FEATURES
1 pC Charge Injection
± 2.7 V to $\pm 5.5 \mathrm{~V}$ Dual Supply+2.7 V to +5.5 V Single Supply
Automotive Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$100 pA (Max @ $25^{\circ} \mathrm{C}$) Leakage Currents
85 ת Typ On Resistance
Rail-to-Rail Operation
Fast Switching Times
Typical Power Consumption (<0.1 $\mu \mathrm{W}$)
TTL/CMOS Compatible Inputs
14-Lead TSSOP Package
APPLICATIONS
Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Instruments
Communication Systems
Sample-and-Hold Systems
Remote Powered Equipment
Audio and Video Signal Routing
Relay Replacement
Avionics

GENERAL DESCRIPTION

The ADG636 is a monolithic device, comprising two independently selectable CMOS SPDT (Single Pole, Double Throw) switches. When on, each switch conducts equally well in both directions.
The ADG636 operates from a dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ supply, or from a single supply of +2.7 V to +5.5 V .
This switch offers ultralow charge injection of $\pm 1.5 \mathrm{pC}$ over the entire signal range and leakage current of 10 pA typical at $25^{\circ} \mathrm{C}$. It offers on-resistance of 85Ω typ, which is matched to within 2Ω between channels. The ADG636 also has low power dissipation yet gives high switching speeds.
The ADG636 exhibits break-before-make switching action and is available in a 14-lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Ultralow Charge Injection ($\mathrm{Q}_{\text {INJ }}: \pm 1.5 \mathrm{pC}$ typ over full signal range)
2. Leakage Current $<0.25 \mathrm{nA}$ max @ $85^{\circ} \mathrm{C}$
3. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ or Single +2.7 V to +5.5 V Supply
4. Automotive Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
5. Small 14-Lead TSSOP Package

ADG636-SPECIFICATIONS

DUAL SUPPLY1 ${ }^{1} \mathrm{~V}_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless noted. $)$

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\mathrm{DR}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\text {Flat(ON) }}$)	$\begin{aligned} & 85 \\ & 115 \\ & 2 \\ & 4 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 140 \\ & 5.5 \\ & 55 \end{aligned}$	V_{Ss} to V_{DD} 160 6.5 60	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \end{aligned}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 6 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}, \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$, Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ Transition Time t_{ON} Enable $t_{\text {OFF }}$ Enable Break-Before-Make Time Delay, $\mathrm{t}_{\text {Bbм }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 70 \\ & 100 \\ & 100 \\ & 135 \\ & 55 \\ & 80 \\ & 20 \\ & -1.2 \\ & -65 \\ & \\ & -65 \\ & \\ & 610 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 120 \\ & 170 \\ & 90 \end{aligned}$	150 190 100 10	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{SIA}}=+3 \mathrm{~V}, \mathrm{~V}_{\text {SiB }}=-3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \end{aligned}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz},$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ Test Circuit 10 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD} $\mathrm{I}_{\text {SS }}$	0.001 0.001		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Y Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SINGLE SUPPLY¹ $\left(\mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted. $)$

[^0]
ADG636

NOTES

${ }^{1}$ Y Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2}$ Guaranteed by design, not subject to production test
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$	
A $=25^{\circ} \mathrm{C}$ unless otherwise noted)	
V_{DD} to $\mathrm{V}_{\text {SS }}$. 13 V	
V_{DD} to GND . -0.3 V to +6.5 V	
V ${ }_{\text {SS }}$ to GND . +0.3 V to -6.5 V	
Peak Current, S or D	
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max) 20 mA	
Continuous Current, S or D 10 mA	
Operating Temperature Range	
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
$\theta_{\text {JA }}$ Thermal Impedance	$150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance	$27^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at EN, A0, A1, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG636YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-14

PIN CONFIGURATION

Table I. Truth Table

A1	A0	EN	ON Switch
X	X	0	NONE
0	0	1	S1A, S2A
0	1	1	S1B, S2A
1	0	1	S1A, S2B
1	1	1	S1B, S2B

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG636 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device. Ground (0 V) Reference
V_{SS}	Positive Supply Current Negative Supply Current
I_{DD}	Source Terminal. May be an input or output.
I_{SS}	Drain Terminal. May be an input or output.
S	

Typical Performance Characteristics-ADG636

TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$. Dual Supply

TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$. Single Supply

TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures. Dual Supply

TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures. Single Supply

TPC 5. Leakage Currents vs. Temperatures. Dual Supply

TPC 6. Leakage Currents vs. Temperature. Single Supply

TPC 7. Charge Injection vs. Source Voltage

TPC 8. $t_{\text {ON }} / t_{\text {ofF }}$ Enable Timing vs. Temperature

TPC 9. Off Isolation vs. Frequency

TPC 10. Crosstalk vs. Frequency

TPC 11. On Response vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Transition Time, $t_{\text {TRANSITION }}$

Test Circuit 5. Break-Before-Make Delay, $t_{B B M}$

Test Circuit 6. Enable Delay, $t_{\text {ON }}(E N)$, tofF (EN)

Test Circuit 7. Charge Injection

OFF ISOLATION $=20$ LOG $\frac{v_{\text {OUT }}}{v_{S}}$

Test Circuit 8. Off Isolation

Test Circuit 9. Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
14-Lead TSSOP Package
(RU-14)

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: NOTES
 ${ }^{1}$ Y Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

