

Product Description

Stanford Microdevices' SGL-0163 is a high performance cascadeable 50-ohm low noise amplifier designed for operation at voltages as low as 2.5V. The SGL-0163 can be operated at 3V for low power or 4V for medium power applications. This RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F, up to 50 GHz.

Internally matched to 50 Ohm impedance, the SGL-0163 requires only an RF choke, DC blocking and bypass capacitors for external components. This device has an internal temperature compensation circuit and can be operated directly from 3-4V supply.

Small Signal Gain vs. Frequency

SGL-0163

800-1000 MHz Low Noise Amplifier 50 Ohm, Silicon Germanium

Product Features

- Low Noise Figure
- High Input Intercept
- Internal Temp. Compensation Circuit
- Internally Matched to 50 Ω
- Unconditionally Stable
- Low Power Consumption
- Single Voltage Supply
- Small Package: SOT-363

Applications

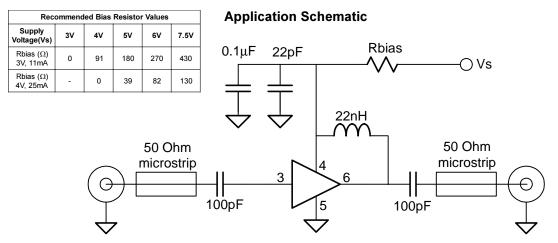
- Receivers
- Cellular, Fixed Wireless, Land Mobile

Symbol	Parameters: Test Conditions: Z _n = 50 Ohms, T = 25°C		Units	Vcc = 3V Min.	Vcc = 3V Typ.	Vcc = 3V Max.	Vcc = 4V Typ.
P _{1dB}	Output Power at 1dB Compression	f = 900 MHz	dBm		5.0		11.0
IIP ₃	Input Third Order Intercept Point Tone spacing = 1 MHz	f = 900 MHz	dBm		6.4		11.8
S ₂₁	Small Signal Gain	f = 900 MHz	dB	13.5	15.0	16.5	15.7
NF	Noise Figure, Z _s = 50 Ohms	f = 900 MHz	dB		1.1		1.5
-	Input VSWR	f = 900 MHz	-		1.8:1		1.5:1
-	Output VSWR	f = 900 MHz	-		1.7:1		1.6:1
S ₁₂	Reverse Isolation	f = 900 MHz	dB		20.6		20.7
I _D	Device Current		mA	8.0	11.0	14.0	25.0
R _{th} , j-I	Thermal Resistance (junction - lead)		°C/W		255		255

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

SGL-0163 800-1000 MHz SiGe Low Noise Amplifier

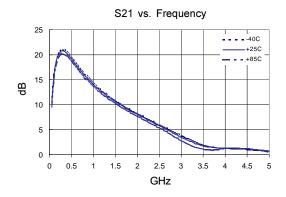

Absolute Maximum Ratings

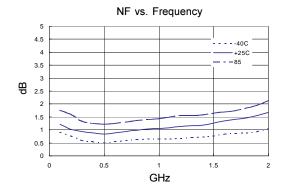
Operation of this device above any one of these parameters may cause permanent damage.

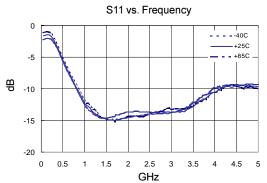
Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/R_{th}$, j-I

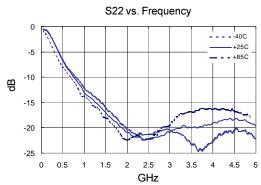
Parameter	Value	Unit
Supply Current	45	mA
Operating Temperature	-40 to +85	°C
Maximum Input Power	10	dBm
Storage Temperature Range	-40 to +150	°C
Operating Junction Temperature	+150	°C
ESD voltage (Human Body Model)	400	V

Pin #	Function	Description	Device Schematic		
1	N/C	No Connection.			
2	N/C	No Connection.			
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	Bias ckt with temp. comp.		
4	Vcc	Supply connection. This pin should be bypassed with a suitable capacitor(s).	RF In		
5	GND	Connected to ground. For best performance use via holes as close to ground leads as possible.			
6	RF OUT VCC	RF output and DC supply. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	V		


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patient rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.






Bias Voltage: 3V

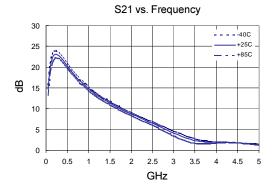
SGL-0163 800-1000 MHz SiGe Low Noise Amplifier

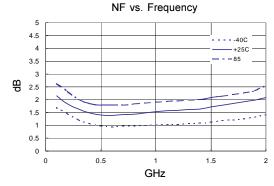
Typical S-Parameters including evaluation board @ T = 25°C

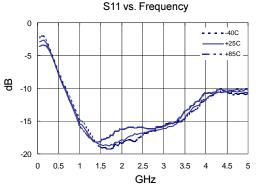
	s	11	s	21	\$12		\$22	
Freq GHz	dB	Ang	dB	Ang	dB	Ang	dB	Ang
0.05	-1.65	-10.10	10.33	-113.20	-57.01	-159.32	-0.46	167.29
0.10	-1.53	-21.04	15.73	-136.59	-43.87	151.51	-0.66	141.56
0.20	-1.56	-46.05	19.90	-179.32	-34.97	116.17	-1.57	97.58
0.40	-3.78	-94.95	20.19	113.44	-26.97	68.69	-4.98	29.78
0.60	-6.95	-133.10	17.99	68.94	-23.59	36.36	-8.16	-15.35
0.70	-8.39	-149.91	16.89	51.21	-22.57	22.87	-9.40	-33.66
0.80	-9.73	-166.33	15.86	35.23	-21.42	10.59	-10.52	-50.18
0.90	-10.98	176.74	14.92	20.19	-20.60	-1.18	-11.55	-66.62
1.00	-12.35	161.19	13.95	5.93	-19.97	-13.73	-13.08	-82.02
1.10	-12.93	145.25	13.22	-6.67	-19.28	-24.32	-13.78	-91.62
1.20	-13.69	129.17	12.49	-19.64	-18.65	-35.19	-14.45	-105.95
1.40	-14.65	94.20	11.18	-44.96	-17.49	-56.66	-16.14	-133.73
1.60	-14.89	62.41	10.05	-69.31	-16.61	-78.17	-17.81	-161.98
1.80	-14.93	32.92	8.97	-93.12	-15.73	-99.63	-19.40	169.38
2.00	-14.55	5.79	7.99	-116.42	-15.11	-120.88	-20.92	139.03
3.00	-13.78	-98.28	3.45	132.95	-13.36	136.24	-20.92	-10.75
4.00	-10.54	167.77	1.28	38.56	-11.59	45.79	-19.10	-132.43
5.00	-9.66	43.52	0.66	-68.46	-9.48	-57.19	-19.70	109.26

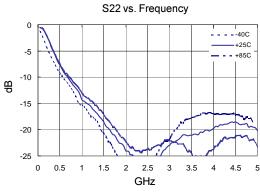
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licensess to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.


Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.






Bias Voltage: 4V

SGL-0163 800-1000 MHz SiGe Low Noise Amplifier

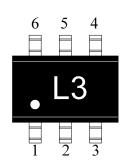
Typical S-Parameters including evaluation board @ T = 25°C

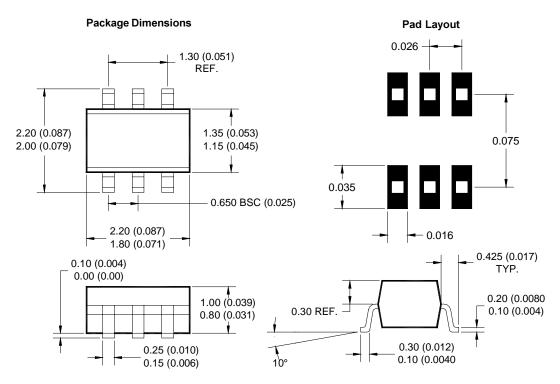
	s	11	S	21	s	12	s	22
Freq GHz	dB	Ang	dB	Ang	dB	Ang	dB	Ang
0.05	-2.92	-9.82	14.77	-117.69	-53.54	-168.24	-0.47	167.24
0.10	-2.70	-21.07	19.88	-145.20	-47.07	144.73	-0.72	141.30
0.20	-2.99	-47.78	23.03	166.72	-36.16	112.72	-2.08	97.31
0.40	-5.89	-93.30	21.61	101.88	-27.73	73.01	-5.97	35.05
0.60	-9.23	-127.00	18.96	61.46	-23.92	41.45	-9.22	-6.88
0.70	-10.80	-142.17	17.77	45.17	-22.81	28.77	-10.36	-24.66
0.80	-12.27	-157.37	16.71	30.14	-21.62	16.21	-11.55	-40.64
0.90	-13.74	-173.18	15.74	15.93	-20.65	2.77	-12.54	-57.27
1.00	-15.40	173.72	14.73	2.28	-19.80	-9.68	-14.27	-71.95
1.10	-16.01	157.95	13.98	-9.74	-19.18	-20.32	-14.92	-81.26
1.20	-16.97	140.99	13.24	-22.31	-18.40	-31.19	-15.57	-95.79
1.40	-18.21	105.07	11.96	-46.63	-17.18	-54.02	-17.56	-123.51
1.60	-18.61	69.18	10.81	-70.42	-16.19	-75.95	-19.69	-150.83
1.80	-18.63	37.53	9.70	-93.66	-15.42	-97.56	-21.78	179.48
2.00	-17.83	8.83	8.73	-116.57	-14.77	-119.57	-24.06	149.53
3.00	-16.16	-91.56	4.14	133.65	-13.07	135.52	-23.01	-11.64
4.00	-11.67	174.62	1.90	40.37	-11.41	45.11	-19.80	-138.02
5.00	-10.59	46.68	1.36	-66.52	-9.32	-59.16	-20.12	98.21

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

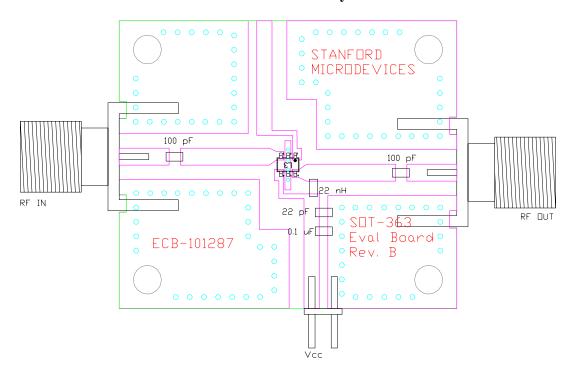
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

Phone: (800) SMI-MMIC


4


SGL-0163 800-1000 MHz SiGe Low Noise Amplifier

Pi	Pin Designation					
1	N/C					
2	N/C					
3	RF in					
4	Vcc					
5	GND					
6	6 RF out / Vcc					


Note: Pin 1 is on lower left when you can read package marking

DIMENSIONS ARE IN INCHES [MM]

Evaluation Board layout

Suggested Components

Manufacture	Part Number	Description	Value	
Rohm	MCH185A200JK	Capacitor	22 pF	
Rohm	MCH185A101JK	Capacitor	100 pF	
Rohm	MCH182FN104ZK	Capacitor	0.1 uF	
TOKO	LL1608-FH22NJ	Inductor	22 nH	