

0.3 - 10 GHz Downconverter

TGC1411-EPU

The TriQuint TGC1411-EPU is a double balanced MMIC mixer design using TriQuint's proven 0.25 um Power pHEMT process to support a variety of communication system applications including satellite.

The double balanced design consists of an integrated Gilbert cell mixer core, RF/LO baluns, differential combiner, and output driver amplifier. The TGC1411 may be operated from a single +3 V to +5 V power supply with typical current draw of 26 mA. The nominal LO power requirement is -5 dBm. The TGC1411 may also be operated as an up-converter.

The TGC1411 requires a minimum of off-chip components employing only a 100 pF off-chip bypass capacitor for the power supply line. No additional off-chip RF matching components are required. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance

- 0.25um pHEMT Technology
- 0.3-10 GHz RF/LO Frequency Range
- 0.15-2.5 GHz IF Frequency Range
- Nominal Conversion Gain of 12 dB
- Bias 3-5V @ 26 mA
- Chip Dimensions 1.8 mm x 2.6mm

Primary Applications

- Satellite Systems
- Point-to-Point Radio

Advance Product Information

Electrical Characteristics

RECOMMENDED MAXIMUM RATINGS

Symbol	Parameter	Value	Notes
V^+	Positive Supply Voltage	8 V	
\mathbf{I}^{+}	Positive Supply Current	80 mA	<u>3</u> /
P_{D}	Power Dissipation	0.64 W	
P_{IN}	Input Continuous Wave Power	14 dBm	
T_{CH}	Operating Channel Temperature	150 °C	<u>1</u> /, <u>2</u> /
T_{M}	Mounting Temperature (30 seconds)	320 °C	
T_{STG}	Storage Temperature	-65 °C to 150 °C	

- 1/ These ratings apply to each individual FET
- 2/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- 3/ Total current for the entire MMIC

DC PROBE TESTS

 $(T_A = 25 \text{ }^{\circ}\text{C} \pm 5 \text{ }^{\circ}\text{C})$

Symbol	Parameter	Minimum	Maximum	Value
V _{P Test FET}	Pinch-off Voltage	-1.5	-0.5	V
BV _{Test FET}	Breakdown Voltage gate-source	-30	-8	V
BV _{Test FET}	Breakdown Voltage gate-drain	-30	-8	V

ON-WAFER RF PROBE CHARACTERISTICS

 $(T_A = 25 \text{ }^{\circ}\text{C} \pm 5 \text{ }^{\circ}\text{C})$

Symbol	Parameter	Test Condition	Limit		Units	
		Vd=5V, LO=-5dBm	Min	Nom	Max	
G	Conversion	$F_{RF} = 1.0 \text{ GHz}$	13	16	20	dB
	Gain	$F_{LO} = 1.6 \text{ GHz}$				dB
ILO	LO Isolation	$F_{LO} = 1.6 \text{ GHz}$	-	-30	-20	dB
P1dB	Output P1dB	$F_{RF} = 1.0 \text{ GHz}$	-5	-1	-	dBm
		$F_{LO} = 1.6 \text{ GHz}$				
IDC	DC Current		-	26	35	mA

Advance Product Information

RF-Probe Performance Summary

Typical Performance

Parameter	Units	+5V Supply	+3V Supply
RF Frequency	GHz	0.3 - 10.0	0.3 - 10.0
IF Frequency	GHz	0.15 - 2.5	0.15 - 2.5
LO Frequency	GHz	0.45 - 12.5	0.45 - 12.5
LO Power	dBm	-5	-5
Conversion Gain*	dB	15	13
Output P _{1dB} *	dBm	-1	-8
SSB Noise Figure*	dB	11	11
LO Isolation	dB	-30	-30
Input Port Return Loss	dB	-12	-12
Output Port Return Loss	dB	-12	-12
LO Port Return Loss	dB	-12	-12
Supply Current	mA	26	22

^{*} *IF* = 501 *MHz*

Advance Product Information

Mechanical Characteristics

Units: millimeters (inches)

Thickness: 0.1524 (0.006) (reference only)

Chip edge to bond pad dimensions are shown to center of bond pad.

Chip size tolerance: +/-0.0508 (0.002)

 Bond Pad #1 (RF Input)
 0.125 x 0.200 (0.0049 x 0.0079)

 Bond Pad #2 (VD)
 0.125 x 0.200 (0.0049 x 0.0079)

 Bond Pad #3 (RF Output)
 0.125 x 0.200 (0.0049 x 0.0079)

 Bond Pad #4 (LO Input)
 0.125 x 0.200 (0.0049 x 0.0079)

TriQuint © SEMICONDUCTOR®

Advance Product Information

Chip Assembly and Bonding Diagram

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 &C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 **C**

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.