TDA4420 ## VISION IF SYSTEM WITH AFC - HIGH GAIN-HIGH STABILITY - VERY LOW INTERMODULATION PRODUCTS - MINIMUM DIFFERENTIAL ERROR - CONSTANT INPUT IMPEDANCE INDEPEN-DENT OF AGC - FAST AGC GATING-ACTION, LARGELY INDE-PENDENT OF PULSE SHAPE AND AMPLI-TUDE - ADJUSTABLE WHITE LEVEL - LARGE AFC OUTPUT CURRENT SWING (push-pull output) - SWITCHABLE AFC #### DESCRIPTION The TDA4420 is a monolithic integrated circuit in 18 lead dual in-line plastic package. The functions incorporated are: - gain controlled vision IF amplifier - video demodulator controlled by picture carrier - AGC detector with gating facility - AGC amplifier for tuner drive with variable delay - phase comparator for AFC current generation - electronic AFC switch, controlled by a DC threshold detector - thermally compensated push-pull AFC output stage. ## **CONNECTION DIAGRAM** (top view) ## **BLOCK DIAGRAM** ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |-----------------------------------|---|-------------|------| | Vs | Supply Voltage (pin 15) | 15 | V | | V ₅ | Voltage at Pin 5 | 15 | V | | I ₁₃ , I ₁₄ | Video DC Output Current | 5 | mA | | P _{tot} | Total Power Dissipation at T _{amb} ≤ 70 °C | 1 | W | | T _{stg} , T _j | Storage and Junction Temperature | - 40 to 150 | ∞ | ## THERMAL DATA | R _{th i-amb} | Thermal Resistance Junction-ambient | Max | 80 | °C/W | |-----------------------|-------------------------------------|-----|----|------| #### TEST CIRCUIT Note: (*) C = 1.5 pF (pin and lead capacitance). **ELECTRICAL CHARACTERISTICS** (Refer to the test circuit; $V_s = 12 \text{ V}$, $f_0 = 38.9 \text{ MHz}$; $P_1 = 2.5 \text{ K}\Omega$; pin 7 connected to GND; P_2 adjusted for $V_{13} = 3.3 \text{ Vpp}$; AFC off; $T_{amb} = 25 \text{ }^{\circ}\text{C}$ unless otherwise specified) #### DC CHARACTERISTICS | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------------------|---|---|------|------|------|------| | Vs | Supply Voltage Range (pin 15) | | 10 | 12 | 15 | ٧ | | Is | Suppply Current (pin 15) | | | 52 | | mA | | V ₁₄ | Video Output DC Voltage | V ₁₃ = 5.5 V (1) | | 5.6 | | V | | V ₁₃ | Video Output DC Voltage | Pin 12 Open (1) | | Ī | 4.5 | ٧ | | | | Pin 12 Grounded (1) | 7 | | | ٧ | | V ₁₃ | Peak Black Clamping Level at
Negative Video Output | | 1.75 | 1.9 | 2.15 | ٧ | | I ₁₃ | Output DC Current (pin 13) | V _s = 15 V V ₁₃ = 8 V | | 1.6 | | mA | | l ₉ , l ₁₀ | DC Control Current for AFC off | | 150 | 300 | | μΑ | - Notes: 1. V₁₃ and V₁₄ are simultaneously adjustable by means of the resistance connected between pin 12 and ground (P₂). - 2. $\Delta V_i = +60$ dB (see note 7); $f_m = 100$ KHz; m = 0.82. - 3. Input at pin 7 through C8. - 4. The input voltage $\vec{V_i}$ can have any value within the AGC range. - 5. P_2 adjusted for $V_{13} = 5.5 \text{ V}$ or $V_{13} = 6.4 \text{ V}$; $f_m = 100 \text{ KHz}$; m = 0.82. - 6. $\Delta V_0 = 1 \text{ dB}$; $f_m = 100 \text{ KHz}$; m = 0.82. - The measured amplitude is assumed as 0 dB reference level of V_i that is the rms value of the unmodulated video carrier (modulation down). - P₂ is adjusted in order to have V₁₃ = 3 Vpp at V_i = 4 mV, then the sensitivity is obtained as the minimum input voltage that maintains this output level. f_m = 100 KHz; m = 82 %. - 9. $f_0 = 38.9 \, \text{MHz}$ (video carrier); $f_a = 33.4 \, \text{MHz}$ (sound carrier); the amplitude of the sound carrier is 30 dB below the amplitude of the amplitude of the sound carrier is 30 dB below the amplitude of the sound carrier is 30 dB below the amplitude of the sound carrier is 30 dB below the amplitude of the sound carrier is 30 dB bel - tude of the video carrier. 10. V_i at $f_0 = 38.9$ MHz (video carrier); $f_a = 33.4$ MHz, 6 dB below V_i (sound carrier); $f_b = 34.47$ MHz, 24 dB below V_i (Chrotham Chrotham Chroham Chrotham Chroham Chrotham Chrotham Chrotham Chrotham Chroham Chrotham Chrotham Chrotham Chroham Chro - ma subcarrier). 11. $V_i=40~dB$; $R_5=R_6=5.1~K\Omega$; AFC on ; $f_0=39.9~\dot{M}Hz$; $f_0=37.9~MHz$. - 12. $V_i = 40 \ dB$; $f_o = 39.2 \ MHz$; AFC on ; $V_{16} = 6 \ V.$ - 13. $V_1 = 40 \text{ dB}$; $f_0 = 38.9 \text{ MHz}$; $f_2 = 39.2 \text{ MHz}$; AFC on; $V_{16} = 6 \text{ V}$. #### **ELECTRICAL CHARACTERISTICS** (continued) #### AC CHARACTERISTICS | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------------------------|---|---|-------|--------|---------------------|-----------| | 15 | Available Tuner AGC Current | (2) | | 10 | | mA | | V ₇ | AGC Gating Pulse Input Peak
Voltage | f pulse = 15625 Hz (3) | - 1.5 | - 3 | - 5 | V | | V ₀ | Peak to Peak Video Output Signal (pin 13) | $V_{13} = 5.5 \text{ V } (4), (5)$ | | 3.3 | | V | | | | $V_{13} = 6.4 \text{ V } (4), (5)$ | | 4.2 | | V | | ΔV_i | AGC Range | (6) | 50 | 60 | | dB | | В | Frequency Response (- 3 dB) | (4) | 8 | 10 | | MHz | | Vi | Input Sensitivity | (7), (8) | 100 | 150 | 200 | μV | | V ₁₃ , V ₁₄ | Video carrier and video carrier 2nd harmonic leakage at video output. | $V_i = 30 \text{ dB } f_o = 38.9 \text{ MHz}$
(4) 2 $f_o = 77.8 \text{ MHz}$ | | | 30
50 | mV
mV | | V ₁₄ | Sound IF at Positive Video Output (5.5 MHz) | (4), (9) | 30 | | | mV | | d | Differential Distortion of Negative
Video Output Signal | V _i = 30 dB
(standard staircase
modulating signal) | | 3 | | % | | d _{im} | Intermodulation Product at Video
Outputs (1.07 MHz) | (4), (10) | | - 50 | | dB | | Ri | Input Resistance between Pins 1 and 18 | (4) | | 1.4 | | ΚΩ | | Ci | Input Capacitance between Pins 1 and 18 | (4) | | 2 | | pF | | V ₁₆ | AFC Voltage Range | (11) | 1 | | V _s -1.5 | ٧ | | 116 | Maximum Available AFC Current | (12) | | | ± 3 | mA | | $\frac{\Delta l_{16}}{\Delta f}$ | AFC Slope | (13) | | ± 0.01 | | mA
KHz | Notes: 1. V₁₃ and V₁₄ are simultaneously adjustable by means of the resistance connected between pin 12 and ground (P₂). - 2. $\Delta V_i = +60 \text{ dB (see note 7)}$; $f_m = 100 \text{ KHz}$; m = 0.82. - 3. Input at pin 7 through C8. - 4. The input voltage Vi can have any value within the AGC range. - 5. P_2 adjusted for $V_{13} = 5.5 \text{ V}$ or $V_{13} = 6.4 \text{ V}$; $f_m = 100 \text{ KHz}$; m = 0.82. - 6. $\Delta V_0 = 1 \text{ dB}$; $f_m = 100 \text{ KHz}$; m = 0.82. - The measured amplitude is assumed as 0 dB reference level of Vi that is the rms value of the unmodulated video carrier (modulation down). - P₂ is adjusted in order to have V₁₃ = 3 Vpp at V_i = 4 mV, then the sensitivity is obtained as the minimum input voltage that maintains this output level. f_m = 100 KHz; m = 82 %. - 9. f₀ = 38.9 MHz (video carrier); f_a = 33.4 MHz (sound carrier); the amplitude of the sound carrier is 30 dB below the amplitude of the video carrier. - V_i at f_o = 38.9 MHz (video carrier); f_a = 33.4 MHz, 6 dB below V_i (sound carrier); f_b = 34.47 MHz, 24 dB below V_i (Chroma subcarrier). - 11. V_i = 40 dB ; R_5 = R_6 = 5.1 K Ω ; AFC on ; f_0 = 39.9 MHz ; f_0 = 37.9 MHz. - 12. $V_i = 40 \ dB$; $f_o = 39.2 \ MHz$; AFC on ; $V_{16} = 6 \ V$. - 13. $V_{\rm i}=40~dB$; $f_0=38.9~MHz$; $f_2=39.2~MHz$; AFC on ; $V_{16}=6~V.$ Figure 1: Set-up for Measurement of dim. Figure 2 : Set-up for Measurement of ΔV_O . Figure 3: Application Circuit. Figure 4: TV Signal Identification Circuit. ## TV signal identification circuit : The suggested application circuit is shown in fig. 4. The passive components are chosen as follows: R₁ and R₂: these define the AFC response slope. For $R_1 = R_2 = 5.1 \text{ K}\Omega$, the typical slope is 750/11 KHz/V (with AFC output unloaded). S₁: switches between low slope (LS) and high slope (HS). The high slope is typically 88/11 KHz/V. R_3 and R_4 : the ratio $(R_3 + R_4)/R_3$ defines the digi- the ratio ($_{13}$ + $_{14}$ / $_{17}$) defines the digital AFC width ($_{5}$ f) calculated from the linear AFC width ($_{2}\Delta f$). With $_{8}$ = 12 V, the relation is: $$\delta f = 0.036 (2\Delta f)$$ R₃ + R₄ RT1: by means of this trimmer it is possible to align the linear tuning with the digital one, at the same frequency. The typical relation is: $$R_a = 33 R_3$$ with $R_3 = 3.3 \text{ K}\Omega$, R_a can be a fixed resistor of 110 K Ω . To make better sensitivity adjustment of trimmer R_{T2}, it is necessary to use only a weak signal at the antenna. The video information must be a black picture or a field of small white points on a black field. Furthermore, the action of the syncs separator must be as quick as possible. In receivers with automatic program search, S1 should be in the HS position and then the components S1, R1 and R2 can be omitted completely. Figure 5: Linear and Digital AFC Characteristics (TDA4420 and TDA4431).