signals: sine sweep with 2 V_{RMS} ; L only, R only, L&R equal phase, L&R anti phase.

Listening tests: Dolby Trailers (train trailer, city trailer, canyon trailer...)

2.6.4.3. Loudspeaker Requirements

The loudspeakers used and their positioning inside the TV set will greatly influence the performance of the virtualizer. The algorithm works with the direct sound path. Reflected sound waves reduce the effect. So it's most important to have as much direct sound as possible, compared to indirect sound.

To obtain the approval for a TV set, Dolby Laboratories require mounting the loudspeakers at the front of the set. Loudspeakers radiating to the side of the TV set will not produce convincing effects. Good directionality of the loudspeakers towards the listener is optimal.

The virtualizer was specially developed for implementation in TV sets. Even for rather small stereo TV's, sufficient sound effects can be obtained. For small sets, the loudspeaker placement should be to the side of the CRT; for large screen sets (or 16:9 sets), mounting the loudspeakers below the CRT is acceptable (large separation is preferred, low frequency speakers should be outmost to avoid cancellation effects). Using external loudspeakers with a large stereo base will not create optimal effects.

The loudspeakers should be able to reproduce a wide frequency range. The most important frequency range starts from 160 Hz and ranges up to 5 kHz.

Great care has to be taken with systems that use one common subwoofer: A single loudspeaker cannot reproduce virtual sound locations. The crossover frequency must be lower than 120 Hz.

2.6.4.4. Cabinet Requirements

During listening tests at Dolby Laboratories, no resonances in the cabinet should occur.

Good material to check for resonances are the Dolby Trailers or other dynamic sound tracks.

2.6.5. Input and Output Levels in Dolby Surround Pro Logic Mode

The analog inputs are able to accept 2 Vrms input level without overloading any stage before the volume control. The nominal input level (input sensitivity) is 350 mV. This gives 15 dB headroom. The scart prescale value should be set to max 0 dB (max 25_{dec}).

 I^2S -Inputs should have the same headroom (15 dB) when entering the MSP 3452G. The highest possible input level of 0 dBFS is accepted without internal overflow. The I^2S -prescale value should be set to 0 dB (16_{dec}).

With higher prescale values lower input sensitivities can be accommodated. A higher input sensitivity is not possible, because at least 15 dB headroom is required for every input according to the Dolby specifications.

A full-scale left only input (2 Vrms) will produce a full-scale left only output (at 0 dB volume). The typical output level is 1.37 Vrms for DACM_L. The same holds true for right only signals (1.37 Vrms for DACM_R). A full-scale input level on both inputs (Lin=Rin=2 Vrms) will give a center only output with maximum level. The typical output level is 1.37 Vrms for DACM_C. A full-scale input level on both inputs (but Lin and Rin with inverted phases) will give a surround-only signal with maximum level (1.37 Vrms for DACM_S).

For reproducing Dolby Pro Logic according to its specifications, the center and surround outputs must be amplified by 3 dB with respect to the L and R output signals. This can be done in two ways:

- 1. By implementing 3 dB more amplification for center and surround loudspeaker outputs.
- 2. By always selecting volume for L and R 3 dB lower than center and surround. Method 1 is preferable, as method 2 lowers the achievable SNR for left and right signals by $3\ dB$.

2.6.6. Subwoofer in Surround Mode

If the channel configuration is set to OFF or TWO_CHANNEL, the subwoofer signal is created by combining the left and right channels directly behind the loudness block using the formula (L+R)/2.

Note: This is identical to the MSP 34x0G.

If the channel configuration is MULTI_CHANNEL, the subwoofer signal is created by combining the left and right channels of the loudspeaker channel and the center signal (= headphone left) directly behind the loudness block using the formula (L+R+C)/2. Due to the fact, that the subwoofer is formed behind all bass/ treble/loudness filters, it is strongly recommended to have exactly the same setting for these filters in both, the loudspeaker and center/surround channels when using the subwoofer output. Any mismatch in these settings will result in an unbalanced mix of L, C and R for the subwoofer signal.

2.6.7. Equalizer in Surround Mode

In the MULTI_CHANNEL mode, the equalizer cannot be used.

2.7. SCART Signal Routing

2.7.1. SCART DSP In and SCART Out Select

The SCART DSP Input Select and SCART Output Select blocks include full matrix switching facilities. To design a TV set with four pairs of SCART-inputs and two pairs of SCART-outputs, no external switching hardware is required. The switches are controlled by the ACB user register (see Table 3–11on page 42).

2.7.2. Stand-by Mode

If the MSP 34x2G is switched off by first pulling STANDBYQ low and then (after >1 μ s delay) switching off the 5-V, but keeping the 8-V power supply ('**Standby'-mode**), the SCART switches maintain their position and function. This allows the copying from selected SCART-inputs to SCART-outputs in the TV set's stand-by mode.

In case of power on or starting from stand-by (switching on the 5-V supply, RESETQ going high 2 ms later), all internal registers except the ACB register (page page 42) are reset to the default configuration (see Table 3–5 on page 24). The reset position of the ACB register becomes active after the first I²C transmission into the Baseband Processing part (subaddress 12_{hex}). By transmitting the ACB register first, the reset state can be redefined.

2.8. I²S Bus Interface

The MSP 34x2G has a synchronous master/slave input/output interface running on 32 kHz.

The interface accepts two formats:

- 1. I²S WS changes at the word boundary
- 2. I²S_WS changes one I²S-clock period before the word boundaries.

All I²S options are set by means of the MODUS and the I2S CONFIG registers.

The synchronous I^2S bus interface consists of five pins:

- I2S_DA_IN1, I2S_DA_IN2:
 I²S serial data input: 16, 18....32 bits per sample
- I2S_DA_OUT:
 I²S serial data output: 16, 18...32 bits per sample
- I2S_CL:
 I²S serial clock
- I2S_WS:
 I²S word strobe signal defines the left and right sample

If the MSP 34x2G serves as the master on the I²S interface, the clock and word strobe lines are driven by the IC. In this mode, only 16 or 32 bits per sample can be selected. In slave mode, these lines are input to the IC and the MSP clock is synchronized to 576 times the I2S_WS rate (32 kHz). NICAM operation is not possible in slave mode.

An I²S timing diagram is shown in Fig. 4–22 on page 71.

2.9. ADR Bus Interface

For the ASTRA Digital Radio System (ADR), the MSP 3402G, MSP 3412G and MSP 3452G performs preprocessing such as carrier selection and filtering. Via the 3-line ADR-bus, the resulting signals are transferred to the DRP 3510A coprocessor, where the source decoding is performed. To be prepared for an upgrade to ADR with an additional DRP board, the following lines of MSP 34x2G should be provided on a feature connector:

- AUD CL OUT
- I2S DA IN1 or I2S DA IN2
- I2S DA OUT
- I2S WS
- I2S CL
- ADR_CL, ADR_WS, ADR_DA

For more details, please refer to the DRP 3510A data sheet.

2.10.Digital Control I/O Pins and Status Change Indication

The static level of the digital input/output pins D_CTR_I/O_0/1 is switchable between HIGH and LOW via the I²C-bus by means of the ACB register (see Table 3–11on page page 42). This enables the controlling of external hardware switches or other devices via I²C-bus.

The digital input/output pins can be set to high impedance by means of the MODUS register (see Table 3–9 on page 30). In this mode, the pins can be used as input. The current state can be read out of the STATUS register (see Table 3–9 on page page 31).

Optionally, the pin D_CTR_I/O_1 can be used as an interrupt request signal to the controller, indicating any changes in the read register STATUS. This makes polling unnecessary, I²C bus interactions are reduced to a minimum.

2.11.Clock PLL Oscillator and Crystal Specifications

The MSP 34x2G derives all internal system clocks from the 18.432 MHz oscillator. In NICAM or in I^2S -Slave mode, the clock is phase-locked to the corresponding source. Therefore, it is not possible to use NICAM and I^2S -Slave mode at the same time.

For proper performance, the on-chip clock oscillator requires a 18.432 MHz crystal. Note that for the phase-locked modes (NICAM, I²S-Slave), crystals with tighter tolerance are required.

Remark on using the crystal:

External capacitors at each crystal pin to ground are required. They are necessary for tuning the open-loop frequency of the internal PLL and for stabilizing the frequency in closed-loop operation. The higher the capacitors, the lower the resulting clock frequency. The nominal free running frequency should match 18.432 MHz as closely as possible.

Clock measurements should be done at pin AUD_CL_OUT. This pin must be activated for this purpose (see Table 3–9 on page 30).

3. Control Interface

3.1. I²C Bus Interface

3.1.1. Device and Subaddresses

The MSP 34x2G is controlled via the I²C bus slave interface.

The IC is selected by transmitting one of the MSP 34x2G device addresses. In order to allow up to three MSP ICs to be connected to a single bus, an address select pin (ADR_SEL) has been implemented. With ADR_SEL pulled to high, low, or left open, the MSP 34x2G responds to different device addresses. A device address pair is defined as a write address and a read address (see Table 3–1).

Writing is done by sending the device write address, followed by the subaddress byte, two address bytes, and two data bytes. Reading is done by sending the write device address, followed by the subaddress byte and two address bytes. Without sending a stop condition, reading of the addressed data is completed by sending the device read address and reading two bytes of data. Refer to Section 3.1.4. for the I²C bus protocol and to Section 3.4. "Programming Tips" on page 47 for proposals of MSP 34x2G I²C telegrams. See Table 3–2 for a list of available subaddresses.

Besides the possibility of hardware reset, the MSP can also be reset by means of the RESET bit in the CONTROL register by the controller via I²C bus.

Due to the internal architecture of the MSP 34x2G, the IC cannot react immediately to an I^2C request. The

typical response time is about 0.3 ms. If the MSP cannot accept another complete byte of data until it has performed some other function (for example, servicing an internal interrupt), it will hold the clock line I2C_CL LOW to force the transmitter into a wait state. The positions within a transmission where this may happen are indicated by "Wait" in Section 3.1.4. The maximum wait period of the MSP during normal operation mode is less than 1 ms.

3.1.2. Internal Hardware Error Handling

In case of any internal hardware error (e.g. interruption of the power supply of the MSP), the MSP's wait period is extended to 1.8 ms. After this time period elapses, the MSP releases data and clock lines.

Indicating and solving the error status:

To indicate the error status, the remaining acknowledge bits of the actual I²C-protocol will be left high. Additionally, bit[14] of CONTROL is set to one. The MSP can then be reset via the I²C bus by transmitting the reset condition to CONTROL.

Indication of reset:

Any reset, even caused by an unstable reset line etc., is indicated in bit[15] of CONTROL.

A general timing diagram of the I^2C bus is shown in Fig. 4–21 on page 69.

Table 3-1: I²C Bus Device Addresses

ADR_SEL	Lo	ow	Hi	gh	Left Open	
Mode	Write	Read Write F		Read	Write	Read
MSP device address	80 _{hex}	81 _{hex}	84 _{hex}	85 _{hex}	88 _{hex}	89 _{hex}

Table 3-2: I²C Bus Subaddresses

Name	Binary Value	Hex Value	Mode	Function
CONTROL	0000 0000	00	Read/Write	Write: Software reset of MSP (see Table 3–3) Read: Hardware error status of MSP
TEST	0000 0001	01	Write	only for internal use
WR_DEM	0001 0000	10	Write	write address demodulator
RD_DEM	0001 0001	11	Write	read address demodulator
WR_DSP	0001 0010	12	Write	write address DSP
RD_DSP	0001 0011	13	Write	read address DSP

3.1.3. Description of CONTROL Register

Table 3-3: CONTROL as a Write Register

Name	Subaddress	Bit[15] (MSB)	Bits[14:0]
CONTROL	00 hex	1 : RESET 0 : normal	0

Table 3-4: CONTROL as a Read Register (only MSP 34x2G-versions from A2 on)

Name	Subaddress	Bit[15] (MSB)	Bit[14]	Bits[13:0]						
CONTROL	00 hex	Reset status after last reading of CONTROL: 0: no reset occured 1: reset occured	Internal hardware status: 0 : no error occured 1 : internal error occured	not of interest						
Reading of CONTROL will reset the bits[15,14] of CONTROL. After Power-on, bit[15] of CONTROL will be set; it must be read once to be resetted.										

3.1.4. Protocol Description

Write to DSP or Demodulator

S	write	Wait	ACK	sub-addr	ACK		ACK		ACK		ACK		ACK	Р
	address					high		low		high		low		

Read from DSP or Demodulator

s	write	Wait	ACK	sub-addr	ACK	addr-byte	ACK	addr-byte	ACK	S	read	Wait	ACK	data-byte-	ACK	data-byte	NAK	Р
	device					high		low			device			high		low		
	address					_					address							

Write to Control or Test Registers

S	write device	ACK	sub-addr	ACK	data-byte high	ACK	data-byte low	ACK	Р
	address								

Read from Control Register

Note: $S = I^2C$ -Bus Start Condition from master

 $P = I^2C$ -Bus Stop Condition from master

ACK = Acknowledge-Bit: LOW on I2C_DA from slave (= MSP, light gray) or master (= controller dark gray)

NAK = Not Acknowledge-Bit: HIGH on I2C_DA from master (dark gray) to indicate 'End of Read'

or from MSP indicating internal error state

Wait = 1^2 C-Clock line is held low, while the MSP is processing the 1^2 C command.

This waiting time is max. 1 ms

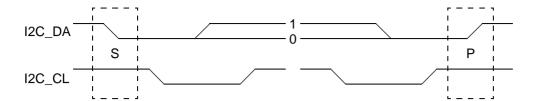


Fig. 3–1: I²C bus protocol (MSB first; data must be stable while clock is high)

3.1.5. Proposals for General MSP 34x2G I²C Telegrams

3.1.5.1. Symbols

daw	write device address (80 _{hex} , 84 _{hex} or 88 _{hex})
dar	read device address (81 _{hex} , 85 _{hex} or 89 _{hex})
<	Start Condition
>	Stop Condition
aa	Address Byte
dd	Data Byte

3.1.5.2. Write Telegrams

<daw< th=""><th>00</th><th>d0</th><th>00</th><th>></th><th></th><th>write to CONTROL register</th></daw<>	00	d0	00	>		write to CONTROL register
<daw< td=""><td>10</td><td>aa</td><td>aa</td><td>dd</td><td>dd></td><td>write data into demodulator</td></daw<>	10	aa	aa	dd	dd>	write data into demodulator
<daw< td=""><td>12</td><td>aa</td><td>aa</td><td>dd</td><td>dd></td><td>write data into DSP</td></daw<>	12	aa	aa	dd	dd>	write data into DSP

3.1.5.3. Read Telegrams

<daw< th=""><th>00</th><th><da< th=""><th>ar c</th><th>dd dd:</th><th>></th><th></th><th>read data from</th></da<></th></daw<>	00	<da< th=""><th>ar c</th><th>dd dd:</th><th>></th><th></th><th>read data from</th></da<>	ar c	dd dd:	>		read data from
							CONTROL register
<daw< td=""><td>11</td><td>aa</td><td>aa</td><td><dar< td=""><td>dd</td><td>dd></td><td>read data from demodulator</td></dar<></td></daw<>	11	aa	aa	<dar< td=""><td>dd</td><td>dd></td><td>read data from demodulator</td></dar<>	dd	dd>	read data from demodulator
<daw< td=""><td>13</td><td>aa</td><td>aa</td><td><dar< td=""><td>dd</td><td>dd></td><td>read data from DSP</td></dar<></td></daw<>	13	aa	aa	<dar< td=""><td>dd</td><td>dd></td><td>read data from DSP</td></dar<>	dd	dd>	read data from DSP

3.1.5.4. Examples

<80	00	80	00>	>			RESET MSP statically
<80	00	00	00>	>			Clear RESET
<80	10	00	20	00	03>		Set demodulator to stand. 03 _{hex}
<80	11	02	00	<81	dd	dd>	Read STATUS
<80	12	00	80	01	20>		Set loudspeaker channel
							source to NICAM and
							Matrix to STEREO

More examples of typical application protocols are listed in Section 3.4. "Programming Tips" on page 47.

3.2. Start-Up Sequence: Power-Up and I²C Controlling

After POWER ON or RESET (see Fig. 4–20), the IC is in an inactive state. All registers are in the reset position (see Table 3–5 and Table 3–6), the analog outputs are muted. The controller has to initialize all registers for which a non-default setting is necessary.

3.3. MSP 34x2G Programming Interface

3.3.1. User Registers Overview

The MSP 34x2G is controlled by means of user registers. The complete list of all user registers is given in the following tables. The registers are partitioned into the Demodulator section (Subaddress $10_{\rm hex}$ for writing, $11_{\rm hex}$ for reading) and the Baseband Processing sections (Subaddress $12_{\rm hex}$ for writing, $13_{\rm hex}$ for reading).

Write and read registers are 16-bit wide, whereby the MSB is denoted bit[15]. Transmissions via I²C bus have to take place in 16-bit words (two byte transfers, with the most significant byte transferred first). All write registers, except the demodulator write registers, are readable.

Unused parts of the 16-bit write registers must be zero. Addresses not given in this table must not be accessed.

For reasons of software compatibility to the MSP 34x0D, an Manual/Compatibility Mode is available. More read and write registers together with a detailed description of this mode can be found in the "Appendix B: Manual/Compatibility Mode" on page 85.

An overview of all MSP 34x2G Write Registers is shown in Table 3–5; all Read Registers are given in Table 3–6.

Table 3–5: List of MSP 34x2G Write Registers

Write Register	Address (hex)	Bits	Description and Adjustable Range	Reset	See Page
I ² C Subaddress = 10 _{hex} ; Registers are	not readal	ole			1
STANDARD SELECT	00 20	[15:0]	Initial Programming of complete Demodulator	00 00	28
MODUS	00 30	[15:0]	Demodulator, Automatic and I ² S options	00 00	30
I2S CONFIGURATION	00 40	[15:0]	Configuration of I ² S format	00 00	31
I ² C Subaddress = 12 _{hex} ; Registers are	all readabl	e by usin	g I ² C Subaddress = 13 _{hex}		
Volume loudspeaker channel	00 00	[15:8]	[+12 dB –114 dB, MUTE]	MUTE	35
Volume / Mode loudspeaker channel		[7:0]	1/8 dB Steps, Reduce Volume / Tone Control / Compromise	00 _{hex}	
Balance loudspeaker channel [L/R]	00 01	[15:8]	[0100 / 100% and 100 / 0100%] [-1270 / 0 and 0 / -1270 dB]	100%/100%	36
Balance mode loudspeaker		[7:0]	[Linear mode / logarithmic mode]	linear mode	
Bass loudspeaker channel	00 02	[15:8]	[+20 dB –12 dB]	0 dB	37
Treble loudspeaker channel	00 03	[15:8]	[+15 dB –12 dB]	0 dB	38
Loudness loudspeaker channel	00 04	[15:8]	[0 dB +17 dB]	0 dB	39
Loudness filter characteristic		[7:0]	[NORMAL, SUPER_BASS]	NORMAL	
Spatial effect strength loudspeaker ch.	00 05	[15:8]	[-100%OFF+100%]	OFF	40
Spatial effect mode/customize		[7:0]	[SBE, SBE+PSE]	SBE+PSE	
Volume headphone *) channel	00 06	[15:8]	[+12 dB –114 dB, MUTE]	MUTE	35
Volume / Mode headphone *) channel		[7:0]	1/8 dB Steps, Reduce Volume / Tone Control	00 _{hex}	
Volume SCART1 output channel	00 07	[15:8]	[+12 dB114 dB, MUTE]	MUTE	41
Loudspeaker source select	00 08	[15:8]	[FM/AM, NICAM, SCART, I ² S1, I ² S2]	FM/AM	34
Loudspeaker channel matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
Headphone *) source select	00 09	[15:8]	[FM/AM, NICAM, SCART, I ² S1, I ² S2]	FM/AM	34
Headphone *) channel matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
SCART1 source select	00 0a	[15:8]	[FM/AM, NICAM, SCART, I ² S1, I ² S2]	FM/AM	34
SCART1 channel matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
I ² S source select	00 0b	[15:8]	[FM/AM, NICAM, SCART, I ² S1, I ² S2]	FM/AM	34
I ² S channel matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
Quasi-peak detector source select	00 Oc	[15:8]	[FM/AM, NICAM, SCART, I ² S1, I ² S2]	FM/AM	34
Quasi-peak detector matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
Prescale SCART input	00 0d	[15:8]	[00 _{hex} 7F _{hex}]	00 _{hex}	34
Prescale FM/AM	00 0e	[15:8]	[00 _{hex} 7F _{hex}]	00 _{hex}	32
FM matrix		[7:0]	[NO_MAT, GSTERERO, KSTEREO]	NO_MAT	33
Prescale NICAM	00 10	[15:8]	[00 _{hex} 7F _{hex}] (MSP 3410G, MSP 3450G only)	00 _{hex}	33
Prescale I ² S2	00 12	[15:8]	[00 _{hex} 7F _{hex}]	10 _{hex}	33
ACB : SCART Switches a. D_CTR_I/O	00 13	[15:0]	Bits [150]	00 _{hex}	42
Beeper	00 14	[15:0]	[00 _{hex} 7F _{hex}]/[00 _{hex} 7F _{hex}]	0/0	42
Prescale I ² S1	00 16	[15:8]	[00 _{hex} 7F _{hex}]	10 _{hex}	33

Table 3-5: List of MSP 34x2G Write Registers

Write Register	Address (hex)	Bits	Description and Adjustable Range	Reset	See Page
Mode tone control	00 20	[15:8]	[BASS/TREBLE, EQUALIZER]	BASS/TREB	37
Equalizer loudspeaker ch. band 1	00 21	[15:8]	[+12 dB –12 dB]	0 dB	38
Equalizer loudspeaker ch. band 2	00 22	[15:8]	[+12 dB –12 dB]	0 dB	38
Equalizer loudspeaker ch. band 3	00 23	[15:8]	[+12 dB12 dB]	0 dB	38
Equalizer loudspeaker ch. band 4	00 24	[15:8]	[+12 dB –12 dB]	0 dB	38
Equalizer loudspeaker ch. band 5	00 25	[15:8]	[+12 dB –12 dB]	0 dB	38
Automatic Volume Correction	00 29	[15:8]	[off, on, decay time]	off	36
Subwoofer level adjust	00 2C	[15:8]	[0 dB30 dB, mute]	0 dB	41
Subwoofer corner frequency	00 2D	[15:8]	[50 Hz 400 Hz]	00 _{hex}	41
Subwoofer complementary high-pass		[7:0]	[off, on]	off	41
Balance headphone ^{*)} channel [L/R]	00 30	[15:8]	[0100 / 100% and 100 / 0100%] [-1270 / 0 and 0 / -1270 dB]	100 %/100 %	36
Balance mode headphone*)		[7:0]	[Linear mode / logarithmic mode]	linear mode	
Bass headphone*) channel	00 31	[15:8]	[+20 dB12 dB]	0 dB	37
Treble headphone*) channel	00 32	[15:8]	[+15 dB –12 dB]	0 dB	38
Loudness headphone*) channel	00 33	[15:8]	[0 dB +17 dB]	0 dB	39
Loudness filter characteristic *)		[7:0]	[NORMAL, SUPER_BASS]	NORMAL	
Volume SCART2 output channel	00 40	[15:8]	[+12 dB –114 dB, MUTE]	00 _{hex}	41
SCART2 source select	00 41	[15:8]	[FM, NICAM, SCART, I ² S1, I ² S2]	FM	34
SCART2 channel matrix		[7:0]	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA	34
AUX/CS switch	00 48	[15]	[AUX, CS]	0 _{hex}	43
Channel configuration		[14:8]	[STEREO/TWO_CHANNEL/MULTI_CHANNEL]	00 _{hex}	43
Spatial effect for surround processing	00 49	[15:8]	[0% - 100%]	00 _{hex}	43
Virtual surround effect strength	00 4A	[15:8]	[0% - 100%]	00 _{hex}	44
Decoder matrix	00 4B	[15:8]	[ADAPTIVE/PASSIVE/EFFECT]	00 _{hex}	44
Surround reproduction		[7:4]	[REAR_SPEAKER/FRONT_SPEAKER/PANORAMA/ 3D_PANORAMA]	0 _{hex}	44
Center mode		[3:0]	[PHANTOM/NORMAL/WIDE/OFF]	0 _{hex}	44
Surround delay	00 4C	[15:0]	[531ms]	00 _{hex}	45
Noise Generator	00 4D	[15:0]	[NOISEL, NOISEC, NOISER, NOISES]	00 _{hex}	45

^{*)} In Multi Channel Mode, these registers are used for controlling baseband functions of the center and surround channels. Following relationship applies: Center corresponds to the left headphone channel, Surround corresponds to the right headphone channel.

Table 3–6: List of MSP 34x2G Read Registers

Read Register	Address (hex)	Bits	Description and Adjustable Range	See Page			
I ² C Subaddress = 11 _{hex} ; Registers are <i>not</i> writable							
STANDARD RESULT	00 7E	[15:0]	Result of Automatic Standard Detection (MSP 3412G, MSP 3442G, MSP 3452G only)	31			
STATUS	02 00	[15:0]	Monitoring of internal settings e.g. Stereo, Mono, Mute etc	31			
I ² C Subaddress = 13 _{hex} ; Registers an	e <i>not</i> writabl	е					
Quasi peak readout left	00 19	[15:0]	[00 _{hex} 7FFF _{hex}]16 bit two's complement	46			
Quasi peak readout right	00 1A	[15:0]	[00 _{hex} 7FFF _{hex}]16 bit two's complement	46			
MSP hardware version code	00 1E	[15:8]	[00 _{hex} FF _{hex}]	46			
MSP major revision code		[7:0]	[00 _{hex} FF _{hex}]	46			
MSP product code	00 1F	[15:8]	[00 _{hex} FF _{hex}]	46			
MSP ROM version code		[7:0]	[00 _{hex} FF _{hex}]	46			

3.3.2. Description of User Registers

Table 3-7: Standard Codes for STANDARD SELECT register

MSP Standard Code (Data in hex)	TV Sound Standard	Sound Carrier Frequencies in MHz	MSP 34x2G Version				
Automatic Standard Detection							
00 01	Start Automatic Standard Detection and set to detected standard		all				
	Standard Selection						
00 02	M-Dual FM-Stereo	4.5/4.724212	3402, -12, -22, -42, -52				
00 03	B/G -Dual FM-Stereo ¹⁾	5.5/5.7421875	3402, -12, -52				
00 04	D/K1-Dual FM-Stereo ²⁾	6.5/6.2578125					
00 05	D/K2-Dual FM-Stereo ²⁾	6.5/6.7421875					
00 06	D/K -FM-Mono with HDEV3 ³⁾ , not detectable by Automatic Standard Detection, HDEV3 ³⁾ SAT-Mono (i.e. Eutelsat, see Table 6–18)	6.5					
00 07	D/K3-Dual FM-Stereo	6.5/5.7421875					
00 08	B/G -NICAM-FM ¹⁾	5.5/5.85	3412, -52				
00 09	L -NICAM-AM	6.5/5.85					
00 0A	I -NICAM-FM	6.0/6.552					
00 0B	D/K -NICAM-FM ²⁾	6.5/5.85					
00 0C	D/K -NICAM-FM with HDEV2 ⁴⁾ , not detectable by Automatic Standard Detection, for China	6.5/5.85					
00 0D	D/K -NICAM-FM with HDEV3 ³⁾ , not detectable by Automatic Standard Detection, for China	6.5/5.85					
00 20	BTSC-Stereo	4.5	3422, -42, -52				
00 21	BTSC-Mono + SAP						
00 30	M-EIA-J Japan Stereo	4.5	3422, -42, -52				
00 40	FM-Stereo Radio	10.7	3422, -42, -52				
00 50	SAT-Mono (see Table 6–18)	6.5	3402, -12, -52				
00 51	SAT-Stereo (see Table 6–18)	7.02/7.20					
00 60	SAT ADR (Astra Digital Radio)	6.12					

 $[\]overset{1)}{}$ In case of Automatic Sound Select, the B/G-codes 3_{hex} and 8_{hex} are equivalent. $\overset{2)}{}$ In case of Automatic Sound Select, the D/K-codes 4_{hex} , 5_{hex} , 7_{hex} , and B_{hex} are equivalent. $\overset{3)}{}$ HDEV3: Max. FM deviation must not exceed 540 kHz $\overset{4)}{}$ HDEV2: Max. FM deviation must not exceed 360 kHz

3.3.2.1. STANDARD SELECT Register

The TV sound standard of the MSP 34x2G demodulator is determined by the STANDARD SELECT register. There are two ways to use the STANDARD SELECT register:

- Setting up the demodulator for a TV sound standard by sending the corresponding standard code with a single I²C-Bus transmission.
- Starting the Automatic Standard Detection for terrestrial TV standards. This is the most comfortable way to set up the demodulator. Within 0.5 s, the detection and set-up of the actual TV sound standard is performed. The detected standard can be read out of the STANDARD RESULT register by the control processor. This feature is recommended for the primary set-up of a TV set. Outputs should be muted during Automatic Standard Detection.

The Standard Codes are listed in Table 3-7.

Selecting a TV sound standard via the STANDARD SELECT register initializes the demodulator. This includes: AGC-settings and carrier mute, tuning frequencies, FIR-filter settings, demodulation mode (FM, AM, NICAM), deemphasis and identification mode.

TV stereo sound standards that are unavailable for a specific MSP version are processed in analog mono sound of the standard. In that case, stereo or bilingual processing will not be possible.

For a complete setup of the TV sound processing from analog IF input to the source selection, the transmissions as shown in Section 3.5. are necessary.

For reasons of software compatibility to the MSP 34x0D, a Manual/Compatibility mode is available. A detailed description of this mode can be found on page 85.

3.3.2.2. Refresh of STANDARD SELECT Register

A general refresh of the STANDARD SELECT register is not allowed. However, the following method enables watching the MSP 34x2G "alive" status and detection of accidental resets (only versions A2 and later):

- After Power-on, bit[15] of CONTROL will be set; it must be read once to enable the reset-detection feature.
- Reading of the CONTROL register and checking the reset indicator bit[15].
- If bit[15] is "0", any refresh of the STANDARD SELECT register is not allowed.
- If bit[15] is "1", indicating a reset, a refresh of the STANDARD SELECT register and all other MSPG registers is necessary.

3.3.2.3. STANDARD RESULT Register

If Automatic Standard Detection is selected in the STANDARD SELECT register, status and result of the Automatic Standard Detection process can be read out of the STANDARD RESULT register. The possible results are based on the mentioned Standard Code and are listed in Table 3–8.

In cases where no sound standard has been detected (no standard present, too much noise, strong interferers, etc.) the STANDARD RESULT register contains 00 00_{hex}. In that case, the controller has to start further actions (for example, set the standard according to a preference list or by manual input).

As long as the STANDARD RESULT register contains a value greater than 07 FF $_{\rm hex}$, the Automatic Standard Detection is still active. During this period, the MODUS and STANDARD SELECT register must not be written. The STATUS register will be updated when the Automatic Standard Detection has finished.

If a present sound standard is unavailable for a specific MSP version, it detects and switches to the analog mono sound of this standard.

Example:

The MSP 3442G will detect a B/G-NICAM signal as standard 3 and will switch to the analog FM-Mono sound.

Table 3–8: Results of the Automatic Standard Detection

Broadcasted Sound Standard	STANDARD RESULT Register Read 007E _{hex}
Automatic Standard Detection could not find a sound standard	0000 _{hex}
B/G-FM	0003 _{hex}
B/G-NICAM	0008 _{hex}
I	000A _{hex}
FM-Radio	0040 _{hex}
M-Korea M-Japan	0002 _{hex} (if MODUS[14,13]=00)
M-BTSC	0020 _{hex} (if MODUS[14,13]=01)
	0030 _{hex} (if MODUS[14,13]=10)
L-AM D/K1	0009 _{hex} (if MODUS[12]=0)
D/K1 D/K2	0004 _{hex} (if MODUS[12]=1)
L-NICAM D/K-NICAM	0009 _{hex} (if MODUS[12]=0)
D/K-INICAIVI	000B _{hex} (if MODUS[12]=1)
Automatic Standard Detection still active	>07FF _{hex}

3.3.2.4. Write Registers on I²C Subaddress 10_{hex}

Table 3–9: Write Registers on I²C Subaddress 10_{hex}

Register Address	Function			Name
00 20 _{hex}	STANDAF	STANDARD_SEL		
	Defines T			
	bit[15:0]	00 01 _{hex} 00 02 _{hex}	start Automatic Standard Detection Standard Codes (see Table 3–7))	
		 00 60 _{hex}		
00 30 _{hex}	MODUS F	Register		MODUS
	Preference	e in Autom	atic Standard Detection:	
	bit[15]	0	undefined, must be 0	
	bit[14:13]	0 1 2 3	detected 4.5 MHz carrier is interpreted as: ¹⁾ standard M (Korea) standard M (BTSC) standard M (Japan) chroma carrier (M/N standards are ignored)	
	bit[12]	0	detected 6.5 MHz carrier is interpreted as: ¹⁾ standard L (SECAM) standard D/K1, D/K2 or D/K NICAM	
	General M			
	bit[11:9]	0	undefined, must be 0	
	bit[8]	0/1	ANA_IN_1+/ANA_IN_2+; select analog sound IF input pin	
	bit[7]	0/1	active/tristate state of audio clock output pin AUD_CL_OUT	
	bit[6]	0	word strobe alignment (synchronous I ² S) WS changes at data word boundary WS changes one clock cycle in advance	
	bit[5]	0/1	master/slave mode of I ² S interface (must be set to 0 (= Master) in case of NICAM mode)	
	bit[4]	0/1	active/tristate state of I ² S output pins	
	bit[3]	0	state of digital output pins D_CTR_I/O_0 and _1 active: D_CTR_I/O_0 and _1 are output pins (can be set by means of the ACB register. see also: MODUS[1])	
		1	tristate: D_CTR_I/O_0 and _1 are input pins (level can be read out of STATUS[4,3])	
	bit[2]	0	undefined, must be 0	
	bit[1]	0/1	disable/enable STATUS change indication by means of the digital I/O pin D_CTR_I/O_1 Necessary condition: MODUS[3] = 0 (active)	
	bit[0]	0/1	off/on: Automatic Sound Select	

3.3.2.5. Read Registers on I²C Subaddress 11_{hex}

Table 3–10: Read Registers on I²C Subaddress 11_{hex}

Register Address	Function	1		Name
00 40 _{hex}	I2S CON	FIGURATIO	ON Register	I2S_CONFIG
	bit[15:1]	0	not used, must be set to "0"	
	bit[0]	0 1	I2S_CL frequency and I ² S data sample length for master mode 2 x 16 bit (1.024 MHz) 2 x 32 bit (2.048 MHz))	
00 7E _{hex}	STANDA	RD RESUL	T Register	STANDARD_RES
	Readbac	k of the det	ected TV Sound or FM-Radio Standard	
	bit[15:0]	00 00 _{hex}	Automatic Standard Detection could not find a sound standard	
		00 02 _{hex}	MSP Standard Codes (see Table 3–8)	
		00 40 _{hex} >07 FF _{hex}	Automatic Standard Detection still active	
02 00 _{hex}	STATUS	Register		STATUS
	Contains	all user rele	evant internal information about the status of the MSP	
	bit[15:10]		undefined	
	bit[8]	0/1	"1" indicates bilingual sound mode or SAP present (internally evaluated from received analog or digital identification signal)	
	bit[7]	0/1	"1" indicates independent mono sound (only for NICAM on MSP 3412G and MSP 3452G)	
	bit[6]	0/1	mono/stereo indication (internally evaluated from received analog or digital identification signal)	
	bit[5,9]	00 01	analog sound standard (FM or AM) active not obtainable	
		10	digital sound (NICAM) available (MSP 3412G and MSP 3452G only)	
		11	bad reception condition of digital sound (NICAM) due to: a. high error rate b. unimplemented sound code c. data transmission only	
	bit[4]	0/1	low/high level of digital I/O pin D_CTR_I/O_1	
	bit[3]	0/1	low/high level of digital I/O pin D_CTR_I/O_0	
	bit[2]	0 1	detected secondary carrier (2nd A2 or SAP carrier) no secondary carrier detected	
	bit[1]	0 1	detected primary carrier (Mono or MPX carrier) no primary carrier detected	
	bit[0]		undefined	
	If STATUS change in level. Rea			

3.3.2.6. Write Registers on I²C Subaddress 12_{hex}

Table 3–11: Write Registers on I²C Subaddress 12_{hex}

Register Address	Function	1		Name			
PREPROCESSING							
00 0E _{hex}	FM/AM P	PRE_FM					
	bit[15:8]	00 _{hex} 7F _{hex}	Defines the input prescale gain for the demodulated FM or AM signal				
		00 _{hex}	off (RESET condition)				
			kcept satellite FM and AM-mode, the combinations of pres- deviation listed below lead to internal full scale.				
	FM mode	!					
	bit[15:8]	7F _{hex} 48 _{hex} 30 _{hex} 24 _{hex} 18 _{hex}	28 kHz FM deviation 50 kHz FM deviation 75 kHz FM deviation 100 kHz FM deviation 150 kHz FM deviation 180 kHz FM deviation (limit)				
	FM high o	deviation m	node (HDEV2, MSP Standard Code = C_{hex})				
	bit[15:8]	30 _{hex} 14 _{hex}	150 kHz FM deviation 360 kHz FM deviation (limit)				
	FM very h	nigh deviat	ion mode (HDEV3, MSP Standard Code = 6 and D_{hex})				
	bit[15:8]	20 _{hex} 1A _{hex}	450 kHz FM deviation 540 kHz FM deviation (limit)				
	Satellite F	FM with ad	aptive deemphasis				
	bit[15:8]	10 _{hex}	recommendation				
	AM mode	(MSP Sta	ndard Code = 9)				
	bit[15:8]	7C _{hex}	recommendation for SIF input levels from 0.1 V_{pp} to 0.8 V_{pp}				
			(Due to the AGC being switched on, the AM-output level remains stable and independent of the actual SIF-level in the mentioned input range)				

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	Name
(continued)	FM Matrix Modes	FM_MATRIX
00 0E _{hex}	Defines the dematrix function for the demodulated FM signal	
ilex	bit[7:0] 00 _{hex} no matrix (used for bilingual and unmatrixed stereo sound) 01 _{hex} German stereo (Standard B/G) 02 _{hex} Korean stereo (also used for BTSC, EIA-J and FM Radio) 03 _{hex} sound A mono (left and right channel contain the mono sound of the FM/AM mono carrier) 04 _{hex} sound B mono	
	In case of Automatic Sound Select = on , the FM Matrix Mode is set automatically. Writing to the FM/AM prescale register (00 0E _{hex} high part) is still allowed. In order not to disturb the automatic process, the low part of any I^2C transmission to this register is ignored. Therefore, any FM-Matrix readback values may differ from data written previously.	
	In case of Automatic Sound Select = off , the FM Matrix Mode must be set as shown in Table 6–17 of Appendix B.	
	To enable a Forced Mono Mode for all analog stereo systems by overriding the internal pilot or identification evaluation, the following steps must be transmitted:	
	1. MODUS with bit[0] = 0 (Automatic Sound Select off)	
	2. FM Presc./Matrix with FM Matrix = Sound A Mono (SAP: Sound B Mono)	
	3. Select FM/AM source channel, with channel matrix set to "Stereo" (transparent)	
00 10 _{hex}	NICAM Prescale	PRE_NICAM
	Defines the input prescale value for the digital NICAM signal	
	bit[15:8] 00 _{hex} 7F _{hex} prescale gain	
	examples: 00 _{hex} off 20 _{hex} 0 dB gain 5A _{hex} 9 dB gain (recommendation) 7F _{hex} +12 dB gain (maximum gain)	
00 16 _{hex} 00 12 _{hex}	I2S1 Prescale I2S2 Prescale	PRE_I2S1 PRE_I2S2
	Defines the input prescale value for digital I ² S input signals	
	bit[15:8] 00 _{hex} 7F _{hex} prescale gain	
	examples: 00 _{hex} off 10 _{hex} 0 dB gain (recommendation) 7F _{hex} +18 dB gain (maximum gain)	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	l		Name
00 0D _{hex}	SCART II	PRE_SCART		
	Defines th			
	bit[15:8]	00 _{hex}	7F _{hex} prescale gain	
		example 00 _{hex} 19 _{hex} 7F _{hex}	off 0 dB gain (2 V _{RMS} input leads to digital full scale) Due to the Dolby requirements, this is the maximum value allowed to prohibit clipping of a 2 V _{RMS} input signal. +14 dB gain (400 mV _{RMS} input leads to digital full scale)	
SOURCE	SELECT AN	ND OUTPU	JT CHANNEL MATRIX	
00 08 _{hex} 00 09 _{hex} 00 0A _{hex} 00 41 _{hex} 00 0B _{hex} 00 0C _{hex}	Source fo	Loudspe Headphe SCART1 SCART2 I ² S Outp	eaker Output one Output I DA Output 2 DA Output out out	SRC_MAIN SRC_AUX SRC_SCART1 SRC_SCART2 SRC_I2S SRC_QPEAK
	bit[15:8]	0	"FM/AM": demodulated FM or AM mono signal	
		1	"Stereo or A/B": demodulator Stereo or A/B signal (in manual mode, this source is identical to the NICAM source in the MSP 3410D)	
		3	"Stereo or A": demodulator Stereo Sound or Language A (only defined for Automatic Sound Select)	
		4	"Stereo or B": demodulator Stereo Sound or Language B (only defined for Automatic Sound Select)	
		2	SCART input	
		5	I ² S1 input	
		6	I ² S2 input	
	For demo	dulator so	urces, see Table 2–2.	
00 08 _{hex} 00 09 _{hex} 00 0A _{hex} 00 41 _{hex} 00 0B _{hex} 00 0C _{hex}	Headphone Output SCART1 DA Output SCART2 DA Output I ² S Output		MAT_MAIN MAT_AUX MAT_SCART1 MAT_SCART2 MAT_I2S MAT_QPEAK	
	bit[7:0]	00 _{hex} 10 _{hex} 20 _{hex} 30 _{hex}	Sound A Mono (or Left Mono) Sound B Mono (or Right Mono) Stereo (transparent mode) Mono (sum of left and right inputs divided by 2) special modes are available (see Section 6.5.1. on page 97)	
	according	to Table 2	Select mode, the demodulator source channels are set 2–2. Therefore, the matrix modes of the corresponding output set to "Stereo" (transparent).	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	1				Name
LOUDSPE	AKER ANI	D HEADPHONE P	ROCESSING			
00 00 _{hex} 00 06 _{hex}		Loudspeaker Headphone				VOL_MAIN VOL_AUX
	bit[15:8]	7E _{hex} +11 d	B (maximum vo			
		74 _{hex} +1 dE 73 _{hex} 0 dE 72 _{hex} -1 dE	}			
		FF _{hex} Fast I	dB (reset conditior	out 75 ms until	the signal is	
	bit[7:5]	0 +0 dE	solution volume table +0 dB +0.125 dB increase in addition to the volume table			
		 7 +0.87	5 dB increase i	n addition to the	e volume table	
	bit[4]	0 must	be set to 0			
	bit[3:0]	1 reduc	e volume e tone control romise mode			
	With larg ping.	e scale input signa	ls, positive volu	ume settings ma	y lead to signal clip-	
	digital an tion by di audible D	d an analog section gital volume only.	n. With Fast Mi Analog volume olume on again	ute, volume is re is not changed. , the volume ste	ction is divided into a educed to mute posi- This reduces any ep that has been used	
	vent seve	ere clipping effects	with bass, treb ted to a level w	le, or equalizer b here, in combina	ng rule is used: To pre- poosts, the internal ation with either bass, ared 12 dB.	
	If the clip reduced of those 12 dB.					
	If the clip are reduce switched tion toge					
	Example	: Red. Volume Red. Tone Con. Compromise	Vol.: +6 dB 3 6 4.5	Bass: +9 dB 9 6 7.5	<u>Treble: +5 dB</u> 5 5 5	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function			Name
00 29 _{hex}	Automati	c Volume	Correction (AVC) Loudspeaker Channel	
	bit[15:12]	00 _{hex} 08 _{hex}	AVC off (and reset internal variables) AVC on	AVC
	bit[11:8]	08 _{hex} 04 _{hex} 02 _{hex} 01 _{hex}	8 s decay time 4 s decay time 2 s decay time 20 ms decay time (should be used for approx. 100 ms after channel change)	AVC_DECAY
00 01 _{hex} 00 30 _{hex}			ker Channel e Channel	BAL_MAIN BAL_AUX
	bit[15:8]	Linear Mo 7Fhex 7Ehex 01hex 00hex FFhex 82hex 81hex Logarithn 7Fhex 7Ehex 01hex 00hex FFhex 81hex 80hex	Left muted, Right 100% Left 0.8%, Right 100% Left 99.2%, Right 100% Left 100%, Right 100% Left 100%, Right 99.2% Left 100%, Right 0.8% Left 100%, Right muted	
			linear logarithmic sings reduce the left channel without affecting the right chan-	
	nel; negat fected.	rive setting	s reduce the right channel leaving the left channel unaf-	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	Name
00 20 _{hex}	Tone Control Mode Loudspeaker Channel	TONE_MODE
	bit[15:8] 00 _{hex} bass and treble is active FF _{hex} equalizer is active	
	Defines whether Bass/Treble or Equalizer is activated for the loudspeaker channel. Bass and Equalizer cannot work simultaneously. If Equalizer is used, Bass, and Treble coefficients must be set to zero and vice versa.	
	Note: In the MULTI_CHANNEL mode, the equalizer cannot be used.	
00 02 _{hex} 00 31 _{hex}	Bass Loudspeaker Channel Bass Headphone Channel	BASS_MAIN BASS_AUX
	bit[15:8] normal range 60_{hex} +12 dB 58_{hex} +11 dB	
	08 _{hex} +1 dB 00 _{hex} 0 dB F8 _{hex} -1 dB	
	A8 _{hex} -11 dB A0 _{hex} -12 dB	
	bit[15:8] extended range 7F _{hex} +20 dB 78 _{hex} +18 dB 70 _{hex} +16 dB 68 _{hex} +14 dB	
	Higher resolution is possible: an LSB step in the normal range results in a gain step of about 1/8 dB, in the extended range about 1/4 dB.	
	With positive bass settings, internal clipping may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set bass to a value that, in conjunction with volume, would result in an overall positive gain.	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	Name
00 03 _{hex} 00 32 _{hex}	Treble Loudspeaker Channel Treble Headphone Channel	TREB_MAIN TREB_AUX
	bit[15:8] 78 _{hex} +15 dB 70 _{hex} +14 dB	
	08 _{hex} +1 dB 00 _{hex} 0 dB F8 _{hex} -1 dB	
	A8 _{hex} -11 dB A0 _{hex} -12 dB	
	Higher resolution is possible: an LSB step results in a gain step of about 1/8 dB.	
	With positive treble settings, internal clipping may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set treble to a value that, in conjunction with volume, would result in an overall positive gain.	
00 21 _{hex} 00 22 _{hex} 00 23 _{hex} 00 24 _{hex} 00 25 _{hex}	Equalizer Loudspeaker Channel Band 1 (below 120 Hz) Equalizer Loudspeaker Channel Band 2 (center: 500 Hz) Equalizer Loudspeaker Channel Band 3 (center: 1.5 kHz) Equalizer Loudspeaker Channel Band 4 (center: 5 kHz) Equalizer Loudspeaker Channel Band 5 (above: 10 kHz)	EQUAL_BAND1 EQUAL_BAND2 EQUAL_BAND3 EQUAL_BAND4 EQUAL_BAND5
	bit[15:8] 60 _{hex} +12 dB 58 _{hex} +11 dB	
	08 _{hex} +1 dB 00 _{hex} 0 dB F8 _{hex} -1 dB	
	 A8 _{hex} –11 dB A0 _{hex} –12 dB	
	Higher resolution is possible: an LSB step results in a gain step of about 1/8 dB.	
	With positive equalizer settings, internal clipping may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set equalizer bands to a value that, in conjunction with volume, would result in an overall positive gain.	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	1		Name
00 04 _{hex} 00 33 _{hex}		Loudness Loudspeaker Channel Loudness Headphone Channel		
	bit[15:8]	44 _{hex}		
	bit[7:0]	Loudness 00 _{hex} 04 _{hex}	s Mode normal (constant volume at 1 kHz) Super Bass (constant volume at 2 kHz)	
	Higher resolution of Loudness Gain is possible: An LSB step results in a gain step of about 1/4 dB. Loudness increases the volume of low- and high-frequency signals, while keeping the amplitude of the 1-kHz reference frequency constant. The intended loudness has to be set according to the actual volume setting. Because loudness introduces gain, it is not recommended to set loudness to a value that, in conjunction with volume, would result in an overall positive gain.			
	Super Ba	ass mode, t	by for bass amplification can be set to two different values. In the corner frequency is shifted up. The point of constant vol-1 kHz to 2 kHz.	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function			Name	
00 05 _{hex}	Spatial Effects Loudspeaker Channel			SPAT_MAIN	
	bit[15:8]	Effect Str 7F _{hex} 3F _{hex}	ength Enlargement 100% Enlargement 50%		
		01 _{hex} 00 _{hex} FF _{hex}	Enlargement 1.5% Effect off reduction 1.5%		
		C0 _{hex} 80 _{hex}	reduction 50% reduction 100%		
	bit[7:4]	Spatial Endougher Ohex 2hex	ffect Mode Stereo Basewidth Enlargement (SBE) and Pseudo Stereo Effect (PSE). (Mode A) Stereo Basewidth Enlargement (SBE) only. (Mode B)		
	bit[3:0]	Spatial Ei 0 _{hex} 2 _{hex} 4 _{hex} 6 _{hex} 8 _{hex}	ffect High-Pass Gain max. high-pass gain 2/3 high-pass gain 1/3 high-pass gain min. high-pass gain automatic		
	Spatial effects should not be used together with 3D-PANORAMA or PANORAMA.				
	There are				
	the incom Pseudo S strength of the stereo where lou	ning signal Stereo Effect of the effect of image. A udspeakers	= 00 _{hex}), the spatial effect depends on the source mode. If is mono, Pseudo Stereo Effect is active; for stereo signals, et and Stereo Basewidth Enlargement is effective. The t is controllable by the upper byte. A negative value reduces strong spatial effect is recommended for small TV sets spacing is rather close. For large screen TV sets, a more ect is recommended.		
	In mode B, only Stereo Basewidth Enlargement is effective. For mono input signals, the Pseudo Stereo Effect has to be switched on.				
	It is worth mentioning, that all spatial effects affect amplitude and phase response. With the lower 4 bits, the frequency response can be customized. A value of 0_{hex} yields a flat response for center signals (L = R), but a high-pass function for L or R only signals. A value of 6_{hex} has a flat response for L or R only signals, but a low-pass function for center signals. By using 8_{hex} , the frequency response is automatically adapted to the sound material by choosing an optimal high-pass gain.				

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	l		Name
SUBWOOL	FER OUTP	UT CHAN	NEL	,
00 2C _{hex}	Subwoof	er Level A	djustment	SUBW_LEVEL
	bit[15:8]	00 _{hex} FF _{hex}	0 dB -1 dB	
		E3 _{hex} E2 _{hex}	–29 dB –30 dB	
		80 _{hex}	Mute	
00 2D _{hex}	Subwoof	er Corner	Frequency	SUBW_FREQ
	bit[15:8]	540	corner frequency in 10-Hz steps (range: 50400 Hz)	
	Subwoof	er Comple	ementary High-Pass Filter	CLIDW LID
	bit[7:0]	00 _{hex} 01 _{hex}	loudspeaker channel unfiltered a complementary high-pass is processed in the loudspeaker output channel	SUBW_HP
SCART O	JTPUT CH	ANNEL		
00 07 _{hex} 00 40 _{hex}			utput Channel utput Channel	VOL_SCART1 VOL_SCART2
	bit[15:8]	volume to 7F _{hex} 7E _{hex} 74 _{hex}		
		73 _{hex} 72 _{hex}	0 dB –1 dB	
		02 _{hex} 01 _{hex} 00 _{hex}	-113 dB-114 dBMute (reset condition)	
	bit[7:5]	higher re 0 1	solution volume table +0 dB +0.125 dB increase in addition to the volume table	
		7	+0.875 dB increase in addition to the volume table	
	bit[4:0]	01 _{hex}	this must be 01 _{hex}	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	ı		Name
SCART SV	WITCHES A	ND DIGITA	L I/O PINS	
00 13 _{hex}	ACB Reg	jister		ACB_REG
	Defines the switches			
	bit[15]	0/1	low/high of digital output pin D_CTR_I/O_0 (MODUS[3]=0)	
	bit[14]	0/1	low/high of digital output pin D_CTR_I/O_1 (MODUS[3]=0)	
	bit[13:5]	xxxx00xx0 xxxx01xx0 xxxx10xx0 xxxx11xx0 xxxx00xx1	SP Input Select SCART1 to DSP input (RESET position) MONO to DSP input (Sound A Mono must be selected in the channel matrix mode for the corresponding output channels) SCART2 to DSP input SCART3 to DSP input SCART4 to DSP input mute DSP input	
	bit[13:5]	xx00xxx0x xx01xxx0x xx10xxx0x xx11xxx0x xx00xxx1x xx01xxx1x xx10xxx1x	Output Select SCART3 input to SCART1 output (RESET position) SCART2 input to SCART1 output MONO input to SCART1 output SCART1 DA to SCART1 output SCART2 DA to SCART1 output SCART1 input to SCART1 output SCART4 input to SCART1 output mute SCART1 output	
	bit[13:5]	00xxx0xx 01xxxx0xx 10xxxx0xx 00xxxx1xx 01xxxx1xx 10xxxx1xx 11xxxx1xx 11xxxx0xx	Output Select SCART1 DA to SCART2 output (RESET position) SCART1 input to SCART2 output MONO input to SCART2 output SCART2 DA to SCART2 output SCART2 input to SCART2 output SCART3 input to SCART2 output SCART4 input to SCART2 output SCART4 input to SCART2 output becomes active at the time of the first write transmission on	
	the contro	ol bus to the	e audio processing part. By writing to the ACB register first, be redefined.	
BEEPER	T			
00 14 _{hex}	Beeper V	olume and	Frequency	BEEPER
	bit[15:8]	Beeper Vo 00 _{hex} 7F _{hex}	olume off maximum volume	
	bit[7:0]	Beeper Fr 01 _{hex} 40 _{hex} FF _{hex}	equency 16 Hz (lowest) 1 kHz 4 kHz	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function			Name	
SURROUN	ND PROCESSING				
00 48 _{hex}	Output C bit[15]	onfiguration HP/CS Sv 0		OUT_CONF HP_CS	
	that are us muted. Th outputs to channel s	The HP/CS switch defines which output pin pair is driven by the DA converters that are used for headphone or surround processing. The unselected pins are muted. This makes it convenient to connect the center/surround amplifiers or outputs to the MSP 34x2G without external switches. The Headphone/Surround channel should be muted before switching (Set Register 06 _{hex} to: 0000 _{hex}). Allow at least 2 s for settling to avoid audible plops.			
	bit[14:8]	Channel (Configuration	CHAN_CONF	
		00 _{hex}	STEREO: This mode is used in plain stereo mode. Standard processing applies to the loudspeaker and headphone channels. Surround processing is switched off. In this mode, the IC is compatible to the MSP 3450G (if bit[15] is equal to 0).		
		01 _{hex}	TWO_CHANNEL: This mode is used for virtual surround sound. The surround processing block is active and its left and right outputs are distributed to the loudspeaker output channel. The processing on the headphone channel remains standard. In this mode, the IC is comparable to the MSP 3451G.		
		02 _{hex}	MULTI_CHANNEL: This mode is used for surround sound with more than 2 channels. The surround processing block is active and its left and right outputs are distributed to the loudspeaker output channel, its center and surround outputs are distributed to the headphone output channel. No headphone processing is possible. In this mode, it is convenient to select the newly implemented C/S pins by setting bit[15] to 1.		
	bit[7:0]	00 _{hex}	must be 0		
00 49 _{hex}	Spatial E	ffects for \$	Surround Processing	SUR_SPAT	
	bit[15:8]	Spatial Et 7F _{hex} 3F _{hex}	ffect Strength Enlargement 100% Enlargement 50%		
		01 _{hex} 00 _{hex}	Enlargement 1.5% Effect off		
	bit[7:0]	00 _{hex}	must be 0		
	nels. Reco loudspeak sound. No	ommended ker channe ote: If surro	ved basewidth of the reproduced left and right front chandral value: $50\% = 40_{hex}$. In contrast to the spatial effect for the I, the surround spatial effect is optimized for surround and sound processing is active, the spatial effect for the I (Register 05_{hex}) is switched off.		

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	ľ		Name
00 4A _{hex}	Virtual S	SUR_3DEFF		
	bit[15:8]	Virtual Su 7F _{hex} 3F _{hex}	urround Effect Strength Effect 100% Effect 50%	
		 01 _{hex} 00 _{hex}	Effect 1.5% Effect off	
	bit[7:0]	00 _{hex}	must be 0	
	other Sur		ound effect in PANORAMA or 3D-PANORAMA mode. In roduction Modes this value must be set to 0. Recommended	
00 4B _{hex}	Surround	d Processi	ng Mode	SUR_MODE
	bit[15:8]	Decoder 00 _{hex}	Matrix ADAPTIVE (for all Dolby Surround Pro Logic and Virtual Surround modes)	DEC_MAT
		10 _{hex} 20 _{hex}	PASSIVE (for simple surround modes) EFFECT (used for special effects and monophonic signals)	
	bit[7:4]	Surround	Reproduction	SUR_REPRO
		0 _{hex}	REAR_SPEAKER: The surround signal is reproduced by a rear speaker.	
		3 _{hex}	FRONT_SPEAKER: The surround signal is redirected to the front channels. There is no physical rear speaker connected.	
		5 _{hex}	PANORAMA: The surround signal is processed and redirected to the left and right front speakers in order to create the illusion of a virtual rear speaker, although no physical rear speaker is connected.	
		6 _{hex}	3D-PANORAMA: The surround signal is processed and redirected to the left and right front speakers in order to create the illusion of a virtual rear speaker, although no physical rear speaker is connected.	
	bit[3:0]	Center M	ode	C_MODE
		0 _{hex} 1 _{hex} 2 _{hex} 3 _{hex}	PHANTOM mode (no Center speaker connected) NORMAL mode (small Center speaker) WIDE mode (large Center speaker) OFF mode (Center output of the Surround Decoder is discarded. Useful only in special effect modes)	

Table 3–11: Write Registers on I²C Subaddress 12_{hex}, continued

Register Address	Function	Function		
00 4C _{hex}	Surround Delay			SUR_DELAY
	bit[15:8]	05 _{hex} 06 _{hex}	5 ms delay in surround path (lowest) 6 ms delay in surround path	
		 1F _{hex}	31 ms delay in surround path (highest))	
	bit[7:0]	00 _{hex}	must be 0	
	For Dolby Surround Pro Logic designs, only 20 ms fixed or 15-30 ms variable delay must be used. This register has no effect in 3D-PANORAMA and PANORAMA mode.			
00 4D _{hex}	Noise Generator			SUR_NOISE
	bit[15:8]	00 _{hex} 80 _{hex}	Noise generator off Noise generator on	
	bit[7:0]	A0 _{hex} B0 _{hex} C0 _{hex} D0 _{hex}	Noise on left channel Noise on center channel Noise on right channel Noise on surround channel	
	Determin	es the acti	ve channel for the noise generator.	

3.3.2.7. Read Registers on I²C Subaddress 13_{hex}

Table 3–12: Read Registers on I²C Subaddress 13_{hex}

Register Address	Function	Name
QUASI-PE	AK DETECTOR READOUT	
00 19 _{hex} 00 1A _{hex}	Quasi-Peak Detector Readout Left Quasi-Peak Detector Readout Right	QPEAK_L QPEAK_R
	bit[15:0] 0 _{hex} 7FFF _{hex} values are 16 bit two's complement (only positive)	
MSP 34x2	G VERSION READOUT Registers	
00 1E _{hex}	MSP Hardware Version Code	MSP_HARD
	bit[15:8] 01 _{hex} MSP 3452G - <u>A</u> 1	
	A change in the hardware version code defines hardware optimizations that may have influence on the chip's behavior. The readout of this register is identical to the hardware version code in the chip's imprint.	
	MSP Major Revision Code	MSP_REVISION
	bit[7:0] 07 _{hex} MSP 3452 <u>G</u> - A1	
	The major revision code of the MSP 3452G is 7.	
00 1F _{hex}	MSP Product Code	MSP_PRODUCT
	bit[15:8] 34 _{hex} MSP 34 <u>52</u> G - A1	
	By means of the MSP-Product Code, the control processor is able to decide which TV sound standards and audio baseband features have to be considered.	
	MSP ROM Version Code	MSP_ROM
	bit[7:0] 41 _{hex} MSP 3452G - A <u>1</u>	
	A change in the ROM version code defines internal software optimizations, that may have influence on the chip's behavior, e.g. new features may have been included. While a software change is intended to create no compatibility problems, customers that want to use the new functions can identify new MSP 3452G versions according to this number.	
	To avoid compatibility problems with MSP 3410B and MSP 34x0D, an offset of $40_{\rm hex}$ is added to the ROM version code of the chip's imprint.	

3.4. Programming Tips

This section describes the preferred method for initializing the MSP 34x2G. The initialization is grouped into four sections:

- SCART Signal Path (analog signal path)
- Demodulator Input
- SCART and I²S Inputs
- Output Channels

See Fig. 2-1 on page 9 for a complete signal flow.

SCART Signal Path

- Select analog input for the SCART baseband processing (SCART DSP Input Select) by means of the ACB register.
- Select the source for each analog SCART output (SCART Output Select) by means of the ACB register

Demodulator Input

For a complete setup of the TV sound processing from analog IF input to the source selection, the following steps must be performed:

- Set MODUS register to the preferred mode and Sound IF input.
- 2. Choose preferred prescale (FM and NICAM) values.
- 3. Write STANDARD SELECT register.
- If Automatic Sound Select is not active: Choose FM matrix repeatedly according to the sound mode indicated in the STATUS register.

SCART and I²S Inputs

- 1. Select preferred prescale for SCART.
- 2. Select preferred prescale for I²S inputs (set to 0 dB after RESET).

Output Channels

- Select the source channel and matrix for each output channel.
- 2. Set audio baseband processing.
- 3. Select volume for each output channel.

3.5. Examples of Minimum Initialization Codes

Initialization of the MSP 34x2G according to these listings reproduces sound of the selected standard on the loudspeaker output. All numbers are hexadecimal. The examples have the following structure:

- 1. Perform an I²C controlled reset of the IC.
- 2. Write MODUS register (with Automatic Sound Select).
- 3. Set Source Selection for loudspeaker channel (with matrix set to STEREO).
- 4. Set Prescale (FM and/or NICAM and dummy FM matrix).
- 5. Write STANDARD SELECT register.
- 6. Set Volume loudspeaker channel to 0 dB.

3.5.1. SCART1 Input to Loudspeaker in Stereo Sound

3.5.2. B/G-FM (A2 or NICAM)

```
<80 00 80 00> // Softreset
<80 00 00 00> // MODUS-Register: Automatic = on
<80 10 00 30 20 03> // MODUS-Register: Automatic = on
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St
<80 12 00 0E 24 03> // FM/AM-Prescale = 24hex, FM-Matrix = MONO/SOUNDA
<80 12 00 10 00 5A> // NICAM-Prescale = 5Ahex
<80 10 00 20 00 03> // Standard Select: A2 B/G or NICAM B/G or
<80 10 00 20 00 08>
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB
```

3.5.3. BTSC-Stereo

```
<80 00 80 00> // Softreset
<80 00 00 000>
<80 10 00 30 20 03> // MODUS-Register: Automatic = on
<80 12 00 08 03 20> // Source Sel. = (St or A) & Ch. Matr. = St
<80 12 00 0E 24 03> // FM/AM-Prescale = 24<sub>hex</sub>, FM-Matrix = Sound A Mono
<80 10 00 20 00 20> // Standard Select: BTSC-STEREO
<80 12 00 00 73 00> // Loudspeaker Volume 0 dB
```

3.5.4. BTSC-SAP with SAP at Loudspeaker Channel

<80 00 80 00>	// Softreset
<80 00 00 00>	
<80 10 00 30 20 03>	// MODUS-Register: Automatic = on
<80 12 00 08 04 20>	// Source Sel. = (St or B) & Ch. Matr. = St
<80 12 00 0E 24 03>	// FM/AM-Prescale = 24 _{hex} , FM-Matrix = Sound A Mono
<80 10 00 20 00 21>	// Standard Select: BTSC-SAP
<80 12 00 00 73 00>	// Loudspeaker Volume 0 dB

3.5.5. FM-Stereo Radio

<80 00 80 00>	// Softreset
<80 00 00 00>	
<80 10 00 30 20 03>	// MODUS-Register: Automatic = on
<80 12 00 08 03 20>	// Source Sel. = (St or A) & Ch. Matr. = St
<80 12 00 0E 24 03>	// FM/AM-Prescale = 24 _{hex} , FM-Matrix = Sound A Mono
<80 10 00 20 00 40>	// Standard Select: FM-STEREO-RADIO
<80 12 00 00 73 00>	// Loudspeaker Volume 0 dB

3.5.6. Automatic Standard Detection

A detailed software flow diagram is shown in Fig. 3–2 on page 49.

```
<80 00 80 00>
                         // Softreset
<80 00 00 00>
<80 10 00 30 20 03>
                        // MODUS-Register: Automatic = on
<80 12 00 08 03 20>
                        // Source Sel. = (St or A) & Ch. Matr. = St
                        // FM/AM-Prescale = 24<sub>hex</sub>,
FM-Matrix = Sound A Mono
<80 12 00 0E 24 03>
<80 12 00 10 00 5A> // NICAM-Prescale = 5Ahex
<80 10 00 20 00 01>
                        // Standard Select:
                          Automatic Standard Detection
// Wait till STANDARD RESULT contains a value < 07FF
// IF STANDARD RESULT contains 0000
                         // do some error handling
// ELSE
< 80 12 00 00 73 00> // Loudspeaker Volume 0 dB
```

3.5.7. Dolby Surround Pro Logic Example

SCART1 Input to Loudspeaker and Center/Surround Output Pins in Dolby Surround Pro Logic (Normal mode).

```
<80 00 80 00>
                        // reset
<80 00 00 00>
<80 12 00 08 02 20>
                        // source loudspeaker = scart, stereo
<80 12 00 0d 19 00>
                        // prescale scart
<80 12 00 00 70 00>
                        // volume main = -3dB
<80 12 00 06 73 00>
                        // volume center/surround = 0dB
<80 12 00 48 82 00>
                        // multi channel mode with C/S outputs
<80 12 00 49 00 00>
                        // Surround spatial effect = 0%
<80 12 00 4a 00 00>
                        // panorama sound effect = off
```

```
<80 12 00 4b 00 01> // Dolby Surround Pro Logic Normal mode
<80 12 00 4c 14 00> // 20 ms Delay
<80 12 00 4d 00 00> // Noise Sequencer = off
```

3.5.8. Virtual Dolby Surround Example

SCART1 Input to Loudspeaker in 3D-PANORAMA Sound

```
<80 00 80 00>
                        // reset
<80 00 00 00>
<80 12 00 08 02 20>
                        // source loudspeaker = scart, stereo
<80 12 00 0d 12 00>
                        // prescale scart with some loss
<80 12 00 00 73 00>
                        // volume main = 0dB
<80 12 00 48 01 00>
                        // two channel virtual surround mode
<80 12 00 49 40 00>
                        // Surround spatial effect = 50%
<80 12 00 4a 54 00>
                        // panorama sound effect = 66%
<80 12 00 4b 00 60>
                        // adaptive, 3d_panorama, phantom
<80 12 00 4d 00 00>
                        // Noise Sequencer = off
```

3.5.9. Noise Sequencer for Dolby Pro Logic

```
// switch into Dolby Pro Logic sound (s.a.). Then:
<80 12 00 4d 80 a0>
                         // noise L
[wait for 2 seconds]
<80 12 00 4d 80 b0>
                         // noise C
[wait for 2 seconds]
<80 12 00 4d 80 c0>
                         // noise R
[wait for 2 seconds]
<80 12 00 4d 80 d0>
                         // noise S
[wait for 2 seconds]
// switch back to normal operation
<80 12 00 4d 00 00>
                         // Noise Sequencer = off
```

3.5.10. Software Flow for Interrupt driven STATUS

A detailed software flow diagram is shown in Fig. 3–2 on page 49.

If the D_CTR_I/O_1 pin of the MSP 34x2G is connected to an interrupt input pin of the controller, the following interrupt handler can be applied to be automatically called with each status change of the MSP 34x2G. The interrupt handler may adjust the TV display according to the new status information.

```
Interrupt Handler:
<80 11 02 00 <81 dd dd> // Read STATUS
// adjust TV display with given status information
// Return from Interrupt
```

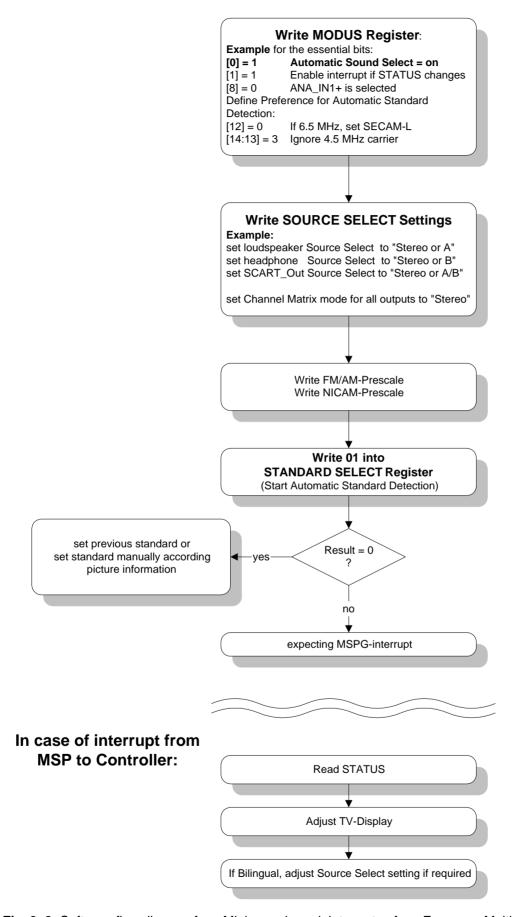


Fig. 3–2: Software flow diagram for a Minimum demodulator setup for a European Multistandard TV set applying the Automatic Sound Select feature

4. Specifications

4.1. Outline Dimensions

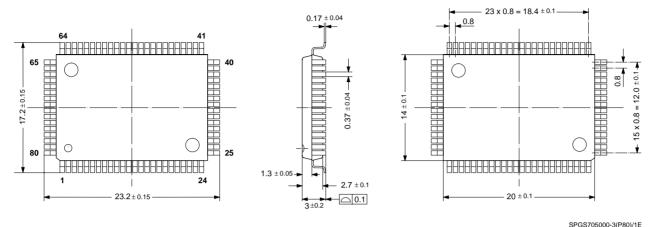


Fig. 4–1: 80-Pin Plastic Quad Flat Pack (PQFP80) Weight approximately 1.61 g Dimensions in mm

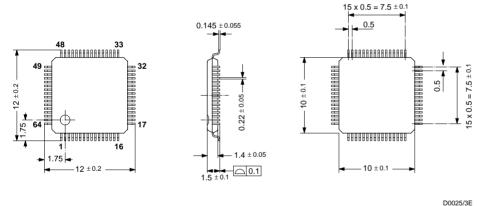
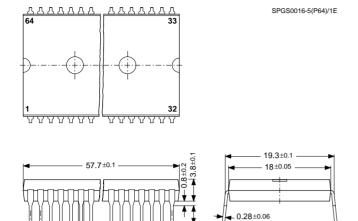



Fig. 4–2: 64-Pin Plastic Low-Profile Quad Flat Pack (PLQFP64) Weight approximately 0.35 g Dimensions in mm

20.3±0.5

Fig. 4–3: 64-Pin Plastic Shrink Dual-Inline Package (PSDIP64) Weight approximately 9.0 g Dimensions in mm

0.48±0.06

4.2. Pin Connections and Short Descriptions

NC = not connected; leave vacant LV = if not used, leave vacant

X = obligatory; connect as described in circuit diagram

DVSS: if not used, connect to DVSS

AHVSS: connect to AHVSS

1 778

- 31 x 1.778 = 55.1±0.1

	Pin No.		Pin Name	Туре	Connection	Short Description
PQFP 80-pin	PLQFP 64-pin	PSDIP 64-pin			(if not used)	
1	64	8	NC		LV	Not connected
2	1	9	I2C_CL	IN/OUT	Х	I ² C clock
3	2	10	I2C_DA	IN/OUT	Х	I ² C data
4	3	11	I2S_CL	IN/OUT	LV	I ² S clock
5	4	12	I2S_WS	IN/OUT	LV	I ² S word strobe
6	5	13	I2S_DA_OUT	OUT	LV	I ² S data output
7	6	14	I2S_DA_IN1	IN	LV	I ² S1 data input
8	7	15	ADR_DA	OUT	LV	ADR data output
9	8	16	ADR_WS	OUT	LV	ADR word strobe
10	9	17	ADR_CL	OUT	LV	ADR clock
11	-	-	DVSUP		Х	Digital power supply 5 V
12	_	-	DVSUP		Х	Digital power supply 5 V
13	10	18	DVSUP		Х	Digital power supply 5 V

	Pin No.		Pin Name	Туре	Connection	Short Description
PQFP 80-pin	PLQFP 64-pin	PSDIP 64-pin			(if not used)	
14	_	_	DVSS		X	Digital ground
15	_	_	DVSS		X	Digital ground
16	11	19	DVSS		X	Digital ground
17	12	20	I2S_DA_IN2	IN	LV	I ² S2-data input
18	13	21	NC		LV	Not connected
19	14	22	NC		LV	Not connected
20	15	23	NC		LV	Not connected
21	16	24	RESETQ	IN	X	Power-on-reset
22	-	_	NC		LV	Not connected
23	-	_	NC		LV	Not connected
24	17	25	DACA_R	OUT	LV	Headphone out, right
25	18	26	DACA_L	OUT	LV	Headphone out, left
26	19	27	VREF2		Х	Reference ground 2
27	20	28	DACM_R	OUT	LV	Loudspeaker out, right
28	21	29	DACM_L	OUT	LV	Loudspeaker out, left
29	22	30	DACM_C	OUT	LV	Center output
30	23	31	DACM_SUB	OUT	LV	Subwoofer output
31	24	32	DACM_S	OUT	LV	Surround output
32	_	_	NC		LV	Not connected
33	25	33	SC2_OUT_R	OUT	LV	SCART output 2, right
34	26	34	SC2_OUT_L	OUT	LV	SCART output 2, left
35	27	35	VREF1		X	Reference ground 1
36	28	36	SC1_OUT_R	OUT	LV	SCART output 1, right
37	29	37	SC1_OUT_L	OUT	LV	SCART output 1, left
38	30	38	CAPL_A		Х	Volume capacitor AUX
39	31	39	AHVSUP		Х	Analog power supply 8 V
40	32	40	CAPL_M		Х	Volume capacitor MAIN
41	_	_	NC		LV	Not connected
42	_	_	NC		LV	Not connected
43	_	_	AHVSS		Х	Analog ground
44	33	41	AHVSS		Х	Analog ground

	Pin No.		Pin Name	Туре	Connection	Short Description
PQFP 80-pin	PLQFP 64-pin	PSDIP 64-pin			(if not used)	
45	34	42	AGNDC		Х	Analog reference voltage
46	_	_	NC		LV or AHVSS	Not connected
47	35	43	SC4_IN_L	IN	LV	SCART 4 input, left
48	36	44	SC4_IN_R	IN	LV	SCART 4 input, right
49	37	45	ASG		AHVSS	Analog Shield Ground
50	38	46	SC3_IN_L	IN	LV	SCART 3 input, left
51	39	47	SC3_IN_R	IN	LV	SCART 3 input, right
52	40	48	ASG		AHVSS	Analog Shield Ground
53	41	49	SC2_IN_L	IN	LV	SCART 2 input, left
54	42	50	SC2_IN_R	IN	LV	SCART 2 input, right
55	43	51	ASG		AHVSS	Analog Shield Ground
56	44	52	SC1_IN_L	IN	LV	SCART 1 input, left
57	45	53	SC1_IN_R	IN	LV	SCART 1 input, right
58	46	54	VREFTOP		Х	Reference voltage IF A/D converter
59	_	_	NC		LV	Not connected
60	47	55	MONO_IN	IN	LV	Mono input
61	_	_	AVSS		Х	Analog ground
62	48	56	AVSS		Х	Analog ground
63	_	_	NC		LV	Not connected
64	_	_	NC		LV	Not connected
65	_	_	AVSUP		Х	Analog power supply 5 V
66	49	57	AVSUP		Х	Analog power supply 5 V
67	50	58	ANA_IN1+	IN	LV	IF input 1
68	51	59	ANA_IN-	IN	AVSS via 56 pF / LV	IF common (can be left vacant, only if IF input 1 is also not in use)
69	52	60	ANA_IN2+	IN	AVSS via 56 pF / LV	IF input 2 (can be left vacant, only if IF input 1 is also not in use)
70	53	61	TESTEN	IN	Х	Test pin
71	54	62	XTAL_IN	IN	Х	Crystal oscillator
72	55	63	XTAL_OUT	OUT	Х	Crystal oscillator

	Pin No.		Pin Name	Туре	Connection	Short Description
PQFP 80-pin	PLQFP 64-pin	PSDIP 64-pin			(if not used)	
73	56	64	TP		LV	Test pin
74	57	1	AUD_CL_OUT	OUT	LV	Audio clock output (18.432 MHz)
75	58	2	NC		LV	Not connected
76	59	3	NC		LV	Not connected
77	60	4	D_CTR_I/O_1	IN/OUT	LV	D_CTR_I/O_1
78	61	5	D_CTR_I/O_0	IN/OUT	LV	D_CTR_I/O_0
79	62	6	ADR_SEL	IN	Х	I ² C Bus address select
80	63	7	STANDBYQ	IN	Х	Stand-by (low-active)

4.3. Pin Descriptions

Pin numbers refer to the 80-pin PQFP package.

Pin 1, NC - Pin not connected.

Pin 2, $I2C_CL - I^2C$ Clock Input/Output (Fig. 4–8) Via this pin, the I^2C -bus clock signal has to be supplied. The signal can be pulled down by the MSP in case of wait conditions.

Pin 3, $I2C_DA - I^2C$ Data Input/Output (Fig. 4–8) Via this pin, the I^2C -bus data is written to or read from the MSP.

Pin 4, $I2S_CL - I^2S$ Clock Input/Output (Fig. 4–11) Clock line for the I^2S bus. In master mode, this line is driven by the MSP; in slave mode, an external I^2S clock has to be supplied.

Pin 5, **I2S_WS** – I²S Word Strobe Input/Output (Fig. 4–11)

Word strobe line for the I²S bus. In master mode, this line is driven by the MSP; in slave mode, an external I²S word strobe has to be supplied.

Pin 6, I2S_DA_OUT – I^2 S Data Output (Fig. 4–7) Output of digital serial sound data of the MSP on the I^2 S bus.

Pin 7, I2S_DA_IN1 – I^2 S Data Input 1 (Fig. 4–9) First input of digital serial sound data to the MSP via the I^2 S bus.

Pin 8, **ADR_DA** – ADR Bus Data Output (Fig. 4–7) Output of digital serial data to the DRP 3510A via the ADR bus.

Pin 9, **ADR_WS** – ADR Bus Word Strobe Output (Fig. 4–7)

Word strobe output for the ADR bus.

Pin 10, **ADR_CL** – ADR Bus Clock Output (Fig. 4–7) Clock line for the ADR bus.

Pins 11, 12, 13, **DVSUP*** – Digital Supply Voltage Power supply for the digital circuitry of the MSP. Must be connected to a +5 V power supply.

Pins 14, 15, 16, **DVSS*** – Digital Ground Ground connection for the digital circuitry of the MSP.

Pin 17, **I2S_DA_IN2** – I²S Data Input 2 (Fig. 4–9) Second input of digital serial sound data to the MSP via the I²S bus.

Pins 18, 19, 20, NC - Pins not connected.

Pin 21, **RESETQ** – Reset Input (Fig. 4–9) In the steady state, high level is required. A low level resets the MSP 34x2G.

Pins 22, 23, NC - Pins not connected.

Pins 24, 25, **DACA_R/L** – Headphone Outputs (Fig. 4–17)

Output of the headphone signal. A 1-nF capacitor to AHVSS must be connected to these pins. The DC offset on these pins depends on the selected headphone volume.

Pin 26, **VREF2** – Reference Ground 2

Reference analog ground. This pin must be connected separately to the single ground point (AHVSS). VREF2 serves as a clean ground and should be used as the

reference for analog connections to the loudspeaker and headphone outputs.

Pins 27, 28, **DACM_R/L** – Loudspeaker Outputs (Fig. 4–17)

Output of the loudspeaker signal. A 1-nF capacitor to AHVSS must be connected to these pins. The DC offset on these pins depends on the selected loudspeaker volume.

Pin 29, **DACM_C** - Center Output (Fig. 4–17)

Output of the center loudspeaker signal. A 1-nF capacitor to AHVSS must be connected to these pins. If active (HP/CS = 1), the DC offset on these pins depends on the selected headphone volume.

Pin 30, **DACM_SUB** – Subwoofer Output (Fig. 4–17) Output of the subwoofer signal. A 1-nF capacitor to AHVSS must be connected to this pin. Due to the low frequency content of the subwoofer output, the value of the capacitor may be increased for better suppression of high-frequency noise. The DC offset on this pin depends on the selected loudspeaker volume.

Pins 31, **DACM_S** - Surround Output (Fig. 4–17)

Output of the surround loudspeaker signal. A 1-nF capacitor to AHVSS must be connected to these pins. If active (HP/CS = 1), the DC offset on these pins depends on the selected headphone volume.

Pin 32 NC - Pin not connected.

Pins 33, 34, **SC2_OUT_R/L** – SCART2 Outputs (Fig. 4–19)

Output of the SCART2 signal. Connections to these pins must use a 100- Ω series resistor and are intended to be AC-coupled.

Pin 35, VREF1 - Reference Ground 1

Reference analog ground. This pin must be connected separately to the single ground point (AHVSS). VREF1 serves as a clean ground and should be used as the reference for analog connections to the SCART outputs.

Pins 36, 37, **SC1_OUT_R/L** – SCART1 Outputs (Fig. 4–19)

Output of the SCART1 signal. Connections to these pins must use a $100-\Omega$ series resistor and are intended to be AC-coupled.

Pin 38, **CAPL_A** – Volume Capacitor Headphone (Fig. 4–14)

A 10- μ F capacitor to AHVSUP must be connected to this pin. It serves as a smoothing filter for headphone volume changes in order to suppress audible plops. The value of the capacitor can be lowered to 1- μ F if faster response is required. The area encircled by the trace lines should be minimized; keep traces as short

as possible. This input is sensitive for magnetic induction.

Pin 39, **AHVSUP*** – Analog Power Supply High Voltage

Power is supplied via this pin for the analog circuitry of the MSP (except IF input). This pin must be connected to the +8 V supply.

Pin 40, **CAPL_M** – Volume Capacitor Loudspeaker (Fig. 4–14)

A 10- μ F capacitor to AHVSUP must be connected to this pin. It serves as a smoothing filter for loudspeaker volume changes in order to suppress audible plops. The value of the capacitor can be lowered to 1 μ F if faster response is required. The area encircled by the trace lines should be minimized; keep traces as short as possible. This input is sensitive for magnetic induction.

Pins 41, 42, NC - Pins not connected.

Pins 43, 44, **AHVSS*** – Ground for Analog Power Supply High Voltage

Ground connection for the analog circuitry of the MSP (except IF input).

Pin 45, **AGNDC** – Internal Analog Reference Voltage This pin serves as the internal ground connection for the analog circuitry (except IF input). It must be connected to the VREF pins with a 3.3- μ F and a 100-nF capacitor in parallel. This pins shows a DC level of typically 3.73 V.

Pin 46, **NC** – Pin not connected.

Pins 47, 48, **SC4_IN_L/R** – SCART4 Inputs (Fig. 4–16)

The analog input signal for SCART4 is fed to this pin. Analog input connection must be AC-coupled.

Pin 49, ASG - Analog Shield Ground

Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs.

Pins 50, 51, **SC3_IN_L/R** – SCART3 Inputs (Fig. 4–16)

The analog input signal for SCART3 is fed to this pin. Analog input connection must be AC-coupled.

Pin 52, ASG - Analog Shield Ground

Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs.

Pins 53, 54 **SC2_IN_L/R** – SCART2 Inputs (Fig. 4–16) The analog input signal for SCART2 is fed to this pin. Analog input connection must be AC-coupled.

Pin 55, ASG - Analog Shield Ground

Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs.

Pins 56, 57 **SC1_IN_L/R** – SCART1 Inputs (Fig. 4–16) The analog input signal for SCART1 is fed to this pin. Analog input connection must be AC-coupled.

Pin 58, **VREFTOP** – Reference Voltage IF A/D Converter (Fig. 4–13)

Via this pin, the reference voltage for the IF A/D converter is decoupled. It must be connected to AVSS pins with a 10- μ F and a 100- η F capacitor in parallel. Traces must be kept short.

Pin 59, NC - Pin not connected.

Pin 60 MONO IN - Mono Input (Fig. 4-16)

The analog mono input signal is fed to this pin. Analog input connection must be AC-coupled.

Pins 61, 62, **AVSS*** – Ground for Analog Power Supply Voltage

Ground connection for the analog IF input circuitry of the MSP.

Pins 63, 64, NC - Pins not connected.

Pins 65, 66, **AVSUP*** – Analog Power Supply Voltage Power is supplied via this pin for the analog IF input circuitry of the MSP. This pin must be connected to the +5 V supply.

Pin 67, **ANA IN1**+ – IF Input 1 (Fig. 4–13)

The analog sound IF signal is supplied to this pin. Inputs must be AC-coupled. This pin is designed as symmetrical input: ANA_IN1+ is internally connected to one input of a symmetrical op amp, ANA_IN- to the other.

Pin 68, **ANA_IN**- - IF Common (Fig. 4–13)

This pins serves as a common reference for ANA_IN1/2+ inputs.

Pin 69, ANA_IN2+ - IF Input 2 (Fig. 4-13)

The analog sound if signal is supplied to this pin. Inputs must be AC-coupled. This pin is designed as symmetrical input: ANA_IN2+ is internally connected to one input of a symmetrical op amp, ANA_IN- to the other.

Pin 70, **TESTEN** – Test Enable Pin (Fig. 4–9)

This pin enables factory test modes. For normal operation, it must be connected to ground.

Pins 71, 72 **XTAL_IN, XTAL_OUT** – Crystal Input and Output Pins (Fig. 4–12)

These pins are connected to an 18.432 MHz crystal oscillator which is digitally tuned by integrated shunt capacitances. An external clock can be fed into XTAL_IN. The audio clock output signal AUD_CL_OUT is derived from the oscillator. External capacitors at each crystal pin to ground (AVSS) are required. It should be verified by layout, that no supply current for

the digital circuitry is flowing through the ground connection point.

Pin 73, **TP** – This pin enables factory test modes. For normal operation, it must be left vacant.

Pin 74, **AUD_CL_OUT** – Audio Clock Output (Fig. 4–12)

This is the 18.432 MHz main clock output.

Pins 75, 76, NC - Pins not connected.

Pins 77, 78, **D_CTR_I/O_1/0** – Digital Control Input/ Output Pins (Fig. 4–11)

These pins serve as general purpose input/output pins. Pin D_CTR_I/O_1 can be used as an interrupt request pin to the controller.

Pin 79, **ADR_SEL** – I²C Bus Address Select (Fig. 4–10)

By means of this pin, one of three device addresses for the MSP can be selected. The pin can be connected to ground (I^2C device addresses $80/81_{hex}$), to +5 V supply ($84/85_{hex}$), or left open ($88/89_{hex}$).

Pin 80, STANDBYQ - Stand-by

In normal operation, this pin must be High. If the MSP 34x2G is switched off by first pulling STANDBYQ low and then (after >1 μ s delay) switching off the 5 V, but keeping the 8-V power supply ('**Stand-by'-mode**), the SCART switches maintain their position and function.

* Application Note:

All ground pins should be connected to one low-resistive ground plane. All supply pins should be connected separately with short and low-resistive lines to the power supply. Decoupling capacitors from DVSUP to DVSS, AVSUP to AVSS, and AHVSUP to AHVSS are recommended as closely as possible to these pins. Decoupling of DVSUP and DVSS is most important. We recommend using more than one capacitor. By choosing different values, the frequency range of active decoupling can be extended. In our application boards we use: 220 pF, 470 pF, 1.5 nF, and 10 μF . The capacitor with the lowest value should be placed nearest to the DVSUP and DVSS pins.

4.4. Pin Configurations

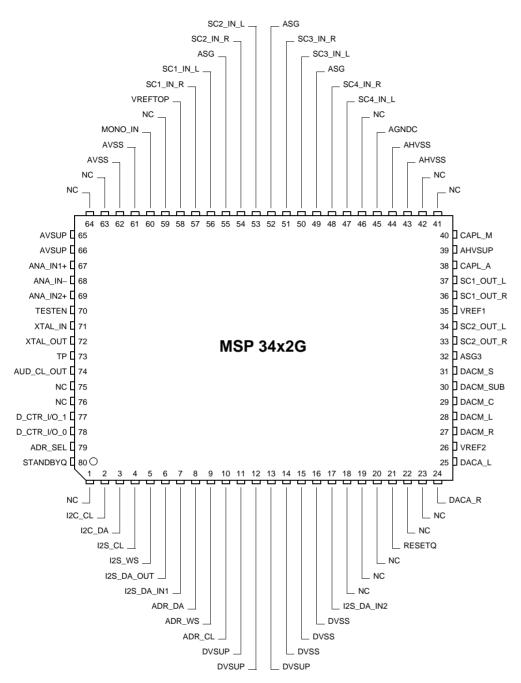


Fig. 4-4: 80-pin PQFP package

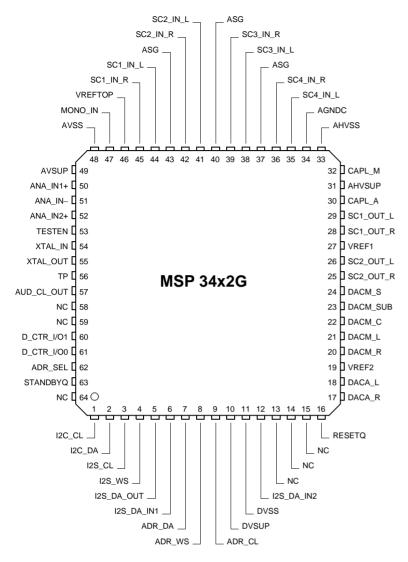


Fig. 4-5: 64-pin PLQFP package

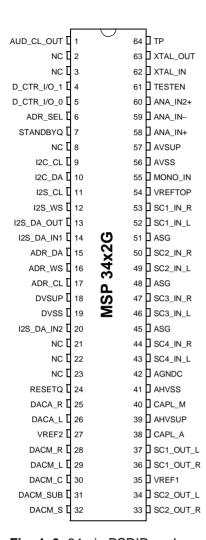


Fig. 4-6: 64-pin PSDIP package

4.5. Pin Circuits

Pin numbers refer to the PQFP80 package.

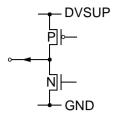


Fig. 4-7: Output Pins 6, 8, 9, and 10 (I2S_DA_OUT, ADR_DA, ADR_WS, ADR_CL)

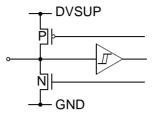


Fig. 4-11: Input/Output Pins 4, 5, 77, and 78 (I2S_CL, I2S_WS, D_CTR_I/O_1, D_CTR_I/O_0)

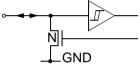


Fig. 4-8: Input/Output Pins 2 and 3 (I2C CL, I2C DA)

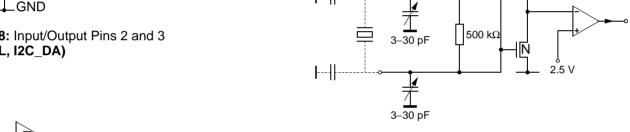


Fig. 4-9: Input Pins 7, 17, 21, 70, and 80 (I2S_DA_IN1, I2S_DA_IN2, RESETQ, TESTEN, STANDBYQ)

Fig. 4-12: Output/Input Pins 71, 72, and 74 (XTAL_IN, XTAL_OUT, AUD_CL_OUT)

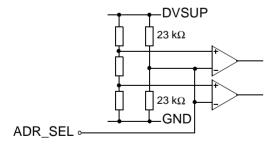


Fig. 4-10: Input Pin 79 (ADR_SEL)

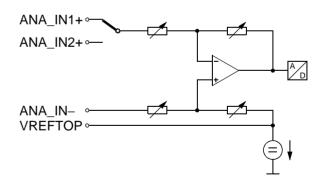


Fig. 4-13: Input Pins 58, 67, 68, and 69 (VREFTOP, ANA_IN1+, ANA_IN-, ANA_IN2+)

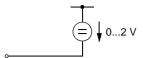


Fig. 4–14: Capacitor Pins 38 and 40 (CAPL_A, CAPL_M)

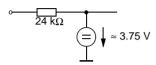
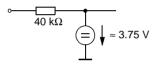
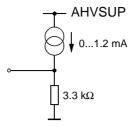




Fig. 4–15: Input Pin 60 (MONO_IN)

Fig. 4–16: Input Pins 47, 48, 50, 51, 53, 54, 56, and 57 **(SC4-1_IN_L/R)**

Fig. 4–17: Output Pins 24, 25, 27, 28, and 30 (DACA_R/L, DACM_R/L, DACM_SUB, DACM_C/S)

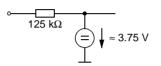


Fig. 4-18: Pin 45 (AGNDC)

Fig. 4–19: Output Pins 33, 34, 36, and 37 (SC_2_OUT_R/L, SC_1_OUT_R/L)

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient Operating Temperature	_	0	70 ¹⁾	°C
T _S	Storage Temperature	_	-40	125	°C
V _{SUP1}	First Supply Voltage	AHVSUP	-0.3	9.0	V
V _{SUP2}	Second Supply Voltage	DVSUP	-0.3	6.0	V
V _{SUP3}	Third Supply Voltage	AVSUP	-0.3	6.0	V
dV _{SUP23}	Voltage between AVSUP and DVSUP	AVSUP, DVSUP	-0.5	0.5	V
P _{TOT}	Package Power Dissipation PSDIP64 PQFP80 PLQFP64	AHVSUP, DVSUP, AVSUP		1300 1000 960 ¹⁾	mW mW mW
V _{Idig}	Input Voltage, all Digital Inputs		-0.3	V _{SUP2} +0.3	V
I _{Idig}	Input Current, all Digital Pins	_	-20	+20	mA ²⁾
V _{Iana}	Input Voltage, all Analog Inputs	SCn_IN_s,3) MONO_IN	-0.3	V _{SUP1} +0.3	V
I _{lana}	Input Current, all Analog Inputs	SCn_IN_s, ³⁾ MONO_IN	-5	+5	mA ²⁾
I _{Oana}	Output Current, all SCART Outputs	SCn_OUT_s ³⁾	4), 5)	4), 5)	
I _{Oana}	Output Current, all Analog Outputs except SCART Outputs	DACM_r, ³⁾ DACA_s	4)	4)	
I _{Cana}	Output Current, other pins connected to capacitors	CAPL_A, CAPL_M, AGNDC	4)	4)	

¹⁾ PLQFP64: 65 °C

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

²⁾ positive value means current flowing into the circuit

^{3) &}quot;n" means "1", "2", "3", or "4"; "r" means "L", "R", "C", or "S"; "s" means "L" or "R"

⁴⁾ The analog outputs are short-circuit proof with respect to First Supply Voltage and ground.

⁵⁾ Total chip power dissipation must not exceed absolute maximum rating.

4.6.2. Recommended Operating Conditions (T_A = 0 to 70 $^{\circ}$ C)

4.6.2.1. General Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
V _{SUP1}	First Supply Voltage (8-V Operation)	AHVSUP	7.6	8.0	8.7	V
	First Supply Voltage (5-V Operation)		4.75	5.0	5.25	V
V _{SUP2}	Second Supply Voltage	DVSUP	4.75	5.0	5.25	V
V _{SUP3}	Third Supply Voltage	AVSUP	4.75	5.0	5.25	V
t _{STBYQ1}	STANDBYQ Setup Time before Turn-off of Second Supply Voltage	STANDBYQ, DVSUP	1			μs

4.6.2.2. Analog Input and Output Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
C _{AGNDC}	AGNDC-Filter-Capacitor	AGNDC	-20%	3.3		μF
	Ceramic Capacitor in Parallel		-20%	100		nF
C _{inSC}	DC-Decoupling Capacitor in front of SCART Inputs	SCn_IN_s ¹⁾	-20%	330		nF
V _{inSC}	SCART Input Level				2.0	V _{RMS}
V _{inMONO}	Input Level, Mono Input	MONO_IN			2.0	V _{RMS}
R _{LSC}	SCART Load Resistance	SCn_OUT_s ¹⁾	10			kΩ
C _{LSC}	SCART Load Capacitance				6.0	nF
C _{VMA}	Main/AUX Volume Capacitor	CAPL_M, CAPL_A		10		μF
C _{FMA}	Main/AUX Filter Capacitor	DACM_r, ¹⁾ DACA_s	-10%	1	+10%	nF
1) "n" means "	1", "2", "3", or "4"; "r" means "L", "R", "C	", or "S"; "s" means	"L" or "R"			

4.6.2.3. Recommendations for Analog Sound IF Input Signal

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
C _{VREFTOP}	VREFTOP-Filter-Capacitor	VREFTOP	-20%	10		μF
	Ceramic Capacitor in Parallel		-20%	100		nF
F _{IF_FMTV}	Analog Input Frequency Range for TV Applications	ANA_IN1+, ANA_IN2+,	0		9	MHz
F _{IF_FMRADIO}	Analog Input Frequency for FM-Radio Applications	ANA_IN-		10.7		MHz
V _{IF_FM}	Analog Input Range FM/NICAM		0.1	0.8	3	V _{pp}
V _{IF_AM}	Analog Input Range AM/NICAM		0.1	0.45	0.8	V _{pp}
R _{FMNI}	Ratio: NICAM Carrier/FM Carrier (unmodulated carriers) BG: I:		-20 -23	-7 -10	0 0	dB dB
R _{AMNI}	Ratio: NICAM Carrier/AM Carrier (unmodulated carriers)		-25	-11	0	dB
R _{FM}	Ratio: FM-Main/FM-Sub Satellite			7		dB
R _{FM1/FM2}	Ratio: FM1/FM2 German FM-System			7		dB
R _{FC}	Ratio: Main FM Carrier/ Color Carrier		15	-	-	dB
R _{FV}	Ratio: Main FM Carrier/ Luma Components		15	-	-	dB
PR _{IF}	Passband Ripple		_	_	±2	dB
SUP _{HF}	Suppression of Spectrum above 9.0 MHz (not for FM Radio)		15		-	dB
FM _{MAX}	Maximum FM-Deviation (approx.) normal mode HDEV2: high deviation mode HDEV3: very high deviation mode				±180 ±360 ±540	kHz kHz kHz

4.6.2.4. Crystal Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
General Crys	stal Recommendations					
f _P	Crystal Parallel Resonance Frequency at 12 pF Load Capacitance			18.432		MHz
R _R	Crystal Series Resistance			8	25	Ω
C ₀	Crystal Shunt (Parallel) Capacitance			6.2	7.0	pF
C _L	External Load Capacitance ¹⁾	XTAL_IN, XTAL_OUT	PSDIP P(L)QF	approx. P approx.		pF pF
Crystal Reco	mmendations for Master-Slave Appl	ications (MSP-clock	must perfor	m synchro	nization to	I ² S clock)
f _{TOL}	Accuracy of Adjustment		-20		+20	ppm
D _{TEM}	Frequency Variation versus Temperature		-20		+20	ppm
C ₁	Motional (Dynamic) Capacitance		19	24		fF
f _{CL}	Required Open Loop Clock Frequency (T _{amb} = 25 °C)	AUD_CL_OUT	18.431		18.433	MHz
Crystal Reco	mmendations for FM / NICAM Applic	cations (No MSP-cloc	k synchron	ization to I ²	S clock po	ssible)
f_{TOL}	Accuracy of Adjustment		-30		+30	ppm
D _{TEM}	Frequency Variation versus Temperature		-30		+30	ppm
C ₁	Motional (Dynamic) Capacitance		15			fF
f_{CL}	Required Open Loop Clock Frequency (T _{amb} = 25 °C)	AUD_CL_OUT	18.4305		18.4335	MHz
Crystal Reco	mmendations for all analog FM/AM A	pplications (No MSP	-clock sync	hronization	to I ² S cloc	k possible)
f_{TOL}	Accuracy of Adjustment		-100		+100	ppm
D _{TEM}	Frequency Variation versus Temperature		-50		+50	ppm
f _{CL}	Required Open Loop Clock Frequency (T _{amb} = 25 °C)	AUD_CL_OUT	18.429		18.435	MHz
Amplitude R	ecommendation for Operation with E	xternal Clock Input	t (C _{load} aft	er reset ty	/p. 22 pF)	
V_{XCA}	External Clock Amplitude	XTAL_IN	0.7			V _{pp}

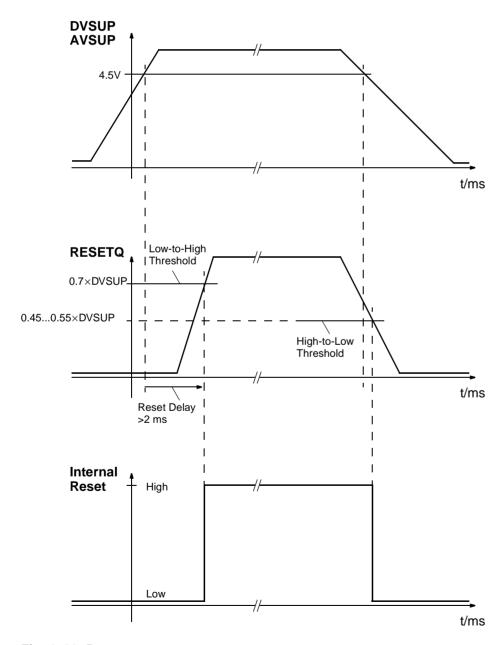
¹⁾ External capacitors at each crystal pin to ground are required. They are necessary to tune the open-loop frequency of the internal PLL and to stabilize the frequency in closed-loop operation.
Due to different layouts, the accurate capacitor size should be determined with the customer PCB. The suggested values (1.5...3.3 pF) are figures based on experience and should serve as "start value".

To define the capacitor size, reset the MSP without transmitting any further I²C telegrams. Measure the frequency at AUD_CL_OUT-pin. Change the capacitor size until the free running frequency matches 18.432 MHz as closely as possible. The higher the capacity, the lower the resulting clock frequency.

4.6.3. Characteristics

at T_A = 0 to 70 °C, f_{CLOCK} = 18.432 MHz, V_{SUP1} = 7.6 to 8.7 V, V_{SUP2} = 4.75 to 5.25 V for min./max. values at T_A = 60 °C, f_{CLOCK} = 18.432 MHz, V_{SUP1} = 8 V, V_{SUP2} = 5 V for typical values, T_J = Junction Temperature MAIN (M) = Loudspeaker Channel, AUX (A) = Headphone Channel

4.6.3.1. General Characteristics


Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Supply							
I _{SUP1A}	First Supply Current (active) (8-V Operation) Analog Volume for Main and Aux at 0 dB Analog Volume for Main and Aux at –30 dB	AHVSUP		17.1 11.2	24.6 16.1	mA mA	
	First Supply Current (active) (5-V Operation) Analog Volume for Main and Aux at 0 dB Analog Volume for Main and Aux at –30 dB			11.4 7.5	16.4 10.7	mA mA	
I _{SUP2A}	Second Supply Current (active)	DVSUP		75	100	mA	
I _{SUP3A}	Third Supply Current (active)	AVSUP		35	45	mA	
I _{SUP1S}	First Supply Current (8-V Operation) (standby mode) at T _j = 27 °C	AHVSUP		5.6	7.7	mA	STANDBYQ = low
	First Supply Current (5-V Operation) (standby mode) at T _j = 27 °C			3.7	5.1	mA	STANDBYQ = low
Clock						•	
f _{CLOCK}	Clock Input Frequency	XTAL_IN		18.432		MHz	
D _{CLOCK}	Clock High to Low Ratio		45		55	%	
t _{JITTER}	Clock Jitter (Verification not provided in Production Test)				50	ps	
V _{xtalDC}	DC-Voltage Oscillator			2.5		V	
t _{Startup}	Oscillator Startup Time at VDD Slew-rate of 1 V/1 µs	XTAL_IN, XTAL_OUT		0.4	2	ms	
V _{ACLKAC}	Audio Clock Output AC Voltage	AUD_CL_OUT	1.2	1.8		V _{pp}	load = 40 pF
V _{ACLKDC}	Audio Clock Output DC Voltage		0.4		0.6	V _{SUP3}	I _{max} = 0.2 mA
r _{outHF_ACL}	HF Output Resistance			140		Ω	

4.6.3.2. Digital Inputs, Digital Outputs

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Digital Input	Levels						
V _{DIGIL}	Digital Input Low Voltage	STANDBYQ D_CTR_I/O_0/1			0.2	V _{SUP2}	
V _{DIGIH}	Digital Input High Voltage	D_CTK_I/O_0/1	0.5			V _{SUP2}	
Z _{DIGI}	Input Impedance				5	pF	
I _{DLEAK}	Digital Input Leakage Current		-1		1	μΑ	0 V < U _{INPUT} < DVSUP D_CTR_I/O_0/1: tri-state
V _{DIGIL}	Digital Input Low Voltage	ADR_SEL			0.2	V _{SUP2}	
V _{DIGIH}	Digital Input High Voltage		0.8			V _{SUP2}	
I _{ADRSEL}	Input Current Address Select Pin		-500	-220		μΑ	U _{ADR_SEL} = DVSS
				220	500	μΑ	U _{ADR_SEL} = DVSUP
Digital Outpu	it Levels						
V _{DCTROL}	Digital Output Low Voltage	D_CTR_I/O_0			0.4	V	IDDCTR = 1 mA
V _{DCTROH}	Digital Output High Voltage	D_CTR_I/O_1	V _{SUP2} -0.3			V	IDDCTR = -1 mA

4.6.3.3. Reset Input and Power-Up

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
RESETQ Inpu	it Levels						
V _{RHL}	Reset High-Low Transition Voltage	RESETQ	0.45		0.55	V _{SUP2}	
V _{RLH}	Reset Low-High Transition Voltage		0.7		0.8	V _{SUP2}	
Z _{RES}	Input Impedance				5	pF	
I _{RES}	Input Pin Leakage Current		-1		1	μΑ	0 V < U _{INPUT} < DVSUP

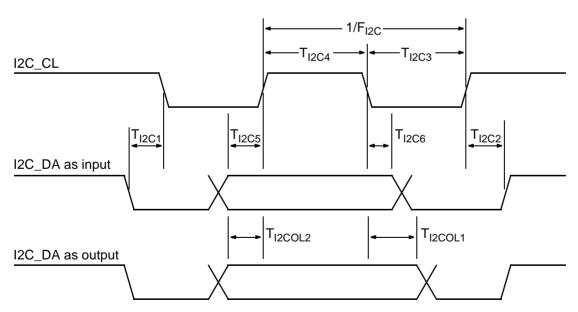
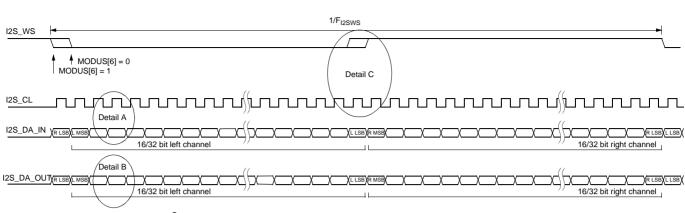
Note: The reset should not reach high level before the oscillator has started. This requires a reset delay of >2 ms

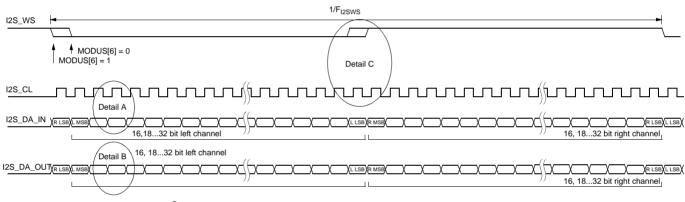
0.7 x DVSUP means 3.5 Volt with DVSUP = 5.0 V

Fig. 4-20: Power-up sequence

4.6.3.4. I²C-Bus Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{I2CIL}	I ² C-Bus Input Low Voltage	I2C_CL, - I2C_DA			0.3	V _{SUP2}	
V _{I2CIH}	I ² C-Bus Input High Voltage		0.6			V _{SUP2}	
t _{I2C1}	I ² C Start Condition Setup Time		120			ns	
t _{I2C2}	I ² C Stop Condition Setup Time		120			ns	
t _{I2C5}	I ² C-Data Setup Time before Rising Edge of Clock		55			ns	
t _{I2C6}	I ² C-Data Hold Time after Falling Edge of Clock		55			ns	
t _{I2C3}	I ² C-Clock Low Pulse Time	I2C_CL	500			ns	
t _{I2C4}	I ² C-Clock High Pulse Time		500			ns	
f _{I2C}	I ² C-BUS Frequency				1.0	MHz	
V _{I2COL}	I ² C-Data Output Low Voltage	I2C_CL, I2C_DA			0.4	V	I _{I2COL} = 3 mA
I _{I2COH}	I ² C-Data Output High Leakage Current				1.0	μΑ	V _{I2COH} = 5 V
t _{I2COL1}	I ² C-Data Output Hold Time after Falling Edge of Clock		15			ns	
t _{I2COL2}	I ² C-Data Output Setup Time before Rising Edge of Clock		100			ns	f _{I2C} = 1 MHz


Fig. 4–21: I²C bus timing diagram

4.6.3.5. I²S-Bus Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{I2SIL}	Input Low Voltage	I2S_CL I2S_WS I2S_DA_IN1/2			0.2	V _{SUP2}	
V _{I2SIH}	Input High Voltage		0.5			V _{SUP2}	
Z _{I2SI}	Input Impedance				5	pF	
I _{LEAKI2S}	Input Leakage Current		-1		1	μΑ	0 V < U _{INPUT} < DVSUP
V _{I2SOL}	I ² S Output Low Voltage	I2S_CL I2S_WS I2S_DA_OUT			0.4	V	I _{I2SOL} = 1 mA
V _{I2SOH}	I ² S Output High Voltage		V _{SUP2} - 0.3			V	I _{12SOH} = -1 mA
f _{I2SOWS}	I ² S-Word Strobe Output Frequency	I2S_WS		32.0		kHz	
f _{I2SOCL}	I ² S-Clock Output Frequency	I2S_CL		1.024		MHz	
R _{I2S10/I2S20}	I ² S-Clock Output High/Low-Ratio		0.9	1.0	1.1		
t _{s_l2S}	I ² S Input Setup Time before Rising Edge of Clock	I2S_CL I2S_DA_IN1/2	12			ns	for details see Fig. 4–22 "I ² S bus timing diagram"
t _{h_l2S}	I ² S Input Hold Time after Rising Edge of Clock		40			ns	
t _{d_l2S}	I ² S Output Delay Time after Falling Edge of Clock	I2S_CL I2S_WS I2S_DA_OUT			28	ns	C _L = 30 pF
f _{I2SWS}	I ² S-Word Strobe Input Frequency	I2S_WS		32.0		kHz	
f _{I2SCL}	I ² S-Clock Input Frequency	I2S_CL		1.024		MHz	
R _{I2SCL}	I ² S-Clock Input Ratio		0.9		1.1		

Data: MSB first, I²S master

Data: MSB first, I²S slave

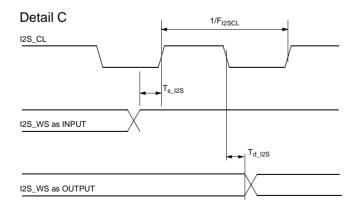
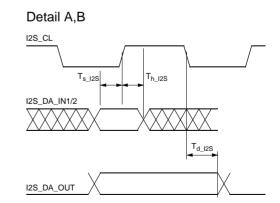



Fig. 4–22: I²S bus timing diagram

4.6.3.6. Analog Baseband Inputs and Outputs, AGNDC

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Analog Gro	und						
V _{AGNDC0}	AGNDC Open Circuit Voltage (AHVSUP = 8 V)	AGNDC	3.67	3.77	3.87	V	R _{load} ≥10 MΩ
	AGNDC Open Circuit Voltage (AHVSUP = 8 V)		2.41	2.51	2.61	V	
R _{outAGN}	AGNDC Output Resistance (AHVSUP = 8 V)		70	125	180	kΩ	3 V ≤ V _{AGNDC} ≤ 4 V
	AGNDC Output Resistance (AHVSUP = 8 V)		47	83	120	kΩ	
Analog Inpu	ut Resistance						
R _{inSC}	SCART Input Resistance from T _A = 0 to 70 °C	SCn_IN_s ¹⁾	25	40	58	kΩ	f _{signal} = 1 kHz, I = 0.05 mA
R _{inMONO}	MONO Input Resistance from T _A = 0 to 70 °C	MONO_IN	15	24	35	kΩ	f _{signal} = 1 kHz, I = 0.1 mA
1) "n" mean	s "1", "2", "3", or "4"; "s" means "L" or	"R"	•	•	•	•	·

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Audio Analo	g-to-Digital-Converter	·					•
V _{AICL}	Effective Analog Input Clipping Level for Analog-to-Digital- Conversion (AHVSUP = 8 V)	SCn_IN_s, ¹⁾ MONO_IN	2.00		2.25	V _{RMS}	f _{signal} = 1 kHz
	Effective Analog Input Clipping Level for Analog-to-Digital- Conversion (AHVSUP = 5 V)		1.13		1.51	V _{RMS}	
SCART Outp	outs						
R _{outSC}	SCART Output Resistance at $T_j = 27 ^{\circ}\text{C}$ from $T_A = 0$ to 70 $^{\circ}\text{C}$	SCn_OUT_s ¹⁾	200 200	330	460 500	ΩΩ	f _{signal} = 1 kHz, I = 0.1 mA
dV _{OUTSC}	Deviation of DC-Level at SCART Output from AGNDC Voltage		-70		+70	mV	
A _{SCtoSC}	Gain from Analog Input to SCART Output	SCn_IN_s, ¹⁾ MONO_IN	-1.0		+0.5	dB	f _{signal} = 1 kHz
f _{rSCtoSC}	Frequency Response from Analog Input to SCART Output Bandwidth: 0 to 20000 Hz	→ SCn_OUT_s ¹⁾	-0.5		+0.5	dB	with resp. to 1 kHz
V _{outSC}	Effective Signal Level at SCART-Output during full-scale Digital Input Signal from I ² S (AHVSUP = 8 V)	SCn_OUT_s ¹⁾	1.8	1.9	2.0	V _{RMS}	f _{signal} = 1 kHz
	Effective Signal Level at SCART-Output during full-scale Digital Input Signal from I ² S (AHVSUP = 5 V)		1.17	1.27	1.37	V _{RMS}	
Main, AUX, a	nd CS Outputs						•
R _{outMACS}	Main/AUX Output Resistance at $T_j = 27 ^{\circ}\text{C}$ from $T_A = 0$ to 70 $^{\circ}\text{C}$	DACM_r, ¹⁾ DACA_s	2.1 2.1	3.3	4.6 5.0	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 mA
V _{outDCMACS}	DC-Level at Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB DC-Level, not selected CS-Output (AHVSUP = 8 V)		1.80	2.04 61 0	2.28	V mV V	
	DC-Level at Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB DC-Level, not selected CS-Output (AHVSUP = 5 V)		1.12	1.36 40 0	1.60	V mV V	
VoutMACS	Effective Signal Level at Main/AUX-Output during full-scale Digital Input Signal from I ² S for Analog Volume at 0 dB (AHVSUP = 8 V)		1.23	1.37	1.51	V _{RMS}	f _{signal} = 1 kHz
	Effective Signal Level at Main/AUX-Output during full-scale Digital Input Signal from I ² S for Analog Volume at 0 dB (AHVSUP = 5 V)		0.76	0.90	1.04	V _{RMS}	

4.6.3.7. Sound IF Inputs

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
R _{IFIN}	Input Impedance	ANA_IN1+, ANA_IN2+, ANA_IN-	1.5 6.8	2 9.1	2.5 11.4	kΩ kΩ	Gain AGC = 20 dB Gain AGC = 3 dB
DC _{VREFTOP}	DC Voltage at VREFTOP	VREFTOP	2.45	2.65	2.75	V	
DC _{ANA_IN}	DC Voltage on IF Inputs	ANA_IN1+, ANA_IN2+, ANA_IN-	1.3	1.5	1.7	V	
XTALK _{IF}	Crosstalk Attenuation	ANA_IN1+, ANA_IN2+,	40			dB	f _{signal} = 1 MHz Input Level = -2 dBr
BW _{IF}	3 dB Bandwidth	ANA_IN-	10			MHz	input Level = -2 dbf
AGC	AGC Step Width			0.85		dB	

4.6.3.8. Power Supply Rejection

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
PSRR: Rejec	tion of Noise on AHVSUP at 1 kHz						
PSRR	AGNDC	AGNDC		80		dB	
	From Analog Input to I ² S Output	MONO_IN, SCn_IN_s ¹⁾		70		dB	
	From Analog Input to SCART Output	MONO_IN, SCn_IN_s ¹⁾ SCn_OUT_s ¹⁾		70		dB	
	From I ² S Input to SCART Output	SCn_OUT_s ¹⁾		60		dB	
	From I ² S Input to Main or AUX Output	DACM_r, ¹⁾ DACA_s		80		dB	
1) "n" means	"1", "2", "3", or "4"; "r" means "L", "R",	"C", or "S"; "s" mean	s "L" or "F	?"	•	•	

4.6.3.9. Analog Performance

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Specification	ons for AHVSUP = 8 V						
SNR	Signal-to-Noise Ratio						
	from Analog Input to I ² S Output	MONO_IN, SCn_IN_s ¹⁾	85	88		dB	Input Level = -20 dB with resp. to V_{AICL} , $f_{sig} = 1$ kHz, unweighted 20 Hz16 kHz
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s ¹) → SCn_OUT_s ¹)	93	96		dB	Input Level = -20 dB, $f_{sig} = 1$ kHz, unweighted 20 Hz 20 kHz
	from I ² S Input to SCART Output	SCn_OUT_s ¹⁾	85	88		dB	Input Level = -20 dB, f _{sig} = 1 kHz, unweighted 20 Hz15 kHz
	from I ² S Input to Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB	DACM_r, ¹⁾ DACA_s	85 78	88 83		dB dB	Input Level = -20 dB, $f_{sig} = 1$ kHz, unweighted 20 Hz15 kHz
THD	Total Harmonic Distortion						
	from Analog Input to I ² S Output	MONO_IN, SCn_IN_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr with resp. to V_{AICL} , $f_{sig} = 1$ kHz, unweighted 20 Hz16 kHz
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s → SCn_OUT_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz20 kHz
	from I ² S Input to SCART Output	SCn_OUT_s ¹⁾		0.01	0.03	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz16 kHz
	from I ² S Input to Main or AUX Output	DACM_r, ¹⁾ DACA_s		0.01	0.03	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz16 kHz

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Specification	ons for AHVSUP = 5 V						
SNR	Signal-to-Noise Ratio						
	from Analog Input to I ² S Output	MONO_IN, SCn_IN_s ¹)	82	85		dB	Input Level = -20 dB with resp. to V _{AICL} , f _{sig} = 1 kHz, unweighted 20 Hz16 kHz
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s ¹) → SCn_OUT_s ¹)	90	93		dB	Input Level = -20 dB, f _{sig} = 1 kHz, unweighted 20 Hz20 kHz
	from I ² S Input to SCART Output	SCn_OUT_s ¹⁾	82	85		dB	Input Level = -20 dB, f _{sig} = 1 kHz, unweighted 20 Hz15 kHz
	from I ² S Input to Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB	DACM_r, ¹⁾ DACA_s	82 75	85 80		dB dB	Input Level = -20 dB, f _{sig} = 1 kHz, unweighted 20 Hz15 kHz
THD	Total Harmonic Distortion						
	from Analog Input to I ² S Output	MONO_IN, SCn_IN_s ¹⁾		0.03	0.1	%	Input Level = -3 dBr with resp. to V _{AICL} , f _{sig} = 1 kHz, unweighted 20 Hz16 kHz
	from Analog Input to SCART Output	MONO_IN, SCn_IN_s → SCn_OUT_s ¹⁾			0.1	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz20 kHz
	from I ² S Input to SCART Output	SCn_OUT_s ¹⁾			0.1	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz16 kHz
	from I ² S Input to Main or AUX Output	DACA_s, DACM_s ¹⁾			0.1	%	Input Level = -3 dBr, f _{sig} = 1 kHz, unweighted 20 Hz16 kHz

^{1) &}quot;n" means "1", "2", "3", or "4"; "r" means "L", "R", "C", or "S"; "s" means "L" or "R"

Symbol	Parameter I	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
CROSSTALK	Specifications						
XTALK	Crosstalk Attenuation						Input Level = -3 dB, f_{sig} = 1 kHz, unused analog inputs connected to ground by Z < 1 k Ω
	between left and right channel within SCART Input/Output pair (L→R, R→L) SCn_IN → SCn_OUT ¹⁾)	80			dB	unweighted 20 Hz20 kHz
	SC1_IN or SC2_IN \rightarrow I ² S Output		80			dB	
	$SC3_IN \rightarrow I^2S$ Output		80			dB	
	I^2S Input \rightarrow SCn_OUT ¹⁾		80			dB	
	between left and right channel within Main or AUX Output pair						unweighted 20 Hz16 kHz
	$I^2S Input \rightarrow DACM$ $I^2S Input \rightarrow DACA$		75			dB	
	between SCART Input/Output pairs						unweighted 20 Hz20 kHz
	D = disturbing program O = observed program						same signal source on left and right disturbing
	D: MONO/SCn_IN \rightarrow SCn_OUT O: MONO/SCn_IN \rightarrow SCn_OUT ¹⁾		100			dB	channel, effect on each observed output channel
	D: MONO/SCn_IN \rightarrow SCn_OUT or un O: MONO/SCn_IN \rightarrow I ² S Output	sel.	95			dB	
	D: MONO/SCn_IN \rightarrow SCn_OUT O: I ² S Input \rightarrow SCn_OUT ¹⁾	100			dB		
	D: MONO/SCn_IN \rightarrow unselected O: I ² S Input \rightarrow SC1_OUT ¹⁾		100			dB	
	Crosstalk between Main and AUX Output pairs $I^2S \; \text{Input} \to \text{DACM}$		90			dB	unweighted 20 Hz16 kHz same signal source on left and right disturbing
	I ² S Input → DACA						channel, effect on each observed output channel
XTALK	Crosstalk from Main or AUX Output to and vice versa	SCART Output					unweighted 20 Hz20 kHz same signal source on left
	D = disturbing program O = observed program						and right disturbing channel, effect on each observed output channel
	D: MONO/SCn_IN/DSP \rightarrow SCn_OUT O: 12 S Input \rightarrow DACM O: 12 S Input \rightarrow DACA		80			dB	SCART output load resistance 10 kΩ
	D: MONO/SCn_IN/DSP \rightarrow SCn_OUT O: I ² S Input \rightarrow DACM O: I ² S Input \rightarrow DACA		85			dB	SCART output load resistance 30 k Ω
	$\begin{array}{l} \text{D: I2S Input} \rightarrow \text{DACM} \\ \text{D: I2S Input} \rightarrow \text{DACA} \\ \text{O: MONO/SCn_IN} \rightarrow \text{SCn_OUT$^1)} \end{array}$	95			dB		
	$\begin{array}{l} \text{D: I2S Input} \rightarrow \text{DACM} \\ \text{D: I2S Input} \rightarrow \text{DACA} \\ \text{O: I2S Input} \rightarrow \text{SCn_OUT}^{1)} \end{array}$		95			dB	
1) "n" means	"1", "2", "3", or "4"						

4.6.3.10. Sound Standard Dependent Characteristics

	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
NICAM Charac	cteristics (MSP Standard Code = 8)						
dV _{NICAMOUT}	Tolerance of Output Voltage of NICAM Baseband Signal	DACM_r, ¹⁾ DACA_s, SCn_OUT_s	-1.5		+1.5	dB	2.12 kHz, Modulator input level = 0 dBref
S/N _{NICAM}	S/N of NICAM Baseband Signal	301_001_5	72			dB	NICAM: -6 dB, 1 kHz, RMS unweighted 0 to 15 kHz, Vol = 9 dB NIC_Presc = 7F _{hex} Output level 1 V _{RMS} at DACp_s
THD _{NICAM}	Total Harmonic Distortion + Noise of NICAM Baseband Signal				0.1	%	2.12 kHz, Modulator input level = 0 dBref
BER _{NICAM}	NICAM: Bit Error Rate				1	10 ⁻⁷	FM+NICAM, norm conditions
fR _{NICAM}	NICAM Frequency Response , 2015000 Hz		-1.0		+1.0	dB	Modulator input level = -12 dB dBref; RMS
XTALK _{NICAM}	NICAM Crosstalk Attenuation (Dual)		80			dB	
SEP _{NICAM}	NICAM Channel Separation (Stereo)		80			dB	
FM Characteri	stics (MSP Standard Code = 3)						
dV _{FMOUT}	Tolerance of Output Voltage of FM Demodulated Signal	DACM_r, ¹⁾ DACA_s,	-1.5		+1.5	dB	1 FM-carrier, 50 μs, 1 kHz, 40 kHz deviation; RMS
S/N _{FM}	S/N of FM Demodulated Signal	SCn_OUT_s ¹⁾	73			dB	1 FM-carrier 5.5 MHz, 50 μs,
THD _{FM}	Total Harmonic Distortion + Noise of FM Demodulated Signal				0.1	%	1 kHz, 40 kHz deviation; RMS, unweighted 0 to 15 kHz (for S/N); full input range, FM-Pres- cale = 46 _{hex} , Vol = 0 dB → Output Level 1 V _{RMS} at DACp_s
fR _{FM}	FM Frequency Response 2015000 Hz		-1.0		+1.0	dB	1 FM-carrier 5.5 MHz, 50 µs, Modulator input level = -14.6 dBref; RMS
XTALK _{FM}	FM Crosstalk Attenuation (Dual)		80			dB	2 FM-carriers 5.5/5.74 MHz, 50 μs, 1 kHz, 40 kHz devia- tion; Bandpass 1 kHz
SEP _{FM}	FM Channel Separation (Stereo)	DACM_r, ¹⁾ DACA_s, SCn_OUT_s	50			dB	2 FM-carriers 5.5/5.74 MHz, 50 μs, 1 kHz, 40 kHz devia- tion; RMS
AM Characteri	istics (MSP Standard Code = 9)						·
S/N _{AM(1)}	S/N of AM Demodulated Signal measurement condition: RMS/Flat	DACM_r, ¹⁾ DACA_s,	55			dB	SIF level: 0.1–0.8 V _{pp} AM-carrier 54% at 6.5 MHz
S/N _{AM(2)}	S/N of AM Demodulated Signal measurement condition: QP/CCIR	SCn_OUT_s	45			dB	Vol = 0 dB, FM/AM prescaler set for output = 0.5 V _{RMS} at Loudspeaker out;
THD _{AM}	Total Harmonic Distortion + Noise of AM Demodulated Signal				0.6	%	Standard Code = 09 _{hex} no video/chroma components
fR _{RM}	RM Frequency Response 5012000 Hz		-2.5		+1.0	dB	

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
BTSC Charac	cteristics (MSP Standard Code = 20 _h	_{ex} , 21 _{hex})	_				
S/N _{BTSC}	S/N of BTSC Stereo Signal S/N of BTSC-SAP Signal	DACM_r, ¹⁾ DACA_s, SCn_OUT_s	68 57			dB dB	1 kHz L or R or SAP, 100% modulation, 75 μs deempha- sis, RMS unweighted 0 to 15 kHz
THD _{BTSC}	THD+N of BTSC Stereo Signal THD+N of BTSC SAP Signal				0.1 0.5	%	1 kHz L or R or SAP, 100% 75 μs EIM ²⁾ , DBX NR, RMS unweighted 0 to 15 kHz
fR _{BTSC}	Frequency Response of BTSC Stereo, 50 Hz12 kHz Frequency Response of BTSC-SAP, 50 Hz9 kHz		-1.0 -1.0		1.0	dB dB	L or R or SAP, 1%66% EIM ²⁾ , DBX NR
XTALK _{BTSC}	$\begin{array}{c} Stereo \to SAP \\ SAP \to Stereo \end{array}$		76 80			dB dB	1 kHz L or R or SAP, 100% modulation, 75 μs deempha- sis, Bandpass 1 kHz
SEP _{BTSC}	Stereo Separation 50 Hz10 kHz 50 Hz12 kHz		35 30			dB dB	L or R 1%66% EIM ²⁾ , DBX NR
FM _{pil}	Pilot deviation threshold $ \mbox{Stereo off} \rightarrow \mbox{on} $	ANA_IN1+, ANA_IN2+	3.2 1.2		3.5 1.5	kHz kHz	4.5 MHz carrier modulated with f_h = 15.743 kHz SIF level = 100 mV _{pp} indication: STATUS Bit[6]
f _{Pilot}	Pilot Frequency Range	ANA_IN1+ ANA_IN2+	15.563		15.843	kHz	standard BTSC stereo signal, sound carrier only
BTSC Charac	cteristics (MSP Standard Code = 20 _h um IF input signal level of 70 mVpp	_{ex} , 21 _{hex}) (measured withou	ut any vide	o/chrom	a signal c	ompone	nts)
S/N _{BTSC}	S/N of BTSC Stereo Signal S/N of BTSC-SAP Signal	DACM_r, ¹⁾ DACA_s, SCn_OUT_s	64 55			dB dB	1 kHz L or R or SAP, 100% modulation, 75 μs deempha- sis, RMS unweighted 0 to 15 kHz
THD _{BTSC}	THD+N of BTSC Stereo Signal THD+N of BTSC SAP Signal				0.15 0.8	% %	1 kHz L or R or SAP, 100% 75 μs EIM ²⁾ , DBX NR, RMS unweighted 0 to 15 kHz
fR _{BTSC}	Frequency Response of BTSC Stereo, 50 Hz12 kHz		-1.0		1.0	dB	L or R or SAP, 1%66% EIM ²⁾ , DBX NR
	Frequency Response of BTSC- SAP, 50 Hz9 kHz		-1.0		1.0	dB	
XTALK _{BTSC}	$\begin{array}{c} Stereo \to SAP \\ SAP \to Stereo \end{array}$		75 75			dB dB	1 kHz L or R or SAP, 100% modulation, 75 μs deempha- sis, Bandpass 1 kHz
SEP _{BTSC}	Stereo Separation 50 Hz10 kHz 50 Hz12 kHz		35 30			dB dB	L or R 1%66% EIM ²⁾ , DBX NR

 $^{^{1)} \ \ \}text{``n'' means ``1", ``2", ``3", or ``4"; ``r'' means ``L", ``R", ``C", or ``S"; ``s" means ``L" or ``R"}$

²⁾ EIM refers to 75-µs Equivalent Input Modulation. It is defined as the audio-signal level which results in a stated percentage modulation, when the DBX encoding process is replaced by a 75-µs preemphasis network.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions	
EIA-J Charac	eteristics (MSP Standard Code = 30 _h	_{ex})						
S/N _{EIAJ}	S/N of EIA-J Stereo Signal	DACM_r, ¹⁾				dB	1 kHz L or R,	
	S/N of EIA-J Sub-Channel	DACA_s, SCn_OUT_s	60			dB	100% modulation, 75 μs deemphasis,	
THD _{EIAJ}	THD+N of EIA-J Stereo Signal				0.2	%	RMS unweighted 0 to 15 kHz	
	THD+N of EIA-J Sub-Channel				0.3	%		
fR _{EIAJ}	Frequency Response of EIA-J Stereo, 50 Hz12 kHz		-1.0		1.0	dB	100% modulation, 75 μs deemphasis	
	Frequency Response of EIA-J Sub-Channel, 50 Hz12 kHz		-1.0		1.0	dB		
XTALK _{EIAJ}	Main → SUB		66			dB	1 kHz L or R, 100% modula-	
	$Sub \to MAIN$		80			dB	tion, 75 μs deemphasis, Bandpass 1 kHz	
SEP _{EIAJ}	Stereo Separation 50 Hz5 kHz 50 Hz10 kHz		35 28			dB dB	EIA-J Stereo Signal, L or R 100% modulation	
FM-Radio Ch	aracteristics (MSP Standard Code =	40 _{hex})						
S/N _{UKW}	S/N of FM-Radio Stereo Signal	DACM_r,1)	68			dB	1 kHz L or R, 100% modula-	
THD _{UKW}	THD+N of FM-Radio Stereo Signal	DACA_s, SCn_OUT_s			0.1	%	 tion, 75 μs deemphasis, RMS unweighted 0 to 15 kHz 	
fR _{UKW}	Frequency Response of FM-Radio Stereo 50 Hz15 kHz		-1.0		1.0	dB	L or R, 1%100% modulation, 75 μs deemphasis	
SEP _{UKW}	Stereo Separation 50 Hz15 kHz		45			dB		
f _{Pilot}	Pilot Frequency Range	ANA_IN1+ ANA_IN2+	18.844		19.125	kHz	standard FM radio stereo signal	

5. Appendix A: Overview of TV-Sound Standards

5.1. NICAM 728

Table 5–1: Summary of NICAM 728 sound modulation parameters

Specification	1	B/G	L		D/K					
Carrier frequency of digital sound	6.552 MHz	5.85 MHz	5.85 MHz		5.85 MHz					
Transmission rate		728 kbit/s								
Type of modulation	Di	Differentially encoded quadrature phase shift keying (DQPSK)								
Spectrum shaping Roll-off factor	by means of Roll-off filters									
Koll-off factor	1.0	0.4	0.4		0.4	0.4				
Carrier frequency of analog sound component	6.0 MHz FM mono	5.5 MHz FM mono			6.5 MHz FM mono					
analog sound component	FIVI IIIOIIO	FIVI IIIOIIO	terrestrial	cable	FIVI ITIOTIO					
Power ratio between vision carrier and analog sound carrier	10 dB	13 dB	10 dB	16 dB	13 dB					
Power ratio between analog and modulated	10 dB	7 dB	17 dB	11 dB	China/ Hungary	Poland				
digital sound carrier					12 dB	7 dB				

Table 5–2: Summary of NICAM 728 sound coding characteristics

Characteristics	Values
Audio sampling frequency	32 kHz
Number of channels	2
Initial resolution	14 bit/sample
Companding characteristics	near instantaneous, with compression to 10 bits/sample in 32-samples (1 ms) blocks
Coding for compressed samples	2's complement
Preemphasis	CCITT Recommendation J.17 (6.5 dB attenuation at 800 Hz)
Audio overload level	+12 dBm measured at the unity gain frequency of the preemphasis network (2 kHz)

5.2. A2-Systems

Table 5–3: Key parameters for A2 Systems of Standards B/G, D/K, and M

Characteristics	Sc	ound Carrier	FM1	Sc	ound Carrier	FM2		
TV-Sound Standard	B/G	D/K	М	B/G	D/K	М		
Carrier frequency in MHz	5.5	6.5	4.5	5.7421875	6.2578125 6.7421875 5.7421875	4.724212		
Vision/sound power difference		13 dB		20 dB				
Sound bandwidth			40 Hz to	15 kHz				
Preemphasis	50 μs 75 μs			50	μs	75 μs		
Frequency deviation (nom/max)	±27/±50 kHz ±17/±25 kHz			±27/±	±15/±25 kHz			
Transmission Modes								
Mono transmission		mono			mono			
Stereo transmission	(L+	R)/2	(L+R)/2	R		(L-R)/2		
Dual sound transmission		language A		language B				
Identification of Transmission Mode								
Pilot carrier frequency				54.68	75 kHz	55.0699 kHz		
Max. deviation portion	±2.5 kHz							
Type of modulation / modulation depth				AM / 50%				
Modulation frequency				stereo: 11	nmodulated 17.5 Hz 74.1 Hz	149.9 Hz 276.0 Hz		

5.3. BTSC-Sound System

Table 5-4: Key parameters for BTSC-Sound Systems

	Aural		втѕо	C-MPX-Compo	onents	
	Carrier	(L+R)	Pilot	(L–R)	SAP	Prof. Ch.
Carrier frequency (f _{hNTSC} = 15.734 kHz) (f _{hPAL} = 15.625 kHz)	4.5 MHz	Baseband	f _h	2 f _h	5 f _h	6.5 f _h
Sound bandwidth in kHz		0.05 - 15		0.05 - 15	0.05 - 12	0.05 - 3.4
Preemphasis		75 μs		DBX	DBX	150 μs
Max. deviation to Aural Carrier	73 kHz (total)	25 kHz ¹⁾	5 kHz	50 kHz ¹⁾	15 kHz	3 kHz
Max. Freq. Deviation of Subcarrier Modulation Type				AM	10 kHz FM	3 kHz FM
1) Sum does not exceed 50 kHz due to interleaving effects						

5.4. Japanese FM Stereo System (EIA-J)

Table 5–5: Key parameters for Japanese FM-Stereo Sound System EIA-J

	Aural		EIA-J-MPX-Component	s
	Carrier FM	(L+R)	(L-R)	Identification
Carrier frequency (f _h = 15.734 kHz)	4.5 MHz	Baseband	2 f _h	3.5 f _h
Sound bandwidth		0.05 - 15 kHz	0.05 - 15 kHz	_
Preemphasis		75 μs	75 μs	none
Max. deviation portion to Aural Carrier	47 kHz	25 kHz	20 kHz	2 kHz
Max. Freq. Deviation of Subcarrier Modulation Type			10 kHz FM	60% AM
Transmitter-sided delay		20 μs	0 μs	0 μs
Mono transmission	1	L+R	-	unmodulated
Stereo transmission	1	L+R	L-R	982.5 Hz
Bilingual transmission		Language A	Language B	922.5 Hz

5.5. FM Satellite Sound

Table 5–6: Key parameters for FM Satellite Sound

Carrier Frequency	Maximum FM Deviation	Sound Mode	Bandwidth	Deemphasis
6.5 MHz	85 kHz	Mono	15 kHz	50 μs
7.02/7.20 MHz	50 kHz	Mono/Stereo/Bilingual	15 kHz	adaptive
7.38/7.56 MHz	50 kHz	Mono/Stereo/Bilingual	15 kHz	adaptive
7.74/7.92 MHz	50 kHz	Mono/Stereo/Bilingual	15 kHz	adaptive

5.6. FM-Stereo Radio

Table 5-7: Key parameters for FM-Stereo Radio Systems

	Aural Carrier		FM-Radio	-MPX-Components	
	Carrier	(L+R)	Pilot	(L–R)	RDS/ARI
Carrier frequency (f _p = 19 kHz)	10.7 MHz	Baseband	f _p	2 f _p	3 f _h
Sound bandwidth in kHz		0.05 - 15		0.05 - 15	
Preemphasis: – USA – Europe		75 μs 50 μs		75 μs 50 μs	
Max. deviation to Aural Carrier	75 kHz (100%)	90% ¹⁾	10%	90%1)	5%

6. Appendix B: Manual/Compatibility Mode

To adapt the modes of the STANDARD SELECT register to individual requirements and for reasons of **compatibility to the MSP 34x0D**, the MSP 34x2G offers an Manual/Compatibility Mode, which provides sophisticated programming of the MSP 34x2G.

Using the STANDARD SELECT register generally provides a more economic way to program the MSP 34x2G and will result in optimal behavior. **Therefore, it is not recommended to use the Manual/Compatibility mode.** In those cases, where the MSP 34x0D is to be substituted by the MSP 34x2G, the tips given in section 6.9. have to be obeyed by the controller software.

6.1. Demodulator Write and Read Registers for Manual/Compatibility Mode

Table 6–1: Demodulator Write Registers; Subaddress: 10_{hex} ; these registers are not readable!

Demodulator Write Registers	Address (hex)	MSP- Version	Description	Reset Mode	Page
AUTO_FM/AM	00 21	3411, 3451 ¹⁾	MODUS[0]=1 (Automatic Sound Select): Switching Level threshold of Automatic Switching between NICAM and FM/AM in case of bad NICAM reception	00 00	87
			2. MODUS[0]=0 (Manual Mode): Activation and configuration of Automatic Switching between NICAM and FM/AM in case of bad NICAM reception		
A2_Threshold	00 22	all	A2 Stereo Identification Threshold	00 19 _{hex}	89
CM_Threshold	00 24	all	Carrier-Mute Threshold	00 2A _{hex}	89
AD_CV	00 BB	all	SIF-input selection, configuration of AGC, and Carrier-Mute Function	00 00	90
MODE_REG	00 83	3411, 3451 ¹⁾	Controlling of MSP-Demodulator and Interface options. As soon as this register is applied, the MSP 34x2G works in the MSP 34x0D Compatibility Mode.	00 00	91
			Warning: In this mode, BTSC, EIA-J, and FM-Radio are disabled. Only MSP 34x0D features are available; the use of MODUS and STATUS register is not allowed.		
			The MSP 34x2G is reset to the normal mode by first programming the MODUS register followed by transmitting a valid standard code to the STANDARD SELECTION register.		
FIR1 FIR2	00 01 00 05		FIR1-filter coefficients channel 1 (6 · 8 bit) FIR2-filter coefficients channel 2 (6 · 8 bit), + 3 · 8 bit offset (total 72 bit)	00 00	93
DCO1_LO DCO1_HI	00 93 00 9B		Increment channel 1 Low Part Increment channel 1 High Part	00 00	93
DCO2_LO DCO2_HI	00 A3 00 AB		Increment channel 2 Low Part Increment channel 2 High Part		
PLL_CAPS	00 1F		Not of interest for the customer Switchable PLL capacitors to tune open-loop frequency	00 56	96

¹⁾ not in BTSC, EIA-J, and FM-Radio mode

Note: All registers except AUTO_FM/AM, A2_Threshold and CM-Threshold are initialised during STANDARD SELECTION and are automatically updated when Automatic Sound Select (MODUS[0]=1) is on.

Table 6–2: Demodulator Read Registers; Subaddress: 11_{hex}; these registers are not writable!

Demodulator Read Registers	Address (hex)	MSP- Version	Description	Page
C_AD_BITS	00 23	3411,	NICAM-Sync bit, NICAM-C-Bits, and three LSBs of additional data bits	95
ADD_BITS	00 38	3451	NICAM: bit [10:3] of additional data bits	95
CIB_BITS	00 3E		NICAM: CIB1 and CIB2 control bits	95
ERROR_RATE	00 57		NICAM error rate, updated with 182 ms	96
PLL_CAPS	02 1F		Not for customer use	96
AGC_GAIN	02 1E		Not for customer use	96

6.2. DSP Write and Read Registers for Manual/Compatibility Mode

Table 6–3: DSP-Write Registers; Subaddress: 12_{hex}, all registers are readable as well

Write Register	Address (hex)	Bits	Operational Modes and Adjustable Range	Reset Mode	Page
Volume SCART1 channel: Ctrl. mode	00 07	[70]	[Linear mode / logarithmic mode]	00 _{hex}	97
FM Fixed Deemphasis	00 0F	[158]	[50 μs, 75 μs, OFF]	50 μs	97
FM Adaptive Deemphasis		[70]	[OFF, WP1]	OFF	97
Identification Mode	00 15	[70]	[B/G, M]	B/G	98
FM DC Notch	00 17	[70]	[ON, OFF]	ON	98
Volume SCART2 channel: Ctrl. mode	00 40	[70]	[Linear mode / logarithmic mode]	00 _{hex}	97

Table 6-4: DSP Read Registers; Subaddress: 13_{hex}, all registers are not writable

Additional Read Registers	Address (hex)	Bits	Output Range		Page
Stereo detection register for A2 Stereo Systems	00 18	[158]	[80 _{hex} 7F _{hex}]	8 bit two's complement	98
DC level readout FM1/Ch2-L	00 1B	[150]	[8000 _{hex} 7FFF _{hex}]	16 bit two's complement	98
DC level readout FM2/Ch1-R	00 1C	[150]	[8000 _{hex} 7FFF _{hex}]	16 bit two's complement	98

6.3. Manual/Compatibility Mode: Description of Demodulator Write Registers

6.3.1. Automatic Switching between NICAM and Analog Sound

In case of bad NICAM reception or loss of the NICAM-carrier, the MSP 34x2G offers an Automatic Switching (fall back) to the analog sound (FM/AM-Mono), without the necessity of the controller reading and evaluating any parameters. If a proper NICAM signal returns, switching back to this source is performed automatically as well. The feature evaluates the NICAM ERROR_RATE and switches, if necessary, all output channels which are assigned to the NICAM source, to the analog source, and vice versa.

An appropriate hysteresis algorithm avoids oscillating effects (see Fig. 6–1). STATUS[9] and C_AD_BITS[11] (Addr: 0023 hex) provide information about the actual NICAM-FM/AM-status.

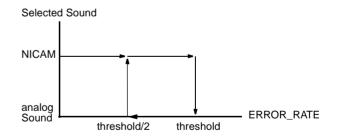


Fig. 6–1: Hysteresis for Automatic Switching

6.3.1.1. Function in Automatic Sound Select Mode

The Automatic Sound Select feature (MODUS[0]=1) includes the procedure mentioned above. By default, the internal ERROR_RATE threshold is set to 700_{dec} . i.e. :

- NICAM → analog Sound if ERROR_RATE > 700
- analog Sound → NICAM if ERROR_RATE < 700/2

The ERROR_RATE value of 700 corresponds to a BER of approximately 5.46*10⁻³/s.

Individual configuration of the threshold can be done using Table 6–5, whereby the bits 0 and 11 of AUTO_FM are ignored. It is recommended to use the internal setting used by the standard selection.

The optimum NICAM sound can be assigned to the MSP output channels by selecting one of the "Stereo or A/B", "Stereo or A", or "Stereo or B" source channels.

6.3.1.2. Function in Manual Mode

If the manual mode (MODUS[0]=0) is required, the activation and configuration of the Automatic Switching feature has to be done as described in Table 6–5. Note, that the channel matrix of the corresponding output channels must be set according to the NICAM mode and need not to be changed in the FM/ AM-fallback case.

Example:

Required threshold = 500: bits [10:1]=00 1111 1010

Table 6–5: Coding of Automatic NICAM/Analog Sound Switching;

Reset Status: Mode 0;

Automatic Sound Select is on (MODUS[0] = 1)

Mode	Description	AUTO_FM [11:0] Addr. = 00 21 _{hex}	ERROR_RATE- Threshold/dec	Source Select: Input at NICAM Path ¹⁾
1	Automatic Switching with internal threshold (Default, if Automatic Sound Select is on)	bit[11] = ignored bit[10:1] = 0 bit[0] = ignored	700	NICAM or FM/AM, depending on ERROR_RATE
2	Automatic Switching with external threshold (Customizing of Automatic Sound Select)	bit[11] = ignored bit[10:1] = 251000 = threshold/2 bit[0] = ignored	set by customer; recommended range: 502000	

¹⁾ The NICAM path may be assigned to "Stereo or A/B", "Stereo or A", or "Stereo or B" source channels (see Table 2–2 on page 13).

Table 6-6: Coding of Automatic NICAM/Analog Sound Switching;

Reset Status: Mode 0;

Automatic Sound Select is off (MODUS[0] = 0)

Mode	Description	AUTO_FM [11:0] Addr. = 00 21 _{hex}	ERROR_RATE- Threshold/dec	Source Select: Input at NICAM Path
0	Forced NICAM (Automatic Switching disabled)	bit[11] = 0 bit[10:1] = 0 bit[0] = 0	none	always NICAM; Mute in case of no NICAM available
1	Automatic Switching with internal threshold (Default, if Automatic Sound Select is on)	bit[11] = 0 bit[10:1] = 0 bit[0] = 1	700	NICAM or FM/AM, depending on ERROR_RATE
2	Automatic Switching with external threshold (Customizing of Automatic Sound Select)	bit[11] = 0 bit[10:1] = 251000 = threshold/2 bit[0] = 1	set by customer; recommended range: 502000	
3	Forced Analog Mono (Automatic Switching disabled)	bit[11] = 1 bit[10:1] = 0 bit[0] = 1	none	always FM/AM

6.3.2. A2 Threshold

The threshold between Stereo/Bilingual and Mono Identification for the A2 Standard has been made programmable according to the user's preferences. An internal hysteresis ensures robustness and stability.

Table 6–7: Write Register on I²C Subaddress 10_{hex}: A2 Threshold

Register Address	Function		Name			
THRESHOLDS						
00 22 _{hex} (write)	A2 THRESHOLD	A2 THRESHOLD Register				
	Defines threshold detection	Defines threshold of all A2 and EIA_J standards for Stereo and Bilingual detection				
	bit[15:12]	must be set to 0				
	bit[11:0] 7F0 _{hex}	force Mono Identification				
	 190 _{hex}	default setting after reset				
	0A0 _{hex}	minimum Threshold for stable detection				
	recommended ran	ge : 0A0 _{hex} 3C0 _{hex}				

6.3.3. Carrier-Mute Threshold

The Carrier-Mute threshold has been made programmable according to the user's preferences. An internal hysteresis ensures stable behavior.

Table 6–8: Write Register on I²C Subaddress 10_{hex}: Carrier-Mute Threshold

Register Address	Function	I		Name	
THRESHOLDS					
00 24 _{hex} (write)	Carrier-N	Carrier-Mute THRESHOLD Register			
	Defines tl	Defines threshold for the carrier mute feature			
	bit[15:12]		must be set to 0		
	bit[11:0]	000 _{hex}	Carrier-Mute always ON (both channels muted)		
		 02A _{hex} 	default setting after reset		
		7FF _{hex}	Carrier-Mute always OFF (both channels forced on)		
	recomme	nded rang	e : 14 _{hex} 50 _{hex}		

6.3.4. Register AD_CV

The use of this register is no longer recommended. Use it only in cases where compatibility to the MSP 34x0D is required. Using the STANDARD SELECTION register together with the MODUS register provides a more economic way to program the MSP 34x2G.

Table 6-9: AD_CV Register; reset status: all bits are "0"

	AD_CV (00 BB _{hex})	Automatic setting by STANDARD SELECT Register		
Bit	Function	Settings	2-8, 0A-60 _{hex}	9
[0]	not used	must be set to 0	0	0
[1–6]	Reference level in case of Automatic Gain Control = on (see Table 6–10). Constant gain factor when Automatic Gain Control = off (see Table 6–11).		101000	100011
[7]	Determination of Automatic Gain or Constant Gain	0 = constant gain 1 = automatic gain	1	1
[8]	Selection of Sound IF source (identical to MODUS[8])	0 = ANA_IN1+ 1 = ANA_IN2+	Х	Х
[9]	MSP-Carrier-Mute Feature	0 = off: no mute 1 = on: mute as de- scribed in section 2.2.2.	1	1
[10–15]	not used	must be set to 0	0	0
X : not affe	ected while choosing the TV sound standard by m	eans of the STANDARD SEL	ECT Register	1

Table 6-10: Reference Values for Active AGC (AD_CV[7] = 1)

Application	Input Signal Contains	AD_CV [6:1] Ref. Value	AD_CV [6:1] in integer	Range of Input Signal at pin ANA_IN1+ and ANA_IN2+	
Terrestrial TV					
 FM Standards 	1 or 2 FM Carriers	101000	40	$0.10 - 3 V_{pp}^{1)}$	
- NICAM/FM	1 FM and 1 NICAM Carrier	101000	40	$0.10 - 3 V_{pp}^{1)}$	
- NICAM/AM	1 AM and 1 NICAM Carrier	100011	35	$0.10 - 1.4 V_{pp}$ (recommended: $0.10 - 0.8 V_{pp}$)	
- NICAM only	1 NICAM Carrier only	010100	20	0.05 – 1.0 V _{pp}	
SAT	1 or more FM Carriers	100011	35	0.10 – 3 V _{pp} ¹⁾	
ADR	FM and ADR carriers	see DRP 3510A data sheet			

For signals above 1.4 V_{pp}, the minimum gain of 3 dB is switched, and overflow of the A/D converter may result. Due to the robustness of the internal processing, the IC works up to and even more than 3 V_{pp}, if norm conditions of FM/NICAM or FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N ratio of about 10 dB may appear.

Table 6–11: AD_CV parameters for Constant Input Gain (AD_CV[7]=0)

Step	AD_CV [6:1] Constant Gain	Gain	Input Level at pin ANA_IN1+ and ANA_IN2+
0	000000	3.00 dB	maximum input level: 3 V _{pp} (FM) or 1 V _{pp} (NICAM) ¹⁾
1	000001	3.85 dB	
2 3	000010	4.70 dB	
3	000011	5.55 dB	
4	000100	6.40 dB	
5 6 7	000101	7.25 dB	
6	000110	8.10 dB	
	000111	8.95 dB	
8	001000	9.80 dB	
9	001001	10.65 dB	
10	001010	11.50 dB	
11	001011	12.35 dB	
12	001100	13.20 dB	
13	001101	14.05 dB	
14	001110	14.90 dB	
15	001111	15.75 dB	
16	010000	16.60 dB	
17	010001	17.45 dB	
18	010010	18.30 dB	
19	010011	19.15 dB	
20	010100	20.00 dB	maximum input level: 0.14 V _{pp}

For signals above 1.4 V_{pp}, the minimum gain of 3 dB is switched and overflow of the A/D converter may result. Due to the robustness of the internal processing, the IC works up to and even more than 3 V_{pp}, if norm conditions of FM/NICAM or FM1/FM2 ratio are supposed. In this overflow case, a loss of FM-S/N ratio of about 10 dB may appear.

6.3.5. Register MODE REG

Note: The use of this register is no longer recommended. It should be used only in cases where software compatibility to the MSP 34x0D is required. Using the STANDARD SELECTION register together with the MODUS register provides a more economic way to program the MSP 34x2G.

As soon as this register is applied, the MSP 34x2G works in the MSP 34x0D Compatibility Mode. In this mode: BTSC, EIA-J, and FM-Radio are disabled. Only MSP 34x0D features are available; the use of MODUS and STATUS register is not allowed. The MSP 34x2G is reset to the normal mode by first programming the MODUS register, followed by transmitting a valid standard code to the STANDARD SELECTION register.

The register 'MODE_REG' contains the control bits determining the operation mode of the MSP 34x2G in the MSP 34x0D Compatibility Mode; Table 6–12 explains all bit positions.

Table 6-12: Control word 'MODE_REG'; reset status: all bits are "0"

		Automa STAND	tic setting by	y Register		
Bit	Function	Comment	Definition	2 - 5	8, A, B	9
[0]	not used		0 : must be used	0	0	0
[1]	DCTR_TRI	Digital control out 0/1 tri-state	0 : active 1 : tri-state	Х	Х	Х
[2]	I2S_TRI	I ² S outputs tri-state (I2S_CL, I2S_WS, I2S_DA_OUT)	0 : active 1 : tri-state	Х	Х	Х
[3]	I ² S Mode ¹⁾	Master/Slave mode of the I ² S bus	0 : Master 1 : Slave	Х	Х	Х
[4]	I2S_WS Mode	WS due to the Sony or Philips-Format	0 : Sony 1 : Philips	Х	Х	Х
[5]	Audio_CL_OUT	Switch Audio_Clock_Output to tri-state	0 : on 1 : tri-state	Х	Х	Х
[6]	NICAM ¹⁾	Mode of MSP-Ch1	0 : FM 1 : Nicam	0	1	1
[7]	not used		0 : must be used	0	0	0
[8]	FM AM	Mode of MSP-Ch2	0 : FM 1 : AM	0	0	1
[9]	HDEV	High Deviation Mode (channel matrix must be sound A)	0 : normal 1 : high deviation mode	0	0	0
[11:10]	not used		0 : must be used	0	0	0
[12]	MSP-Ch1 Gain	see also Table 6–14	0 : Gain = 6 dB 1 : Gain = 0 dB	0	0	0
[13]	FIR1-Filter Coeff. Set	see also Table 6–14	0 : use FIR1 1 : use FIR2	1	0	0
[14]	ADR	Mode of MSP-Ch1/ ADR-Interface	0 : normal mode/tri-state 1 : ADR-mode/active	0	0	0
[15]	AM-Gain	Gain for AM Demodulation	0:0 dB (default. of MSPB) 1:12 dB (recommended)	1	1	1
					ffected by ogramming	•

Table 6–13: Loading sequence for FIR-coefficients

FIR1	00 01 _{hex} (MSP-Ch1: N	ICAM/FI	W2)			
No.	Symbol Name	Bits	Value			
1	NICAM/FM2_Coeff. (5)	8				
2	NICAM/FM2_Coeff. (4)	8				
3	NICAM/FM2_Coeff. (3)	8	see Table 6–14			
4	NICAM/FM2_Coeff. (2)	8	see lable 0-14			
5	NICAM/FM2_Coeff. (1)	8				
6	NICAM/FM2_Coeff. (0)	8				
FIR2 00 05 _{hex} (MSP-Ch2: FM1/AM)						
No.	Symbol Name	Bits	Value			
1	IMREG1	8	04 _{hex}			
2	IMREG1/IMREG2	8	40 _{hex}			
3	IMREG2	8	00 _{hex}			
4	FM/AM_Coef (5)	8				
5	FM/AM_Coef (4)	8				
6	FM/AM_Coef (3)	8	see Table 6–14			
7	FM/AM_Coef (2)	8	See Table 0-14			
8	FM/AM_Coef (1)	8				
9	FM/AM_Coef (0)	8				

6.3.6. FIR-Parameter, Registers FIR1 and FIR2

Note: The use of this register is no longer recommended. It should be used only in cases where software compatibility to the MSP 34x0D is required. Using the STANDARD SELECTION register together with the MODUS register provides a more economic way to program the MSP 34x2G.

Data-shaping and/or FM/AM bandwidth limitation is performed by a pair of linear phase Finite Impulse Response filters (FIR-filter). The filter coefficients are programmable and are either configured automatically by the STANDARD SELECT register or written manually by the control processor via the control bus. Two not necessarily different sets of coefficients are required: one for MSP-Ch1 (NICAM or FM2) and one for MSP-Ch2 (FM1 = FM-mono). In Table 6–14 several coefficient sets are proposed.

To load the FIR-filters, the following data values are to be transferred **8 bits at a time embedded LSB-bound in a 16-bit word**.

The loading sequences must be obeyed. To change a coefficient set, the complete block FIR1 or FIR2 must be transmitted

Note: For compatibility with MSP 3410B, IMREG1 and IMREG2 have to be transmitted. The value for IMREG1 and IMREG2 is 004. Due to the partitioning to 8-bit units, the values 04_{hex} , 40_{hex} , and 00_{hex} arise.

6.3.7. DCO-Registers

Note: The use of this register is no longer recommended. It should be used only in cases where software-compatibility to the MSP 34x0D is required. Using the STANDARD SELECTION register together with the MODUS register provides a more economic way to program the MSP 34x2G.

When selecting a TV-sound standard by means of the STANDARD SELECT register, all frequency tuning is performed automatically.

If manual setting of the tuning frequency is required, a set of 24-bit registers determining the mixing frequencies of the quadrature mixers can be written manually into the IC. In Table 6–15, some examples of DCO registers are listed. It is necessary to divide them up into low part and high part. The formula for the calculation of the registers for any chosen IF frequency is as follows:

 $INCR_{dec} = int(f/fs \cdot 2^{24})$

with: int = integer function

f = IF frequency in MHz

 f_S = sampling frequency (18.432 MHz)

Conversion of INCR into hex-format and separation of the 12-bit low and high parts lead to the required register values (DCO1_HI or _LO for MSP-Ch1, DCO2_HI or LO for MSP-Ch2).

Table 6-14: 8-bit FIR-coefficients (decimal integer); reset status: all coefficients are "0"

Coefficient	Coefficients for FIR1 00 01 _{hex} and FIR2 00 05 _{hex}													
	Terrestrial TV Standards								FM - Satellite FIR filter corresponds to a band-pass with a band-width of B = 130 to 500 kHz fc frequency					
		, D/K- M-FM	NICA	- M-FM	L NICA	 M-AM	B/G-, D/K-, M-Dual FM	130 kHz	180 kHz	200 kHz	280 kHz	380 kHz	500 kHz	Auto- search
Coef(i)	FIR1	FIR2	FIR1	FIR2	FIR1	FIR2	FIR2	FIR2	FIR2	FIR2	FIR2	FIR2	FIR2	FIR2
0	-2	3	2	3	-2	-4	3	73	9	3	-8	-1	-1	-1
1	-8	18	4	18	-8	-12	18	53	18	18	-8	-9	-1	-1
2	-10	27	-6	27	-10	-9	27	64	28	27	4	-16	-8	-8
3	10	48	-4	48	10	23	48	119	47	48	36	5	2	2
4	50	66	40	66	50	79	66	101	55	66	78	65	59	59
5	86	72	94	72	86	126	72	127	64	72	107	123	126	126
Mode- REG[12]	(0	()	()	0	1	1	1	1	1	1	0
Mode- REG[13]	(0	()	()	1	1	1	1	1	1	1	0
For compatib	ility, exc	ept for th	e FIR2-	AM and t	he Autos	search-se	ets, the FIR-filter	program	ming as	used for	the MSI	3410B	is also p	ossible.

ADR coefficients are listed in the DRP data sheet.

Table 6–15: DCO registers for the MSP 34x2G; reset status: DCO_HI/LO = "0000"

	DCO1_LO 00 93 _{hex} , DCO1_HI 00 9B _{hex} ; DCO2_LO 00 A3 _{hex} , DCO2_HI 00 AB _{hex}							
Freq. MHz	DCO_HI/hex	DCO_LO/hex	Freq. MHz	DCO_HI/hex	DCO_LO/hex			
4.5	03E8	000						
5.04 5.5 5.58 5.7421875	0460 04C6 04D8 04FC	0000 038E 0000 00AA	5.76 5.85 5.94	0500 0514 0528	0000 0000 0000			
6.0 6.2 6.5 6.552	0535 0561 05A4 05B0	0555 0C71 071C 0000	6.6 6.65 6.8	05BA 05C5 05E7	0AAA 0C71 01C7			
7.02	0618	0000	7.2	0640	0000			
7.38	0668	0000	7.56	0690	0000			

6.4. Manual/Compatibility Mode: Description of Demodulator Read Registers

Note: The use of these register is no longer recommended. It should be used only in cases where software compatibility to the MSP 34x0D is required. Using the STANDARD SELECTION register together with the STATUS register provides a more economic way to program the MSP 34x2G and to retrieve information from the IC.

All registers except C_AD_BITs are 8 bits wide. They can be read out of the RAM of the MSP 34x2G if the MSP 34x0D Compatibility Mode is required.

All transmissions take place in 16-bit words. The valid 8-bit data are the 8 LSBs of the received data word.

If the Automatic Sound Select feature is not used, the NICAM or FM-identification parameters must be read and evaluated by the controller in order to enable appropriate switching of the channel select matrix of the baseband processing part. The FM-identification registers are described in section 6.6.1. To handle the NICAM-sound and to observe the NICAM-quality, at least the registers C_AD_BITS and ERROR_RATE must be read and evaluated by the controller. Additional data bits and CIB bits, if supplied by the NICAM transmitter, can be obtained by reading the registers ADD_BITS and CIB_BITS.

6.4.1. NICAM Mode Control/Additional Data Bits Register

NICAM operation mode control bits and A[2:0] of the additional data bits.

Format:

MSE	3	C_AD_BITS 00 23 _{hex} L							
11		7	6	5	4	3	2	1	0
Auto _FM		A[2]	A[1]	A[0]	C4	C3	C2	C1	S

Important: "S" = Bit[0] indicates correct NICAM-synchronization (S = 1). If S = 0, the MSP 3411/3451G has not yet synchronized correctly to frame and sequence, or has lost synchronization. The remaining read registers are therefore not valid. The MSP mutes the NICAM output automatically and tries to synchronize again as long as MODE REG[6] is set.

The operation mode is coded by C4-C1 as shown in Table 6–16.

Table 6–16: NICAM operation modes as defined by the EBU NICAM 728 specification

C4	C3	C2	C1	Operation Mode
0	0	0	0	Stereo sound (NICAMA/B), independent mono sound (FM1)
0	0	0	1	Two independent mono signals (NICAMA, FM1)
0	0	1	0	Three independent mono channels (NICAMA, NICAMB, FM1)
0	0	1	1	Data transmission only; no audio
1	0	0	0	Stereo sound (NICAMA/B), FM1 carries same channel
1	0	0	1	One mono signal (NICAMA). FM1 carries same channel as NICAMA
1	0	1	0	Two independent mono channels (NICAMA, NICAMB). FM1 carries same channel as NICAMA
1	0	1	1	Data transmission only; no audio
х	1	х	х	Unimplemented sound coding option (not yet defined by EBU NICAM 728 specification)

AUTO_FM: monitor bit for the AUTO_FM Status:

0: NICAM source is NICAM

1: NICAM source is FM

Note: It is no longer necessary to read out and evaluate the C_AD_BITS. All evaluation is performed in the MSP and indicated in the STATUS register.

6.4.2. Additional Data Bits Register

Contains the remaining 8 of the 11 additional data bits. The additional data bits are not yet defined by the NICAM 728 system.

Format:

MSB		ADD_BITS 00 38 _{hex} LSB							
7	6	5	5 4 3 2 1						
A[10]	A[9]	A[8]	A[7]	A[6]	A[5]	A[4]	A[3]		

6.4.3. CIB Bits Register

CIB bits 1 and 2 (see NICAM 728 specifications).

Format:

. 	••								
MSB		CIB_BITS 00 3E _{hex} LSB							
7	6	5	4	3	2	1	0		
х	х	х	х	х	х	CIB1	CIB2		

6.4.4. NICAM Error Rate Register

ERROR_RATE	00 57 _{hex}
Error free	0000 _{hex}
maximum error rate	07FF _{hex}

Average error rate of the NICAM reception in a time interval of 182 ms, which should be close to 0. The initial and maximum value of ERROR_RATE is 2047. This value is also active if the NICAM bit of MODE_REG is not set. Since the value is achieved by filtering, a certain transition time (approx. 0.5 sec) is unavoidable. Acceptable audio may have error rates up to a value of 700 int. Individual evaluation of this value by the controller and an appropriate threshold may define the fallback mode from NICAM to FM/AM-Mono in case of poor NICAM reception.

The bit error rate per second (BER) can be calculated by means of the following formula:

BER = ERROR RATE * $12.3*10^{-6}$ /s

6.4.5. PLL_CAPS Readback Register

It is possible to read out the actual setting of the PLL_CAPS. In standard applications, this register is not of interest for the customer.

PLL_CAPS	02 1F _{hex} L	
minimum frequency	1111 1111	FF _{hex}
nominal frequency	0101 0110 RESET	56 _{hex}
maximum frequency	0000 0000	00 _{hex}
PLL_CAPS	02 1F _{hex} H	
PLL open	xxxx xxx0	
PLL closed	xxxx xxx1	

6.4.6. AGC_GAIN Readback Register

It is possible to read out the actual setting of AGC_GAIN in Automatic Gain Mode. In standard applications, this register is not of interest for the customer.

AGC_GAIN	02 1E _{hex}	
max. amplification (20 dB)	0001 0100 14 _{hex}	
min. amplification (3 dB)	0000 0000 00 _{hex}	

6.4.7. Automatic Search Function for FM-Carrier Detection in Satellite Mode

The AM demodulation ability of the MSP 34x2G offers the possibility to calculate the "field strength" of the momentarily selected FM carrier, which can be read out by the controller. In SAT receivers, this feature can be used to make automatic FM carrier search possible.

For this, the MSP has to be switched to AM-mode (MODE_REG[8]), FM-Prescale must be set to 7F_{hex} = +127_{dec}, and the FM DC notch (see section 6.5.7.) must be switched off. The sound-IF frequency range must now be "scanned" in the MSP-channel 2 by means of the programmable quadrature mixer with an appropriate incremental frequency (i.e. 10 kHz). After each incrementation, a field strength value is available at the quasi-peak detector output (quasi-peak detector source must be set to FM), which must be examined for relative maxima by the controller. This results in either continuing search or switching the MSP back to FM demodulation mode.

During the search process, the FIR2 must be loaded with the coefficient set "AUTOSEARCH", which enables small bandwidth, resulting in appropriate field strength characteristics. The absolute field strength value (can be read out of "quasi-peak detector output FM1") also gives information on whether a main FM carrier or a subcarrier was detected; and as a practical consequence, the FM bandwidth (FIR1/2) and the deemphasis (50 μs or adaptive) can be switched accordingly.

Due to the fact that a constant demodulation frequency offset of a few kHz leads to a DC level in the demodulated signal, further fine tuning of the found carrier can be achieved by evaluating the "DC Level Readout FM1". Therefore, the FM DC Notch must be switched on, and the demodulator part must be switched back to FM-demodulation mode.

For a detailed description of the automatic search function, please refer to the corresponding MSP Windows software.

6.5. Manual/Compatibility Mode: Description of DSP Write Registers

6.5.1. Additional Channel Matrix Modes

Loudspeaker Matrix	00 08 _{hex}	L
Headphone Matrix	00 09 _{hex}	L
SCART1 Matrix	00 0A _{hex}	L
SCART2 Matrix	00 41 _{hex}	L
I ² S Matrix	00 0B _{hex}	L
Quasi-Peak Detector Matrix	00 0C _{hex}	L
SUM/DIFF	0100 0000	40 _{hex}
AB_XCHANGE	0101 0000	50 _{hex}
PHASE_CHANGE_B	0110 0000	60 _{hex}
PHASE_CHANGE_A	0111 0000	70 _{hex}
A_ONLY	1000 0000	80 _{hex}
B_ONLY	1001 0000	90 _{hex}

This table shows additional modes for the channel matrix registers.

The sum/difference mode can be used together with the quasi-peak detector to determine the sound material mode. If the difference signal on channel B (right) is near to zero, and the sum signal on channel A (left) is high, the incoming audio signal is mono. If there is a significant level on the difference signal, the incoming audio is stereo.

6.5.2. Volume Modes of SCART1/2 Outputs

Volume Mode SCART1	00 07 _{hex}	[3:0]
Volume Mode SCART2	00 40 _{hex} [3:0]	
linear	0000 RESET	0 _{hex}
logarithmic	0001	1 _{hex}

Linear Mode			
Volume SCART1 00 07 _{hex}		н	
Volume SCART2	00 40 _{hex}	Н	
OFF	0000 0000 RESET	00 _{hex}	
0 dB gain (digital full scale (FS) to 2 V _{RMS} output)	0100 0000	40 _{hex}	
+6 dB gain (–6 dBFS to 2 V _{RMS} output)	0111 1111	7F _{hex}	

6.5.3. FM Fixed Deemphasis

FM Deemphasis 00 0F _{hex}		Н
50 μs	0000 0000 RESET	00 _{hex}
75 μs	0000 0001	01 _{hex}
OFF	0011 1111	3F _{hex}

Note: This register is initialised during STANDARD SELECTION and is automatically updated when Automatic Sound Select (MODUS[0]=1) is on.

6.5.4. FM Adaptive Deemphasis

FM Adaptive Deemphasis WP1	00 0F _{hex}	L
OFF	0000 0000 RESET	00 _{hex}
WP1	0011 1111	3F _{hex}

Note: This register is initialised during STANDARD SELECTION and is automatically updated when Automatic Sound Select (MODUS[0]=1) is on.

6.5.5. NICAM Deemphasis

A J17 Deemphasis is always applied to the NICAM signal. It is not switchable.

6.5.6. Identification Mode for A2 Stereo Systems

Identification Mode	00 15 _{hex}	L
Standard B/G (German Stereo)	0000 0000 RESET	00 _{hex}
Standard M (Korean Stereo)	0000 0001	01 _{hex}
Reset of Ident-Filter	0011 1111	3F _{hex}

To shorten the response time of the identification algorithm after a program change between two FM-Stereo capable programs, the reset of the ident-filter can be applied.

Sequence:

- 1. Program change
- 2. Reset ident-filter
- 3. Set identification mode back to standard B/G or M
- 4. Wait approx. 500 ms
- 5. Read stereo detection register

Note: This register is initialized during STANDARD SELECTION and is automatically updated when Automatic Sound Select (MODUS[0]=1) is on.

6.5.7. FM DC Notch

The DC compensation filter (FM DC Notch) for FM input can be switched off. This is used to speed up the automatic search function (see Section 6.4.7.). In normal FM-mode, the FM DC Notch should be switched on.

FM DC Notch	00 17 _{hex} L	
ON	0000 0000 Reset	00 _{hex}
OFF	0011 1111	3F _{hex}

6.6. Manual/Compatibility Mode: Description of DSP Read Registers

All readable registers are 16-bit wide. Transmissions via I²C bus have to take place in 16-bit words. Some of the defined 16-bit words are divided into low and high byte, thus holding two different control entities.

These registers are not writable.

6.6.1. Stereo Detection Register for A2 Stereo Systems

Stereo Detection Register	00 18 _{hex} H	
Stereo Mode	Reading (two's complement)	
MONO	near zero	
STEREO	positive value (ideal reception: 7F _{hex})	
BILINGUAL	negative value (ideal reception: 80 _{hex)}	

Note: It is no longer necessary to read out and evaluate the A2 identification level. All evaluation is performed in the MSP and indicated in the STATUS register

6.6.2. DC Level Register

DC Level Readout FM1 (MSP-Ch2)	00 1B _{hex} H+L	
DC Level Readout FM2 (MSP-Ch1)	00 1C _{hex} H+L	
DC Level	[8000 _{hex} 7FFF _{hex}] values are 16 bit two's complement	

The DC level register measures the DC component of the incoming FM signals (FM1 and FM2). This can be used for seek functions in satellite receivers and for IF FM frequencies fine tuning. A too low demodulation frequency (DCO) results in a positive DC-level and vice versa. For further processing, the DC content of the demodulated FM signals is suppressed. The time constant τ , defining the transition time of the DC Level Register, is approximately 28 ms.

PRELIMINARY DATA SHEET MSP 34x2G

6.7. Demodulator Source Channels in Manual Mode

6.7.1. Terrestric Sound Standards

Table 6–17 shows the source channel assignment of the demodulated signals in case of manual mode for all terrestric sound standards. See Table 2–2 for the assignment in the Automatic Sound Select mode. In manual mode for terrestric sound standards, only two demodulator sources are defined.

6.7.2. SAT Sound Standards

Table 6–18 shows the source channel assignment of the demodulated signals for SAT sound standards.

6.8. Exclusions of Audio Baseband Features

In general, all functions can be switched independently. Two exceptions exist:

- NICAM cannot be processed simultaneously with the FM2 channel.
- 2. FM adaptive deemphasis cannot be processed simultaneously with FM-identification.

6.9. Compatibility Restrictions to MSP 34x0D

The MSP 34x2G is fully hardware compatible to the MSP 34x0D. However, to substitute a MSP 34x0D by the corresponding MSP 34x2G, the controller software has to be adapted slightly:

- 1. The register FM-Matrix (00 0E_{hex} low part) must be changed from "no matrix (00_{hex})" to "sound A mono (03_{hex})" during mono transmission of all TV-sound standards (see also Table 6–17).
- With the MSP 34x2G, the STANDARD SELECTION initializes the FM-deemphasis, which is not the case for the MSP 34x0D. So, if STANDARD SELECTION is applied, this I²C instruction can be omitted.

Table 6–17: Manual Sound Select Mode for Terrestric Sound Standards

			Source Channels of Sound Select Block		
Broadcasted Sound Standard	Selected MSP Standard Code	Broadcasted Sound Mode	FM Matrix	FM/AM (use 0 for channel select)	Stereo or A/B (use 1 for channel select)
B/G-FM	03	MONO	Sound A Mono	Mono	Mono
D/K-FM M-Korea M-Japan	04, 05 02 30	STEREO	German Stereo Korean Stereo	Stereo	Stereo
		BILINGUAL, Languages A and B	No Matrix	Left = A Right = B	Left = A Right = B
B/G-NICAM	08	NICAM not available	Sound A Mono ¹⁾	analog Mono	no sound
L-NICAM I-NICAM D/K-NICAM	09 0A 0B	or NICAM error rate too high			with AUTO_FM: analog Mono
D/K-NICAM (with high	0C	MONO	Sound A Mono ¹⁾	analog Mono	NICAM Mono
deviation FM)		STEREO	Sound A Mono ¹⁾	analog Mono	NICAM Stereo
		BILINGUAL, Languages A and B	Sound A Mono ¹⁾	analog Mono	Left = NICAM A Right = NICAM B
		MONO	Sound A Mono	Mono	Mono
	20	STEREO	Korean Stereo	Stereo	Stereo
	20	MONO + SAP	Sound A Mono	Mono	Mono
BTSC		STEREO + SAP	Korean Stereo	Stereo	Stereo
ызс		MONO	Sound A Mono	Mono	Mono
	21	STEREO	Souria A Morio	WOTO	MONO
21	21	MONO + SAP	No Matrix	Left = Mono Le	Left = Mono
		STEREO + SAP	NO Watrix	Right = SAP	Right = SAP
FM-Radio	40	MONO	Sound A Mono	Mono	Mono
rivi-Radio 40	+∪	STEREO	Korean Stereo	Stereo	Stereo

Table 6-18: Manual Sound Select Modes for SAT-Modes

				Source Channels of Sound Select Block for SAT-Modes			
Broadcasted Sound Standard	Selected MSP Standard Code	Broadcasted Sound Mode	FM Matrix	FM/AM (source select: 0)	Stereo or A/B (source select: 1)	Stereo or A (source select: 3)	Stereo or B (source select: 4)
FM SAT	6, 50 _{hex}	MONO	Sound A Mono	Mono	Mono	Mono	Mono
	51 _{hex}	STEREO	No Matrix	Stereo	Stereo	Stereo	Stereo
		BILINGUAL	No Matrix	Left = A (FM1) Right = B (FM2)	Left = A (FM1) Right = B (FM2)	A (FM1)	B (FM2)

7. Appendix D: Application Information

7.1. Phase Relationship of Analog Outputs

The analog output signals: Loudspeaker, headphone, and SCART2 all have the same phases. The user does not need to correct output phases when using these analog outputs directly. The SCART1 output has opposite phase.

Using the I²S-outputs for other DSPs or D/A converters, care must be taken to adjust for the correct phase. If the attached coprocessor is one of the MSP family, the following schematics help to determine the phase relationship.

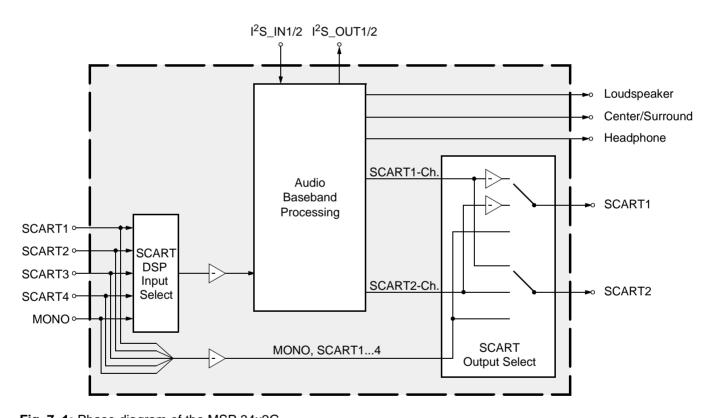
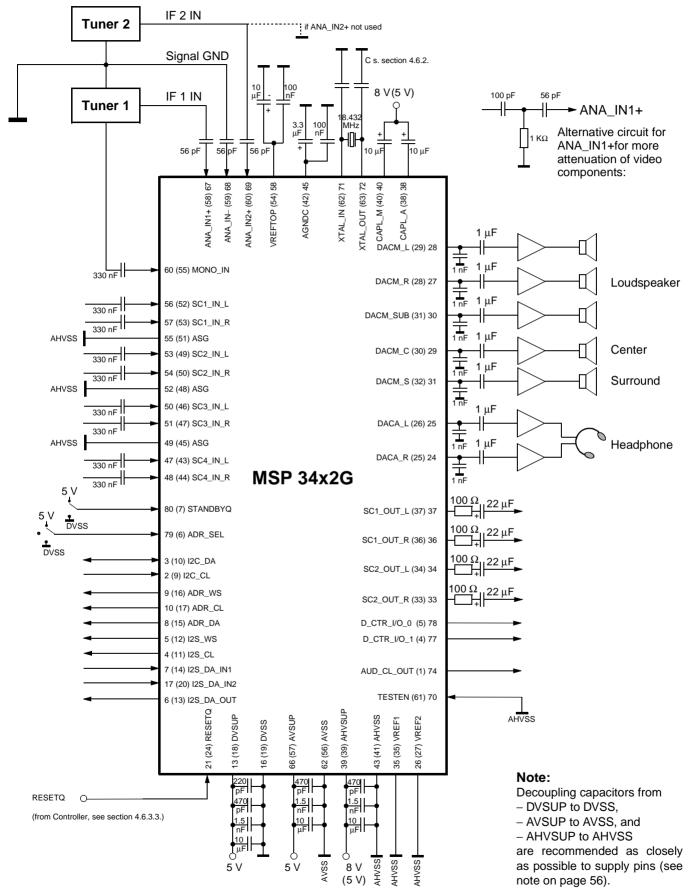



Fig. 7–1: Phase diagram of the MSP 34x2G

7.2. Application Circuit

Note: Pin numbers refer to the PQFP80 package, numbers in brackets refer to the PSDIP64 package.

8. Appendix E: MSP 34x2G Version History

MSP 3452G-A1

First release

9. Data Sheet History

1. Preliminary data sheet: "MSP 34x2G Multistandard Sound Processor Family with Dolby Surround Pro Logic", May 22, 2000, 6251-520-1PD. First release of the preliminary data sheet.

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-520-1PD All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.