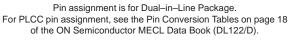

# **Hex Buffer With Enable**


The MC10188 is a high–speed hex buffer with a common Enable input. When Enable is in the high state, all outputs are in the low state. When Enable is in the low state, the outputs take the same state as the inputs.

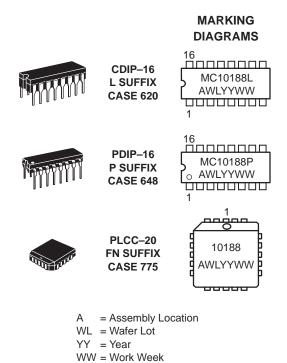
- Power Dissipation = 180 mW typ/pkg (No Load)
- Propagation Delay = 2.0 ns typ (B Q)
  2.5 ns typ (A Q)










## TRUTH TABLE

| Inputs |   | Output |
|--------|---|--------|
| Х      | Y | OUT    |
| L      | L | L      |
| L      | Н | Н      |
| Н      | L | L      |
| Н      | Н | L      |



# **ON Semiconductor**

http://onsemi.com



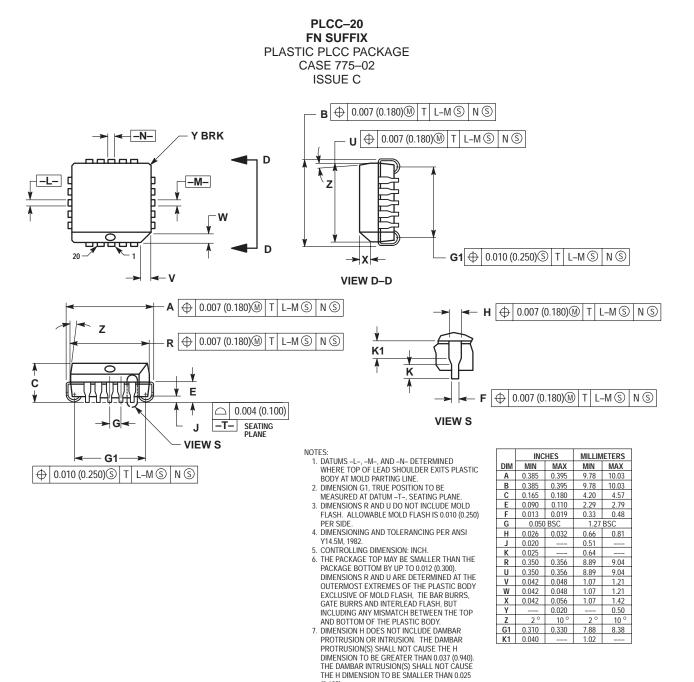
## ORDERING INFORMATION

| Device    | Package | Shipping        |  |  |
|-----------|---------|-----------------|--|--|
| MC10188L  | CDIP-16 | 25 Units / Rail |  |  |
| MC10188P  | PDIP-16 | 25 Units / Rail |  |  |
| MC10188FN | PLCC-20 | 46 Units / Rail |  |  |

## MC10188

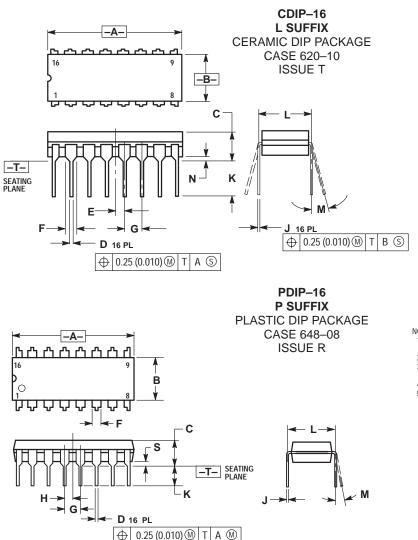
## ELECTRICAL CHARACTERISTICS

|                       |                    |                                      |              | Test Limits |            |            |            |            |            |      |
|-----------------------|--------------------|--------------------------------------|--------------|-------------|------------|------------|------------|------------|------------|------|
|                       |                    |                                      | Pin<br>Under | -30         | )°C        | +2         | 5°C        | +8         | 5°C        | 1    |
| Characteris           | Characteristic     |                                      | Test         | Min         | Max        | Min        | Max        | Min        | Max        | Unit |
| Power Supply Drain Cu | urrent             | ΙE                                   | 8            |             | 46         |            | 42         |            | 46         | mAdc |
| Input Current         |                    | l <sub>inH</sub>                     | 5            |             | 425        |            | 265        |            | 265        | μAdc |
|                       |                    | linH                                 | 9            |             | 460        |            | 290        |            | 290        | μAdc |
| Output Voltage        | Logic 1            | VOH                                  | 2            | -1.060      | -0.890     | -0.960     | -0.810     | -0.890     | -0.700     | Vdc  |
| Output Voltage        | Logic 0            | VOL                                  | 2            | -1.890      | -1.675     | -1.850     | -1.650     | -1.825     | -1.615     | Vdc  |
| Threshold Voltage     | Logic 1            | VOHA                                 | 2            | -1.080      |            | -0.980     |            | -0.910     |            | Vdc  |
| Threshold Voltage     | Logic 0            | VOLA                                 | 2            |             | -1.655     |            | -1.630     |            | -1.595     | Vdc  |
| Switching Times       | (50 $\Omega$ Load) |                                      |              |             |            |            |            |            |            | ns   |
| Propagation Delay     | Enable<br>Data     | <sup>t</sup> PHL<br><sup>t</sup> PLH | 2<br>2       | 1.1<br>1.0  | 3.9<br>3.3 | 1.1<br>1.0 | 3.5<br>2.9 | 1.1<br>1.0 | 3.9<br>3.3 |      |
| Rise/Fall Time        | (20 to 80%)        | <sup>t</sup> TLH<br><sup>t</sup> THL | 2            | 1.1         | 3.7        | 1.1        | 3.3        | 1.1        | 3.7        |      |


## ELECTRICAL CHARACTERISTICS (continued)

|                            |                    |                                      |                                           | TEST VOLTAGE VALUES (Volts) |                    |                     |                     |                 |                |
|----------------------------|--------------------|--------------------------------------|-------------------------------------------|-----------------------------|--------------------|---------------------|---------------------|-----------------|----------------|
|                            |                    | @ Test Te                            | mperature                                 | V <sub>IHmax</sub>          | V <sub>ILmin</sub> | VIHAmin             | V <sub>ILAmax</sub> | VEE             |                |
|                            |                    |                                      | –30°C                                     | -0.890                      | -1.890             | -1.205              | -1.500              | -5.2            |                |
|                            |                    |                                      | +25°C                                     | -0.810                      | -1.850             | -1.105              | -1.475              | -5.2            |                |
|                            |                    |                                      | +85°C                                     | -0.700                      | -1.825             | -1.035              | -1.440              | -5.2            |                |
| Pin                        |                    |                                      | TEST VOLTAGE APPLIED TO PINS LISTED BELOW |                             |                    |                     |                     |                 |                |
| Characteristic             |                    | Symbol                               | Under<br>Test                             | V <sub>IHmax</sub>          | V <sub>ILmin</sub> | V <sub>IHAmin</sub> | V <sub>ILAmax</sub> | V <sub>EE</sub> | (VCC)<br>Gnd   |
| Power Supply Drain Current |                    | ١E                                   | 8                                         |                             |                    |                     |                     | 8               | 1, 16          |
| Input Current              |                    | l <sub>inH</sub>                     | 5                                         | 5                           |                    |                     |                     | 8               | 1, 16          |
|                            |                    | l <sub>inH</sub>                     | 9                                         | 9                           |                    |                     |                     | 8               | 1, 16          |
| Output Voltage             | Logic 1            | VOH                                  | 2                                         | 5                           |                    |                     |                     | 8               | 1, 16          |
| Output Voltage             | Logic 0            | VOL                                  | 2                                         |                             | 9                  |                     |                     | 8               | 1, 16          |
| Threshold Voltage          | Logic 1            | VOHA                                 | 2                                         |                             |                    | 5                   |                     | 8               | 1, 16          |
| Threshold Voltage          | Logic 0            | VOLA                                 | 2                                         |                             |                    |                     | 5                   | 8               | 1, 16          |
| Switching Times            | (50 $\Omega$ Load) |                                      |                                           |                             |                    | Pulse In            | Pulse Out           | –3.2 V          | +2.0 V         |
| Propagation Delay          | Enable<br>Data     | <sup>t</sup> PHL<br><sup>t</sup> PLH | 2<br>2                                    |                             |                    | 9<br>5              | 2<br>2              | 8<br>8          | 1, 16<br>1, 16 |
| Rise/Fall Time             | (20 to 80%)        | <sup>t</sup> TLH<br><sup>t</sup> THL | 2                                         |                             |                    | 5                   | 2                   | 8               | 1, 16          |

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.


## MC10188

#### PACKAGE DIMENSIONS



(0.635).

## MC10188



#### NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEAD WHEN 3
- FORMED PARALLEL. DIMENSION F MAY NARROW TO 0.76 (0.030) 4
- WHERE THE LEAD ENTERS THE CERAMIC BODY

|     | INC       | HES   | MILLIMETERS |       |  |
|-----|-----------|-------|-------------|-------|--|
| DIM | MIN MAX   |       | MIN         | MAX   |  |
| Α   | 0.750     | 0.785 | 19.05       | 19.93 |  |
| В   | 0.240     | 0.295 | 6.10        | 7.49  |  |
| С   |           | 0.200 |             | 5.08  |  |
| D   | 0.015     | 0.020 | 0.39        | 0.50  |  |
| Е   | 0.050     | ) BSC | 1.27 BSC    |       |  |
| F   | 0.055     | 0.065 | 1.40        | 1.65  |  |
| G   | 0.100 BSC |       | 2.54 BSC    |       |  |
| Н   | 0.008     | 0.015 | 0.21        | 0.38  |  |
| К   | 0.125     | 0.170 | 3.18        | 4.31  |  |
| L   | 0.300 BSC |       | 7.62 BSC    |       |  |
| Μ   | 0 °       | 15°   | 0 °         | 15 °  |  |
| Ν   | 0.020     | 0.040 | 0.51        | 1.01  |  |

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI 1
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL.

|     | INC       | HES   | MILLIN   | IETERS |  |
|-----|-----------|-------|----------|--------|--|
| DIM | MIN MAX   |       | MIN      | MAX    |  |
| Α   | 0.740     | 0.770 | 18.80    | 19.55  |  |
| В   | 0.250     | 0.270 | 6.35     | 6.85   |  |
| С   | 0.145     | 0.175 | 3.69     | 4.44   |  |
| D   | 0.015     | 0.021 | 0.39     | 0.53   |  |
| F   | 0.040     | 0.70  | 1.02     | 1.77   |  |
| G   | 0.100     | BSC 8 | 2.54 BSC |        |  |
| Н   | 0.050 BSC |       | 1.27 BSC |        |  |
| J   | 0.008     | 0.015 | 0.21     | 0.38   |  |
| К   | 0.110     | 0.130 | 2.80     | 3.30   |  |
| L   | 0.295     | 0.305 | 7.50     | 7.74   |  |
| Μ   | 0°        | 10 °  | 0 °      | 10 °   |  |
| S   | 0.020     | 0.040 | 0.51     | 1.01   |  |

ON Semiconductor and 🖤 are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

 $\oplus$ 

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

- German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com
- Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time) French Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support 303-675-2121 (Tue-Fri 9:00am to 1:00pm. Hong Kong Time) Phone: Toll Free from Hong Kong 800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81-3-5740-2745 Email: r14525@onsemi.com

Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.