


IRFN9240SMD

MECHANICAL DATA

Dimensions in mm (inches)

P-CHANNEL POWER MOSFET

V_{DSS} -200VI_{D(cont)} **–8A** R_{DS(on)} 0.051Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 PACKAGE

Pad 1 - Source

Pad 2 - Drain

Pad 3 - Gate

IRFxxxSM also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 25°C)	-8.0A		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	-5.0A		
I_{DM}	Pulsed Drain Current ¹	–32A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	500mJ		
dv/dt	Peak Diode Recovery ³	-5.5V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
TL	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.67°C/W		
$R_{\thetaJ-PCB}$	Thermal Resistance Junction to PCB (Typical)	4°C/W		
Mataa	-			

Notes

1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) @ V_{DD} = -50V , L \geq 11.7mH , R_G = 25 Ω , Peak I_L = -8A , Starting T_J = 25°C

3) @ $I_{SD} \le -8A$, $di/dt \le -150A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150^{\circ}C$, SUGGESTED $R_G = 9.1\Omega$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Cond	itions	Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS								
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	$I_D = -1mA$	-200			V		
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.000		V/°C		
ΔT_{J}	Breakdown Voltage	$I_D = -1 \text{mA}$		-0.020		V/ C			
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = -10V$ $I_{D} = -5A$ $V_{GS} = -10V$ $I_{D} = -8A$				0.51	Ω		
	Resistance ¹					0.52			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = -250 \mu A$	-2		-4	V		
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ -15V	I _{DS} = -5A	4.0			S(\O)		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			-25	μΑ		
			T _J = 125°C			-250			
I _{GSS}	Forward Gate – Source Leakage	$V_{GS} = -20V$				-100	0		
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = 20V				100	nA		
	DYNAMIC CHARACTERISTICS		L				I		
C _{iss}	Input Capacitance	V _{GS} = 0			1200				
C _{oss}	Output Capacitance	$V_{DS} = -25V$		570		pF			
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		81					
Qg	Total Gate Charge ¹	$V_{GS} = -10V$	I _D = -8A						
		$V_{DS} = 0.5BV_{DSS}$		28		60	nC		
Q _{gs}	Gate – Source Charge ¹	I _D = -8A				15			
Q _{gd}	Gate – Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DSS}$		4.5		38	nC		
t _{d(on)}	Turn-On Delay Time					35	- ns		
t _r	Rise Time		$V_{DD} = -100V$			85			
t _{d(off)}	Turn-Off Delay Time	$I_D = -8A$ $R_G = 9.1\Omega$				85			
t _f	Fall Time					65			
	SOURCE - DRAIN DIODE CHARAC	TERISTICS	L						
I _S	Continuous Source Current					-8			
I _{SM}	Pulse Source Current ²					-32	A		
V _{SD}	Diode Forward Voltage	I _S = -8A	T _J = 25°C			4.0	V		
		$V_{GS} = 0$	-			-4.6			
t _{rr}	Reverse Recovery Time	I _F = -8A	T _J = 25°C			440	ns		
Q _{rr}	Reverse Recovery Charge	$d_i / d_t \le -100A/$	μs V _{DD} ≤-50V			7.2	μC		
t _{on}	Forward Turn-On Time			negligible					
	PACKAGE CHARACTERISTICS						1		
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8				
L _S	Internal Source Inductance (from centre			2.8		- nH			
-	,				1				

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk