‘ UBICOM

PRELIMINARY
March 17, 2003

IP2012 / IP2022 Wireless Network Processors

Features and Performance Optimized for Network Connectivity

1.0 Product Highlights

The Ubicom 1P2012™ and IP2022™ Wireless Network
Processors combine support for communication physical
layer, Internet protocol stack, device-specific application,
and device-specific peripheral software modules in a
single chip, and are reconfigurable over the Internet. They
can be programmed, and reprogrammed, using pre-built
software modules and configuration tools to create true
single-chip solutions for a wide range of device-to-device
and device-to-human communication applications. High
speed communication interfaces are available via on-chip
hardware Serializer/Deserializer (SerDes) blocks. These
full-duplex blocks allow the 1P2022 or IP2012 to be used
in a variety of communication bridging applications. Each
SerDes block is capable of supporting 10Base-T Ethernet
(MAC and PHY), USB, GPSI, SPI, or UART. The high-
speed operating frequency, combined with most
instructions executing in a single cycle, delivers the
throughput needed for emerging network connectivity
applications. A flash-based program memory allows both
in-system and runtime reprogramming. The 1P2022 and
IP2012 implement most peripheral, communications and
control functions via software modules (ipModule™
software), replacing traditional hardware for maximum
system design flexibility. This approach allows rapid,

inexpensive product design and, when needed, quick and
easy reconfiguration to accommodate changes in market
needs or industry standards.

Key Features:
+ Designed to support single-chip networked solutions
« Fast processor core
* 64kB Flash program memory
+ 16kB SRAM data/program memory
+ 4kB SRAM data memory
» Two SerDes communication blocks supporting com-
mon PHYs (Ethernet, USB, UARTS, etc.) and bridging
applications (IP2012 has only one SerDes unit)
« Advanced RISC processors
+ IP2022 — 120 and 160 MHz versions
» IP2012 — 120 MHz version
+ High speed packet processing
* Instruction set optimized for communication functions
» Supports software implementation of traditional hard-
ware functions
* In-system reprogrammable for highest flexibility
* Run time self-programmable
* Vpp = Vcce supply voltage

PHY Firmware

Choices for Choices for
Communication: n : Communication:
1P2022/1P2012 ipOS Operating System
ISA (802.11b)
8/16-Bit | | Internet | [64-Kbyte | | 16-Kbyte | [4-Kbyte | | External | | General Mini-PCl/Cardbus
Host Bus «——»{ Parallel | |Processor Flash Inst./Data Data Memory | | Purpose [¢—» (802.11g/802.11a)
Slave Port CPU Memory RAM RAM Interface | | I/O Ports 12c
¢ ¢ i i i ¢ ¢ General-Purpose I/0

<

10Base-T Ethernet

- v v

»

10Base-T Ethernet

v v -

(MAC/PHY on chip)

(MAC/PHY on chip)

i High-Speed PLL 8-Input High-Speed .
USB 1.1 (SIE 0”52,'2} 4| serial Unit1 || 15 || cClock [| 10-Bit |[/SPASD | |Serial Unit2 |«—» gﬁglm (SIE on chip)
SPI (SERDES) Multiplier A/DC (SERDES) ap|
UART/Modem UART/Modem
Bluetooth HCI |:| Not available on 1P2012 515-063b.eps Bluetooth HCI

Figure 1-1 1P2012/1P2022 Block Diagram

www.ubicom.com

© 2001-2003 Ubicom, Inc. All rights reserved. 1

1P2012 /1P2022 Data Sheet

1.0 Product H|gh||ghts 1 5.4.3 T1 and T2 Timer Registers 56
11 Additional Feat 3 5.5 Watchdog Timer (WDT) 57
- \ A.'O”a BALIES. . v 4 56 Serializer/Deserializer (SERDES). 58
12 rehitecture.oovvveeveieni, 56.1 SERDES TX/RXBU€rS 58
1210 CPU. ..ot j 562 SERDES Configuration.ooooooo.. 58
1.2.2 Serializer/Deserializers. oo 56.3 SERDES INEITUPLS . .« « v v v ovevooeeeen 59
122 I,\-Aoe";";zg/wer SUPPOIt . .o f{ 5.6.4 Protocol MOAES + « .« v v v v et et 60
125 Ingtruchon Set. L. L. L iy 288 dObaseTEemel L o1
1.2.6 Other Supported Functions 5 567 UART. ... o oo 67
127 Programming and Debugging SUpport -+ 5 Ses splL..ollllllllIIIIIIIIIIIIII e
2.0 Pin Definitions 6 gf;Q 2PSII o Digital Conve e (DG, ;g
21 PQFP (Plastic Quad Flat Package) for IP2022......6 271 ADC Gbterench Voliage 11l 111
2.2 PQFP (Plastic Quad Flat Package) for IP2012. 7 5.7.2 A/D Converter Registers.oouuniue .. 72
2.3 UBGA (Micro Ball Grid Array) 1P2022-120 Only 8 5.7.3 Usingthe AIDConverter.ouuueennn... 73
2.4 Signal Descriptions — IP2022 9 5.7.4 ADC Result Justification 73
2.5 Signal Descriptions — IP2012 12 5.8 Comparator.t ;g
5.8.1 CMPCFGRegister.,
3.0 System Architecture 15 59 Linear Feedback Shift Register (LFSR) 74
g; SPtU If*/leglsters ----------------------------- 18 5.10 Parallel Slave Peripheral (PSP) ;g
. ataMemory 5.10.1 PSPCFGRegister
3.3 Program Memory 19 5.11 External Memory Interface (IP2022 only) 80
3.3.1 Loading the Program RAM ;8 5.11.1 EMCFG Register (IP2022only) 80
3.3.2 ProgramCounter. _ ;
3.4 Low Power Support i 20 6.0 In-System Programming 83
3.4.1 Clock Stop Mode (SLEEP) iiii e %1 7.0 Memory Reference 84
%%2 \évglefglépdﬁéri g o T 51 7.0.1 Registers (sorted by address) gg
: : DT 7.0.2 ProgramMemory.
3.6 Instruction Timing.................oooeennnn, 21 74 Register Bit Definitions 89
3.7 Interrupt Support. ... 22 741 ADCCFGREGISIEro eotoeaieeeiaaans 89
3.7.1 Interrupt Processing. 22 712 ADCTMR REGISIEr . . . o o v ve e eee e 89
3.7.2 Global Interrupt Enable Bit 25 713 CMPCFG REGISter. . . o oo vveeeeee e 89
3.7.3 Interrupt Latency 25 714 EMCFG Register (IP20220nly)o ovovenen ... 90
3.7.4 Return From Interrupt.o 25 715 FCFG REGISIEr . . ot vvoe s e e e 91
3.7.5 glsabled Interrupt Resources gg 716 INTSPDRegISter. oovee e, 92
3.8 eSet 71.7 LFSRA REQISIEr. « o v oo e e et e 93
3.8.1 Brown-OutDetector 28 7.1.8 PSPCFG F?egister ____________________________ 93
3.8.2 Reset and Interrupt Vectors. 28 7.1.9 RTCFGRegister 94
g.%.s Ei:tlegisktecr) Stz_altle? Following Reset %g 7.1.10 Sx:\r/l\lé)rE/ESgNTF Registerovvii gg
. ock Osclllator. 7.1.11 Sx egister
3.9.1 External Connectionso v 30 7112 SXRCFGRegisterouuiiiiiiiiiiinnnn 96
3.10 ConfigurationBlock. 31 7113 SxRCNTRegisterooooun... 97
3.10.1 FUSEO Register (not run-time programmable). 32 7114 SxBRSYNC Register 97
3.10.2 FUSE1 Register (not run-time programmable). 33 7115 SxSMASKRegister 98
3.10.3 TRIMORegiSter. v vt e 34 ;} 19 gg%/l%?—l/%i%\sﬂtgl_ B 88
4.0 Instruction Set Architecture 35 7118 SPDREG Register11 99
4.1 AddressingModes 7.1.19 STATUS Register, 100
i i 7120 TOCFGRegister 101
413 DiectAddesing Mode 11T SR 71 TXGRGHH Register. Lol 101
4.1.3 Indirect Address|ng Mode 7.1.22 TxCFG2H Reglster 102
4.1.4 Indirect-with-SOffset Addressing Mode gg ;} gi %&Eg;k Egg::}g: --------------------------- 18%
4.2 Instruction Set. SN SOISIOT. v
4.2.1 Instruction Formatscvuieiranan... 38 7125 TCOTRLRegister.t 104
: 26 XCFGREGISIer ..o ovi et 104
422 INSErUCHON TYPES . « . v v e e e e e e ie e 38 7-1.26 XCFG Register
4.3 Instruction Pipﬁ}ilge. o 40 8.0 Electrical Characteristics 105
4.4 Subroutine Call/Return Stack 41
e 8.1 Absolute Maximum Ratings). 105
4.5 Key to Abbreviations and Symbols.............. 42 go DC Specifications: IP2022-120, IP2012-120 106
46 Instruction Set Summary Tables................ 42 g3 DC Specifications: [P2022-160. 108
4.7 ~ Program Memory Instructions. 47 84 AC Specifications: IP2022-120, IP2012-120 110
T T o Operatons. -1 1 i 2 85 AC Specifications: IP2022-160 111
ST T e 8.6 Comparator DC and AC Specifications 112
5.0 Peripherals 8.7 ADC 10-bit Converter DC and AC Specifications. .112
5.1 O PoOMS . ..o Dimension 11
5.1.1 Port B Interrupts 9.0 PaCKage ensions 8
5.1.2 Reading and Writing the Ports L. 9.1 PQFP . .. I I NIRRT 113
5.1.3 RxINRegisters 9.2 UBGA (available for IP2022-120 only) 114
5.1.4 RXOUT Registers. :
5.1.5 RxDIR Registers 10.0 Part Numberlng 115
5.1.6 INTED Register.
5.1.7 INTEFRegistero
5.1.8 INTERegister i
5.1.9 Port Configuration Upon Power-Up 51
5.2 TimerO 51
5.3 Real-Time Timer (RTTMR). 52
5.4 Multi-Function Timers (T1and T2) 54
5.4.1 Timers T1, T2 OperatingModes 54
54.2 T1 and T2 Timer Pin Assignments 56

2 www.ubicom.com

1P2012 /1P2022 Data Sheet

1.1 Additional Features General-Purpose Hardware Peripherals

Two 16-bit timers with 8-bit prescalers supporting:

Internet Processor Capabilities .
— Timer mode

Foundation for Highly Flexible Connectivity Solution

Performance: 120 MIPS @ 120 MHz,

160 MIPS @ 160 MHz
Predictable execution for hard real-time applications
Fast and deterministic 3-cycle (25ns @120MHz,
18.75ns @ 160 MHz) internal interrupt response
Hardware save/store of key registers
Functions implemented via software tightly coupled
with hardware assist peripherals

Multiple Networking Protocols and Physical Layer
Support Hardware

Two full-duplex serializer/deserializer (SERDES)

channels (IP2022 has two, IP2012 has one)

— Flexible to support 10Base-T, GPSI, SPI, UART,
USB protocols

— Two channels for protocol bridging

— On-chip squelch function for 10Base-T Ethernet
on each SERDES

Four hardware LFSR (Linear Feedback Shift Regis-

ter) units

— CRC generation/checking

— Data whitening

— Encryption

Memory

64-Kbyte (32K « 16) on-chip program flash memory
16-Kbyte (8K « 16) on-chip program/data RAM
4-Kbyte on-chip linear-addressed data RAM
Self-programming with built-in charge pump: instruc-
tions to read, write, and erase flash memory
Addresses up to 2 Mbytes of external memory
(IP2022 only)

CPU Features

RISC engine core

IP2022-120, IP2012-120

— DC to 120 MHz operation

— 8.33 ns instruction cycle at max frequency
IP2022-160

— DC to 120 MHz and 160 MHz operation only

— 6.25 ns instruction cycle at max frequency
Compact 16-bit fixed-length instructions

Single-cycle instruction execution on most instruc-
tions (3 cycles for jumps and calls)

Sixteen-level hardware stack for high-performance
subroutine linkage

8 « 8 signed/unsigned single-cycle multiply

Pointers and stack operation optimized for C compiler
Uniform, linear address space (no register banks)

www.ubicom.com

- PWM mode

— Capture/Compare mode

Parallel host interface, 8/16-bit selectable for use as a
communications coprocessor (IP2012 supports 8-bit
only)

External memory interface (IP2022 only)

One 8-bit timer with programmable 8-bit prescaler
One 8-bit real-time clock/counter with programmable
15-bit prescaler and 32 kHz crystal input

Watchdog timer with prescaler

10-bit, 8-channel ADC with 1/2 LSB accuracy
Analog comparator with hysteresis enable/disable
Brown-out minimum supply voltage detector

External interrupt inputs on 8 pins (Port B)

Sophisticated Power and Frequency/Clock
Management Support

Operating voltage of 2.3V to 2.7V (120 MHz)
Switching the system clock frequencies between dif-
ferent clock sources

On-chip PLL clock multiplier with pre- and post-divider
— 120 MHz on-chip clock from 4.8 MHz ext. crystal
— 160 MHz on-chip clock from 3.2 MHz ext. crystal
Changing the core clock using a selectable divider
Shutting down the PLL and/or the OSC input
Dynamic CPU speed control with speed instruction
Power-On-Reset (POR) logic

Flexible I/O

52 I/0 Pins (48 on IP2012)

2.3V to 3.6V symmetric CMOS output drive (120MHz
part)

5V-tolerant inputs

Port A pins capable of sourcing/sinking 24 mA
Optional 1/0 synchronization to CPU core clock

Re-configurable Over The Internet

Customer application program updatable

— Run-time self programming

On-chip in-system programming interface

On-chip in-system debugging support interface
Debugging at full IP2022 operating speed
Programming at device supply voltage level
Real-time emulation, program debugging, and inte-
grated software development environment offered by
leading third-party tool vendors

1P2012 /1P2022 Data Sheet

1.2 Architecture

1.21 CPU

The IP2012 and IP2022 implement an enhanced Harvard
architecture (i.e. separate instruction and data memories)
with independent address and data buses. The 16-bit
program memory and 8-bit dual-port data memory allow
instruction fetch and data operations to occur in parallel.
The advantage of this architecture is that instruction fetch
and memory transfers can be overlapped by a multistage
pipeline, so that the next instruction can be fetched from
program memory while the current instruction is executed
with data from the data memory.

Ubicom has developed a revolutionary RISC-based
architecture that is deterministic, jitter free, and
completely reprogrammable.

The architecture implements a four-stage pipeline (fetch,
decode, execute, and write back). At the maximum
operating frequency of 160 MHz, instructions are
executed at the rate of one per 6.25 ns clock cycle.

1.2.2 Serializer/Deserializers

One of the key elements in optimizing the 1P2012 and
IP2022 for device-to-device and device-to-human
communication is the inclusion of on-chip
serializer/deserializer units. Each unit supports popular
communication protocols such as GPSI, SPI, UART, USB,
and 10Base-T Ethernet, allowing the IP2000 series
devices to be used in bridge, access point and gateway
applications.

By performing data serialization and deserialization in
hardware, the CPU bandwidth needed to support serial
communications is greatly reduced, especially at high
baud rates. Providing two units (IP2022 only) allows easy
implementation of protocol conversion or bridging
functions between two fast serial devices, such as USB-
to-Ethernet, GPSI to ethernet, or Ethernet to Ethernet. A
single SerDes unit (IP2012) provides the ability to bridge
RS232, SPI, or WLAN (802.11b) to Ethernet.

1.2.3

Particular attention has been paid to minimizing power
consumption. For example, an on-chip PLL allows use of
a lower-frequency external source (e.g., an inexpensive
4.8MHz crystal can be used to produce a 120 MHz on-
chip clock; a 3.2 MHz crystal to produce a 160 MHz on-
chip clock), which reduces both power consumption and
EMI. In addition, software can change the execution
speed of the CPU to reduce power consumption, and a
mechanism is provided for automatically changing the
speed on entry and return from an interrupt service
routine. The speed instruction specifies power-saving
modes that include a clock divisor between 1 and 128.
This divisor only affects the clock to the CPU core, not the
timers. The speed instruction also specifies the clock
source (OSC1 clock, RTCLK oscillator, or PLL clock
multiplier), and whether to disable the OSC1 clock
oscillator or the PLL. The speed instruction executes
using the current clock divisor.

Low-Power Support

1.2.4

The IP2012 /1P2022 CPU executes from a 32K « 16 flash
program memory and an 8K - 16 RAM program/data
memory. In addition, the ability to write into the program
flash memory allows flexible non-volatile data storage. An
interface is available (IP2022 only) for up to 128K bytes of
linearly addressed external memory, which can be
expanded to 2M bytes with additional software-based 1/0
addressing. At 120 MHz operation, the maximum
execution rate is 40 MIPS from flash memory and 120
MIPS from RAM. At 160 MHz operation, the maximum
execution rate is 53.33 MIPS from flash memory and 160
MIPS from RAM. Speed-critical routines can be copied
from the flash memory to the RAM for faster execution.
The IP2000 series devices have a mechanism for in-
system programming of their flash and RAM program
memories through a four-wire SPI interface, and software
has the ability to reprogram the program memories at run
time. This allows the functionality of a device to be
changed in the field over the Internet.

Memory

1.2.5

The IP2000 series instruction set, using 16-bit words,
implements a rich set of arithmetic and logical operations,
including signed and unsigned 8-bit - 8-bit integer
multiply with a 16-bit product.

Instruction Set

www.ubicom.com

1.2.6 Other Supported Functions

On-chip dedicated hardware also includes a PLL, an 8-
channel 10-bit ADC, general-purpose timers, single-cycle
multiplier, analog comparator, LFSR units, external
memory interface (IP2022 only), parallel slave port,
brown-out power voltage detector, watchdog timer, low-
power support, multi-source wakeup capability, user-
selectable clock modes, high-current outputs, and 52
general-purpose I/0 pins (48 on IP2012).

1.2.7 Programming and Debugging
Support

The IP2000 series has advanced in-system programming
and debug support on-chip. This unobtrusive capability is
provided through the ISP/ISD interface. There is no need
for a bond-out chip for software development. This
eliminates concerns about differences in electrical
characteristics between a bond-out chip and the actual
chip used in the target application. Designers can test and
revise code on the same part used in the actual
application.

Ubicom provides the complete Red Hat GNUPro tools,
including C compiler, assembler, linker, utilities and GNU
debugger. In addition, Ubicom offers an integrated
graphical development environment which includes an
editor, project manager, graphical user interface for the
GNU debugger, device programmer, and ipModule™
configuration tool.

www.ubicom.com

IP2012 /1P2022 Data Sheet

1P2012 /1P2022 Data Sheet

2.0 Pin Definitions

2.1 PQFP (Plastic Quad Flat Package) for IP2022

AN
NN
AN -
FOO 830083888 ~0wx D
P88k krdzIZReRE0
N T T T N N N A N N M
SRRRKNLEECYIRIYIRBBG 88
TSS —1 64 - RG3
TSCK — 2 63 - RG2
TSI 43 62 - RG1
TSO {4 61 - RGO
RAO -5 60 |- RF7
RA1 {6 59 - RF6
RA2 {7 58 - RF5
RA3 — 8 57 - RF4
DVdd - 9 56 - DVdd
DVss — 10 55 - DVss
IOVss — 11 54 - 10Vss
IOvdd —{ 12 IP2022/PQ80-120 53 - I0Vdd
RBO — 13 or 52 - RF3
RB1 — 14 51 - RF2
RB2 — 15 |P2022/PQ80'160 50 - RF1
RB3 — 16 49 — RFO
RB4 — 17 48 - RE7
RB5 — 18 47 - RE6
RB6 — 19 46 - RE5
RB7 — 20 45 - RE4
RCO — 21 44 - RE3
RC1 22 43 - RE2
RC2 23 42 - RE1
RC3 — 24 41 - REO
CERAIIBH-ISIBS8HERIQ
U SR
SRRSO NONaNal-R R -NalallaNallalia)
FEXEEERAZZLEELELEE sis00meps

o

Figure 2-1 1P2022 PQFP Pin Definition (Top View)

6 www.ubicom.com

IP2012 /1P2022 Data Sheet

2.2 PQFP (Plastic Quad Flat Package) for IP2012

AN
NN
AN -1
FOO 830083888 ~0ws D
288xxkktddzzrered
N N T T T T A Y A
SRPRRKNLCECIRIYIREBLG 88
TSS —1 64 - RG3
TSCK — 2 63 - RG2
TSI 3 62 - RG1
TSO {4 61 - RGO
RAO —{ 5 60 - RF7
RA1 6 59 |- RF6
RA2 7 58 - RF5
RA3 —{ 8 57 - RF4
DVdd — 9 56 - DVdd
DVss — 10 55 - DVss
IOVss —{ 11 54 - 10Vss
lOvdd —{ 12 IP2012/PQ80-120 53 [~ lOVdd
RBO — 13 52 - RF3
RB1 — 14 51 - RF2
RB2 - 15 50 -~ NC
RB3 —{ 16 49 - NC
RB4 — 17 48 |- RE7
RB5 — 18 47 - RE6
RB6 — 19 46 - RE5
RB7 — 20 45 - RE4
RCO — 21 44 - RE3
RC1 — 22 43 |- RE2
RC2 23 42 - RE1
RC3 24 41 - REO
CEREEIBH-ISISS8HEI I
So83citiiinaanas
¥ 55550:0:0:0:0:0: 515.099.0p8
Figure 2-2 1P2012 PQFP Pin Definition (Top View)

www.ubicom.com 7

1P2012 /1P2022 Data Sheet

2.3 uBGA (Micro Ball Grid Array Package) IP2022-120 Only

IP2022/BG80-120

1.2 3 4 5 6 7 8 910

0000000000
0000000000
Q0O o]
00 0000 00
00 0000 OO
Q0 0000 00
00 0000 OO
Q0O o0
0000000000
0000000000
TOP VIEW
10 9 8 7 6 5 4 3 2 1
0000000000
0000000000
o0 o]e)
00 0000 00
00 0000 00O
00 0000 00
00 0000 00
o0 o0
0000000000
0000000000
BOTTOM VIEW (ball side)

X e T G mm OO W >

X e IT ® mm OO W >

515-092b.eps

Refer to Section 2.4 for signal names.
Figure 2-3 pyBGA Pin Definition

www.ubicom.com

24

Signal Descriptions — 1P2022

IP2012 /1P2022 Data Sheet

| = Digital Input, Al = Analog Input, O/DO = Digital Output, HiZ = High Impedance, P = Power, PLP = On-Chip Pullup,
ST = Schmitt Trigger

Table 2-1 Signal Descriptions
Pin Sink Source
Name Type @3.3V | @3.3V Function
PQFP | uBGA IOVDD | IOVDD
AVDD 70 B6 P Analog Supply
AVSS 71 A6 P Analog Ground
9,31, | D1,D6,)
DVDD 56,72 | E9.G5 P Logic Supply
10, 32, | E1,K5, .
DVSS 55,73 | E10,D5 P Logic Ground
GVDD 65 A8 P I/0 Port G supply
IOVDD | 12,34, | E5,G6, P I/O Supply (except Port G)
53 E6
IOVSS 11, 33, | E2,K6, P I/0 Ground (all ports)
54 E7
XVDD 76 A4 P PLL Supply
XVSS 77 D4 P PLL Ground
0OSCH1 78 B4 I/ST Clock/Crystal Input
0SscC2 79 A3 O/Hiz Crystal Output (tri-state if FUSEO bit 15 = 1)
RST 80 A2 I/ST/ Reset Input. There is a weak pull-up on this pin, but
PLP floating this pin does not guarantee Vih.
RTCLK1 74 A5 I Real-Time Clock/Crystal Input
RTCLK2 75 B5 O/HiZ Real-Time Crystal Output (tri-state if FUSEOQ bit 14 =
1)
SS 1 Al I/ST/ Target SPI Slave Select (used only for in-system pro-
PLP gramming and debug)
TSCK 2 Cc2 I/ST/ Target SPI Clock (used only for in-system program-
PLP ming and debug)
TSI 3 B1 I/ST Target SPI Serial Data Input (used only for in-system
/PLP programming and debug)
TSO 4 B2 O/Hiz Target SPI Serial Data output (used only for in-sys-
tem programming and debug; high Z unless TSS low)
RAO 5 D2 I/0 24 mA | 24 mA | 1/O Port, High Power Output, Timer 1 Capture 1 Input
RA1 6 C1 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Capture 2 Input
RA2 7 B3 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Clock Input
RA3 8 E4 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Output
RBO 13 F5 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Capture 1 Input
RB1 14 F1 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Capture 2 Input
RB2 15 F2 /0 8 mA 8 mA I/0O Port, External Interrupt, Timer 2 Clock Input

www.ubicom.com

1P2012 /1P2022 Data Sheet

Table 2-1 Signal Descriptions (continued)

Pin Sink Source
Name Type | @3.3V | @ 3.3V Function
PQFP | uBGA IovDD | IOVDD

RB3 16 G1 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Output

RB4 17 Fa I/0 8 mA 8 mA | I/O Port, External Interrupt, External Memory WR

RB5 18 J3 I/0 8 mA 8 mA | I/O Port, External Interrupt, Parallel Slave Peripheral
HOLD, External Memory RD

RB6 19 G2 I/0 8 mA 8 mA | I/O Port, External Interrupt, Parallel Slave Peripheral
R/W, External Memory LE

RB7 20 H1 /0 8 mA 8 mA I/0O Port, External Interrupt, Parallel Slave Peripheral
CS, External Memory A0

RCO 21 J2 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D8, External
Memory A9

RC1 22 H2 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D9, External
Memory A10

RC2 23 J1 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D10, External
Memory A11

RC3 24 K1 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D11, External
Memory A12

RC4 25 K2 /0 4 mA 4 mA I/0O Port, Parallel Slave Peripheral Data D12, External
Memory A13

RC5 26 K3 /0 4 mA 4 mA I/0 Port, Parallel Slave Peripheral Data D13, External
Memory A14

RC6 27 J4 110 4 mA 4 mA I/0O Port, Parallel Slave Peripheral Data D14, External
Memory A15

RC7 28 K4 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D15, External
Memory A16

RDO 29 G4 I/0 4 mA 4 mA | /O Port, Parallel Slave Peripheral Data DO, External
Memory shared A1/D0O

RD1 30 J5 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D1, External
Memory shared A2/D1

RD2 35 J6 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D2, External
Memory shared A3/D2

RD3 36 G7 /0 4 mA 4 mA I/0O Port, Parallel Slave Peripheral Data D3, External
Memory shared A4/D3

RD4 37 K7 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D4, External
Memory shared A5/D4

RD5 38 J7 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D5, External
Memory shared A6/D5

RD6 39 K8 I/0 4 mA 4 mA | /O Port, Parallel Slave Peripheral Data D6, External
Memory shared A7/D6

RD7 40 K9 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D7, External
Memory shared A8/D7

REO 41 K10 I/0 8 mA 8 mA | I/O Port, S1CLK - SCLK (SPI), RxCLK (GPSI),
optional SERDES clock input for UART or USB.

10

www.ubicom.com

IP2012 /1P2022 Data Sheet

Table 2-1 Signal Descriptions (continued)

Pin Sink Source
Name Type @3.3V | @3.3V Function
PQFP | uBGA IOVDD | IOVDD
RE1 42 H9 I/0 8 mA 8 mA | I/O Port, STRXP - VP (USB), SS (SPI Slave), TXEN
(GPSI Master), RXxEN (GPSI Slave)
RE2 43 J10 I/0 8 mA 8 mA | I/O Port, SIRXM - VM (USB)
RE3 44 J9 I/0 8 mA 8 mA | I/0O Port, STIRXD - RCV (USB), RXD (UART), DI
(SPI), TxD (GPSI Master), RxD (GPSI Slave)
RE4 45 H10 I/0 8 mA 8 mA | I/O Port, SITXPE/S10E - TxD+ (Ethernet), OE
(USB), RXEN (GPSI Master), TXEN (GPSI Slave)
RE5 46 G9 /0 24 mA 24 mA | I/O Port, High Power Output, S1TXP - Tx+ (Ethernet),
VPO (USB), TXD (UART), DO (SPI), RxD (GPSI
Master), TxD (GPSI Slave)
RE6 47 G10 I/0 24 mA 24 mA | I/O Port, High Power Output, STTXM - Tx- (Ethernet),
VMO (USB), TxCLK/RxCLK (GPSI Master), TxCLK
(GPSI Slave)
RE7 48 J8 I/0 8 mA 8 mA | I/O Port, SITXME - TxD- (Ethernet), TxBUSY (GPSI)
RFO 49 F7 I/0 8 mA 8 mA | I/O Port, S2TXPE/S20E - TxD+ (Ethernet), OE
(USB), RXEN (GPSI Master), TXEN (GPSI Slave)
RF1 50 F9 I/0 24 mA | 24 mA | 1/O Port, High Power Output, S2TXP - Tx+ (Ethernet),
VPO (USB), TXD (UART), DO (SPI), RxD (GPSI
Master), TxD (GPSI Slave)
RF2 51 F10 /0 24 mA 24 mA | I/O Port, High Power Output, S2TXM - Tx- (Ethernet),
VMO (USB), TxCLK/RxCLK (GPSI Master), TxCLK
(GPSI Slave)
RF3 52 F6 I/0 8 mA 8 mA | I/O Port, S2TXME - TxD- (Ethernet), TxBUSY (GPSI)
RF4 57 B9 I/0 8 mA 8 mA | I/O Port, S2CLK - SCLK (SPI), RxCLK (GPSI),
optional SERDES clock input for UART or USB.
RF5 58 A9 I/0 8 mA 8 mA | I/0O Port, S2RXP - VP (USB), SS (SPI Slave), TXEN
(GPSI Master), RXxEN (GPSI Slave)
RF6 59 D10 I/0 8 mA 8 mA | I/O Port, S2RXM - VM (USB)
RF7 60 D9 I/0 8 mA 8 mA | I/0O Port, S2RXD - RCV (USB), RXD (UART), DI
(SPI), TxD (GPSI Master), RxD (GPSI Slave)
RGO 61 C10 Al/DO 4 mA* 4 mA* | Output Port, ADCO Input, Comparator Output
RG1 62 C9 Al/DO 4 mA* 4 mA* | Output Port, ADC1 Input, Comparator — Input
RG2 63 B10 AI/DO 4 mA* 4 mA* | Output Port, ADC2 Input, Comparator + Input
RG3 64 A10 Al/DO 4 mA* 4 mA* | Output Port, ADC3 Input, ADC reference Input
RG4 66 B7 Al/DO 4 mA* 4 mA* | Output Port, ADC4 Input, STRX-
RG5 67 B8 Al/DO 4 mA* 4 mA* | Output Port, ADC5 Input, STRX+
RG6 68 A7 Al/DO 4 mA* 4 mA* | Output Port, ADC6 Input, S2RX-
RG7 69 D7 Al/DO 4 mA* 4 mA* | Output Port, ADC7 Input, S2RX+
*GVDD = 2.5V

www.ubicom.com

11

1P2012 /1P2022 Data Sheet

2.5

Signal Descriptions — 1P2012

| = Digital Input, Al = Analog Input, O/DO = Digital Output, HiZ = High Impedance, P = Power, PLP = On-Chip Pullup,
ST = Schmitt Trigger

Table 2-2 Signal Descriptions

Pin Sink Source
Name Type @3.3V | @3.3V Function
PQFP | uBGA IOVDD | IOVDD
AVDD 70 B6 P Analog Supply
AVSS 71 A6 P Analog Ground
9,31, | D1,D6,)
DvVDD 56,72 | E9.G5 P Logic Supply
10, 32, | E1,K5, .
DVSS 55,73 | E10,D5 P Logic Ground
GVDD 65 A8 P I/0 Port G supply
IOVDD | 12,34, | E5,G6, P I/O Supply (except Port G)
53 E6
IOVSS 11, 33, | E2,K6, P I/0O Ground (all ports)
54 E7
XVDD 76 A4 P PLL Supply
XVSS 77 D4 P PLL Ground
0OSCi1 78 B4 I/ST Clock/Crystal Input
0SscC2 79 A3 O/Hiz Crystal Output (tri-state if FUSEO bit 15 = 1)
RST 80 A2 I/ST/ Reset Input. There is a weak pull-up on this pin, but
PLP floating this pin does not guarantee Vih.
RTCLK1 74 A5 I Real-Time Clock/Crystal Input
RTCLK2 75 B5 O/HiZ Real-Time Crystal Output (tri-state if FUSEOQ bit 14 =
1)
SS 1 Al I/ST/ Target SPI Slave Select (used only for in-system pro-
PLP gramming and debug)
TSCK 2 Cc2 I/ST/ Target SPI Clock (used only for in-system program-
PLP ming and debug)
TSI 3 B1 I/ST Target SPI Serial Data Input (used only for in-system
/PLP programming and debug)
TSO 4 B2 O/Hiz Target SPI Serial Data output (used only for in-sys-
tem programming and debug; high Z unless TSS low)
RAO 5 D2 I/0 24 mA | 24 mA | 1/O Port, High Power Output, Timer 1 Capture 1 Input
RA1 6 C1 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Capture 2 Input
RA2 7 B3 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Clock Input
RA3 8 E4 I/0 24 mA 24 mA | I/O Port, High Power Output, Timer 1 Output
RBO 13 F5 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Capture 1 Input
RB1 14 F1 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Capture 2 Input
RB2 15 F2 /0 8 mA 8 mA I/0O Port, External Interrupt, Timer 2 Clock Input

12

www.ubicom.com

IP2012 /1P2022 Data Sheet

Table 2-2 Signal Descriptions (continued)

Pin Sink Source
Name Type @3.3V | @3.3V Function
PQFP | uBGA IOVDD | IOVDD

RB3 16 G1 I/0 8 mA 8 mA | I/O Port, External Interrupt, Timer 2 Output

RB4 17 F4 I/0 8 mA 8 mA | I/O Port, External Interrupt

RB5 18 J3 I/0 8 mA 8 mA | I/O Port, External Interrupt, Parallel Slave Peripheral
HOLD

RB6 19 G2 I/0 8 mA 8 mA | I/O Port, External Interrupt, Parallel Slave Peripheral
R/W

RB7 20 H1 /0 8 mA 8 mA I/0O Port, External Interrupt, Parallel Slave Peripheral
CS

RCO 21 J2 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D8

RC1 22 H2 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D9

RC2 23 J1 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D10

RC3 24 K1 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D11

RC4 25 K2 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D12

RC5 26 K3 /0 4 mA 4 mA I/0O Port, Parallel Slave Peripheral Data D13

RC6 27 J4 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D14

RC7 28 K4 I/0 4 mA 4 mA | I/O Port, Parallel Slave Peripheral Data D15

RD2 35 J6 I/0 4 mA 4mA | I/O Port

RD3 36 G7 I/0 4 mA 4mA | I/O Port

RD4 37 K7 I/0 4 mA 4mA | I/O Port

RD5 38 J7 I/0 4 mA 4mA | I/O Port

RD6 39 K8 I/0 4 mA 4mA | I/O Port

RD7 40 K9 I/0 4 mA 4mA |I/O Port

REO 41 K10 I/0 8 mA 8 mA | I/O Port, S1CLK - SCLK (SPI), RxCLK (GPSI),
optional SERDES clock input for UART or USB.

RE1 42 H9 I/0 8 mA 8 mA | I/O Port, SIRXP - VP (USB), SS (SPI Slave), TXEN
(GPSI Master), RXEN (GPSI Slave)

RE2 43 J10 I/0 8 mA 8 mA | I/O Port, SIRXM - VM (USB)

RE3 44 J9 I/0 8 mA 8 mA | I/0O Port, STIRXD - RCV (USB), RXD (UART), DI
(SPI), TxD (GPSI Master), RxD (GPSI Slave)

RE4 45 H10 I/0 8 mA 8 mA | I/O Port, SITXPE/S10E - TxD+ (Ethernet), OE
(USB), RXEN (GPSI Master), TXEN (GPSI Slave)

RES5 46 G9 I/0 24 mA 24 mA | I/O Port, High Power Output, S1TXP - Tx+ (Ethernet),
VPO (USB), TXD (UART), DO (SPI), RxD (GPSI
Master), TxD (GPSI Slave)

RE6 47 G10 I/0 24 mA 24 mA | I/O Port, High Power Output, STTXM - Tx- (Ethernet),
VMO (USB), TxCLK/RxCLK (GPSI Master), TxCLK
(GPSI Slave)

RE7 48 J8 I/0 8 mA 8 mA | I/O Port, SITXME - TxD- (Ethernet), TxBUSY (GPSI)

RF2 51 F10 I/0 24 mA | 24 mA |1/O Port, High Power Output

www.ubicom.com 13

1P2012 /1P2022 Data Sheet

Table 2-2 Signal Descriptions (continued)

Pin Sink Source
Name Type @3.3V | @3.3V Function
PQFP | uBGA IovDD | I0VDD
RF3 52 F6 I/0 8 mA 8 mA | I/O Port
RF4 57 B9 I/0 8 mA 8 mA | I/O Port
RF5 58 A9 I/0 8 mA 8 mA | I/O Port
RF6 59 D10 I/0 8 mA 8 mA | I/O Port
RF7 60 D9 I/0 8 mA 8 mA | I/O Port
RGO 61 C10 AI/DO 4 mA* 4 mA* | Output Port, ADCO Input, Comparator Output
RG1 62 C9 Al/DO 4 mA* 4 mA* | Output Port, ADC1 Input, Comparator — Input
RG2 63 B10 Al/DO 4 mA* 4 mA* | Output Port, ADC2 Input, Comparator + Input
RG3 64 A10 Al/DO 4 mA* 4 mA* | Output Port, ADC3 Input, ADC reference Input
RG4 66 B7 AlI/DO | 4 mA* 4 mA* | Output Port, ADC4 Input, S1RX-
RG5 67 B8 AlI/DO | 4 mA* 4 mA* | Output Port, ADC5 Input, S1RX+
RG6 68 A7 Al/DO | 4 mA* 4 mA* | Output Port, ADC6 Input
RG7 69 D7 Al/DO 4 mA* 4 mA* | Output Port, ADC7 Input
*GVDD = 2.5V

14

www.ubicom.com

3.0 System Architecture

: v :

IP2012 /1P2022 Data Sheet

[PortA | | PortB | | PortCc | [PortD | [PortE | | PortF | | PortG |
7'y 7'y A A T ry X 2 24 2 X & Y W Y 7y A 2 4
L
¢ A
A ¢ y vVvYy (2') o '/ Analog
Timer 1 - Parallel - Ext. Memory| | erializer v Comparator,
(T1) 4 Timer 2 1g/16.bit Slave|| | Timer 0 Interface || Deserializers FD?' 2% Ethernet
£ rEdE;e Det. | (12) || perpheral || L (0 B Squelch
v v 4 v N Interrupt le SxCLK
y A \ A 4 A A A Y
< Internal Data Bus >
Y y ? 7 N\ 7'y
t t CPU Core Clock 4—|
| Reset ;I (4[)J '—,TSR Writeback v Real-Time Divider
nits ;
Execute w Timer Sé/IStelin Multiplexer
Brown Decode f :C Y
Out y Fetch RTCLK +———
ISD Divider
RS - PLL
y Mult|plex:r Divider
Internal . 3 y ¥ 4 ,J
RC —p| Vatehdog Timer ISP 64KB Flash| |16KB RAM
with Pre-Scaler 4KB Data Real-Ti
Clock Program Program Memory eal-Time OSC
¢ Memory Memory Clock Driver Driver 515-036b.0p5

Figure 3-1 1P2022 Detailed Block Diagram

The IP2012 /1P2022 CPUs execute from a 32K « 16 flash
program memory and an 8K -« 16 RAM program memory.
Figure 3-1 shows the IP2022 detailed block diagram, and
Figure 3-2 shows the IP2012 detailed block diagram. At
120 MHz operation, the maximum execution rate is 40
MIPS from Flash and 120 MIPS from RAM. At 160 MHz
operation, the maximum execution rate is 53.33 MIPS
from Flash and 160 MIPS from RAM. Speed-critical
routines can be copied from the flash memory to the RAM
for faster execution.

The CPU operates on 8-bit data in 128 special-purpose
registers, 128 global registers, and 3840 bytes of data
memory. The special-purpose registers hold control and
status bits used for CPU control and for interface with
hardware peripherals (timers, 1/0 ports, A/D converter,
etc.)Although the philosophy followed in the design of
Ubicom products emphasizes the use of fast RISC CPUs
with predictable execution times to emulate peripheral
devices in software (the ipModule™ concept), there are a
few hardware peripherals which are difficult to emulate in
software alone (e.g. an A/D converter) or consume an
excessive number of instruction cycles when operating at
high speed (e.g. data serialization/deserialization). The
design of the IP2012 / IP2022 incorporates only those
hardware peripherals which can greatly accelerate or
extend the reach of the ipModule™ concept. The
hardware peripherals included on-chip are:

www.ubicom.com

+ 52 1/0O port pins (48 on IP2012)

+ Watchdog timer

+ Real-time timer

+ 2 Multifunction 16-bit timers with compare and cap-
ture registers

+ 2 Real-time 8-bit timers

« 2 Serializer/deserializer (SERDES) units (IP2012 has
one unit)

+ 4 Linear feedback shift register (LFSR) units

+ 10-bit, 8-channel A/D converter

+ Analog comparator

+ Parallel slave peripheral interface

« External SRAM interface (IP2022 only)

There is a single interrupt vector which can be
reprogrammed by software. On-chip peripherals and up to
8 external inputs can raise interrupts.

There are five sources of reset:

+ RST external reset input

+ Power-On Reset (POR) logic

+ Brown-Out Reset (BOR) logic (detects low AvVdd con-
dition)

+ Watchdog timer reset

+ In-system debugging/programming interface reset

An on-chip PLL clock multiplier (x50) enables high-speed
operation (up to 160 MHz) from a slow-speed external

15

1P2012 /1P2022 Data Sheet

clock input or crystal. A CPU clock-throttling mechanism
allows fine control over power consumption in modes that
do not require maximum speed, such as waiting for an
interrupt.

The IP200 series has a mechanism for in-system
programming of its flash and RAM program memories
through a four-wire SPI interface. This provides easy

assembled circuit boards. In addition, the flash memory
can be programmed by software at run time, for example
to store user-specific data such as phone numbers and to
receive software upgrades downloaded over the Internet.
The devices also have an on-chip debugging facility which
makes the internal operation of the chip visible to third-
party debugging tools.

programming and reprogramming of devices on
[PortA | [PortB | | PortC | | PortD | | PortE | | PortF | | PortG |
A A A A y A A A A A A A
A
_F. , ¢ A (1')8 —r—- Analog
imer - Parallel - erializer, A4 Comparator,
an | | Timer 2| 18 pit Slave| | |Timer0 Deserializer [apc]| | 2x Ethemet
- | rEdE;e Det. | ‘(Tz) Peripheral k(TO) z 3 Squelch
2 v v >I Interrupt Iq— SxCLK
A 4 A A A 4 A 4 A 4 A A 4 A 4 A 4 A A A 4 A 4
< Internal Data Bus >
A A ? A A
¢ t CPU Core Clock 4—|
| ijsfit‘J (4) LFSR Writeback v Real-Time Divider
Units)
Execute w Timer Sé/lstelr(‘n Multiplexer
Brown Decode f ocC Y
t
Ou y Fetch RTCLK +—— t
m A A T
-_ ISD J Divider Divider
Sos PLL
RST y Multiplexer Divider
*
Internal) A y Y 4 I_I ,J
RC —» Vxﬁ;"g‘:gf’szgreerr ISP 64KB Flash| |16KB RAM 4KB Data -
Clock Program Program Mermo Real-Time osC
: Memory Memory y Clock Driver Driver 515-100.eps
Figure 3-2 1P2012 Detailed Block Diagram
3.1 CPU Registers

Figure 3-3 shows the CPU registers, which consist of
seven 8-bit registers, seven 16-bit registers, and one 24-
bit register. The 16-bit registers are formed from pairs of
8-bit registers, and the 24-bit register is formed from three
8-bit registers. For the register quick reference guide, see
Section 7.0 and Section 7.1.

The W or working register is used as the source or
destination for most arithmetic, movement, and logical
instructions.

The STATUS register holds the condition flags for the
results of arithmetic and logical operations, the page bits
(used for jumps and subroutine calls), and bits which
indicate the skipping state of the core and control of
continuation skip after return from interrupt. Figure 3-4
shows the assignment of the bits in the STATUS register.

16

www.ubicom.com

7 0
| W Register |

[STATUS Register |

[MULH Register |

[SPDREG Register |

[INTSPD Register |

| XCFG Register |

15
| PCH/PCL Register [
115 Interrupt Registers 0,
1
' IPCH/IPCL Register * [
1 1
| INTVECH/INTVECL Register * |4
1 1
45 Pointer Registers 0

| DPH/DPL Register [

| SPH/SPL Register [

J
1
1
| IPH/IPL Register [
:
1
1
1
1
1
1

15

DATAH/DATAL Register * |

ADDRX/ADDRH/ADDRL Register |

* Low byte doesn't carry to high byte 515-040b.eps

Figure 3-3 CPU Registers

7 6 5 4 3 2 1 0
PA2:0 | SAR | SSF | z | DC | C |
Figure 3-4 STATUS Register

+ PA2:PAO—Program memory page select bits. Used to
extend the 13-bit address encoded in jump and call in-
structions (selects 8K-word pages). Modified using
the page instruction.

+ SAR—Skip After Return bit. This bit should be set if
the core should be in the skipping state, and should
not be set if the core should not be in the skipping
state after the completion of the return instruction
(ret, retnp, or retw instructions, but not reti).
The return instruction will also clear the SAR control
bit to ensure correct behavior after the dynamic jump.

+ SSF—Shadowed Skipping/not state Flag. Gives the
ISR the ability to know if the interrupt occurred imme-
diately following a skip instruction. The software can

www.ubicom.com

IP2012 /1P2022 Data Sheet

choose either to clear the SSF flag in the ISR or to
make the first instruction of the context switching code
a nop to flush out the skip state.

« Z—Zero bit. Affected by most logical, arithmetic, and
data movement instructions. Set if the result was zero,
otherwise cleared.

+ DC—Digit Carry bit. After addition, set if carry from bit
3 occurred, otherwise cleared. After subtraction,
cleared if borrow from bit 3 occurred, otherwise set.

+ C—Carry bit. After addition, set if carry from bit 7 of
the result occurred, otherwise cleared. After subtrac-
tion, cleared if borrow from bit 7 of the result occurred,
otherwise set. After rotate (rr or rl) instructions,
loaded with the LSB or MSB of the operand, respec-
tively.

The MULH register receives the upper 8 bits of the 16-bit
product from signed or unsigned multiplication. The lower
8 bits are loaded into the W register.

The SPDREG register holds bits that control the CPU
speed and clock source settings, and is loaded by using
the speed instruction, as shown in Figure 3-5. The
SPDREG register is read-only, and its contents may only
be changed by executing a speed instruction, taking an
interrupt, or returning from an interrupt. For more
information about the speed instruction and the clock
throttling mechanism, see Section 3.4 and Figure 3-17.

Note: The speed instruction should be followed by a nop
instruction if Port B interrupt is used to wake up from sleep
mode.

7 6 5 4 3 0

| PLL |ﬁ| CLK1:0 CDIV3:0

Figure 3-5 SPDREG Register

« PLL—enable x50 PLL clock multiplier; 0 = enabled; 1
= disabled. Power consumption can be reduced by
disabling it. See Figure 3-17.

« OSC—enable OSC oscillator; 0 = enabled; 1 = dis-
abled (stops OSC oscillator and blocks propagation of
OSC1 external clock input). Power consumption can
be reduced by disabling it.

+ CLK1:0—selects the system clock source, as shown
in Table 3-1. See Figure 3-17 for the clock logic. See
Section 7.1.5 (FCFG register, FRDTS1:0 bits) for ex-
ceptions.

17

1P2012 /1P2022 Data Sheet

Table 3-1 CLK1:0 Field Encoding

CLK1:0 System Clock Source

00 PLL Clock Multiplier

01 OSC Oscillator/External OSC1 Input

10 RTCLK oscillator/external clock on
RTCLKT1 input

11 System Clock Off

+ CDIV3:0—selects the clock divisor used to generate
the CPU core clock from the system clock, as shown
in Table 3-2 (also see Figure 3-17).

Table 3-2 System Clock Divisor

System CPU Core Frequency
CDIV3:0 | Clock [120 MHz Sys-| 160 MHz Sys-

Divisor | " tem Clock tem Clock
0000 1 120 MHz 160 MHz
0001 2 60 MHz 80 MHz
0010 3 40 MHz 53.33 MHz
0011 4 30 MHz 40 MHz
0100 5 24 MHz 32 MHz
0101 6 20 MHz 26.66 MHz
0110 8 15 MHz 20 MHz
0111 10 12 MHz 16 MHz
1000 12 10 MHz 13.33 MHz
1001 16 7.5 MHz 10 MHz
1010 24 5 MHz 6.66 MHz
1011 32 3.75 MHz 5 MHz
1100 48 2.5 MHz 3.33 MHz
1101 64 1.875 MHz 2.5 MHz
1110 128 0.9375 MHz 1.25 MHz
1111 Clock Off 0 MHz 0 MHz

The INTSPD register holds bits that control the CPU
speed and clock source during interrupt service routines
(it is copied to the SPDREG register when an interrupt
occurs). It has the same format as the SPDREG register.

When the OSC crystal driver is stopped (SPDREG bit 6 =
1) and Port B or Real Time Timer interrupts are enabled,
then INTSPD bits 5 and 4 must not both be 0, because the
crystal startup time plus PLL startup time may be greater
than WUDP2:0 (see Figure 3-17).

18

The XCFG register holds additional control and status
bits, as shown in Figure 3-6.

7 6 5 4 3 2 1 0

| GIE|FWP |RTEOS| RTOSC_EN |INT_EN|Rsvd| FBUSY |
Figure 3-6 XCFG Register

GIE—global interrupt enable bit. When set, interrupts
are enabled. When clear, interrupts are disabled. For
more information about interrupt processing, see
Section 3.7.

FWP—flash write protect bit. When clear, writes to
flash memory are ignored. For more information
about programming the flash memory, see Section
4.7.

RTEOS—real-time timer oversampling enable bit.
When set, oversampling is used. For more informa-
tion, see Section 5.3.

RTOSC_EN—RTCLK oscillator enable bit. When
clear, the RTCLK oscillator is operational. When set,
the RTCLK oscillator is turned off.

INT_EN—int instruction interrupt enable bit. When
set, int instructions cause interrupts. When clear,
int instructions only increment the PC, like nop.
FBUSY—read-only flash memory busy bit. Set while
fetching instructions out of flash memory or while
busy processing an iread, ireadi, iwrite,
iwritei, fwrite, fread or ferase instruction
that operates on Flash, otherwise clear. For more in-
formation about programming the flash memory, see
Section 4.7.

The PCH and PCL register pair form a 16-bit program
counter. The PCH register is read-only. The PCL register
can be used to implement a lookup table, by moving a
variable to the w register, then executing an add PCL,w
instruction. If w=01 when the add occurs, the instruction
after the add will be skipped; if w=02, two instructions will
be skipped, etc.

The IPCH and IPCL register pair specifies the return
address when a reti instruction is executed.

The INTVECH and INTVECL register pair specifies the
interrupt vector. It has a default value of 0 following reset.
On a return from interrupt, an option of the reti
instruction allows software to save the incremented value
of the program counter in the INTVECH and INTVECL
registers.

The IPH and IPL register pair is used as a pointer for
indirect addressing. For more information about indirect
addressing, see Section 4.1.3.

The DPH and DPL register pair and the SPH and SPL
register pair are used as pointer registers for indirect-with-
offset addressing. For more information about indirect-

www.ubicom.com

with-offset addressing, see Section 4.1.4. The SPH and
SPL registers are automatically post-decremented when
storing to memory with a push instruction, and they are
automatically pre-incremented when reading from
memory with a pop instruction.

The ADDRSEL register holds an index to one of eight 24-
bit pointers used to address program memory. The current
program memory/external memory 24-bit address
selected by the ADDRSEL register is accessible in the
ADDRKX (bits 23:16), ADDRH (bits 15:8), and ADDRL (bits
7:0) registers. The upper 5-bits of the ADDRSEL register
are unused. All 8 banks of 24-bits are initialized to
0x000000 upon reset.

Program memory is always read or written as 16-bit
words. On reads, the data from program memory is
loaded into the DATAH and DATAL register pair. On writes,
the contents of the DATAH and DATAL register pair are
loaded into the program memory.

3.2 Data Memory

Figure 3-7 is a map of the data memory. The special-
purpose registers and the first 128 data memory locations
(between addresses 0x080 and 0xOFF) can be accessed
with a direct addressing mode in which the absolute
address of the operand is encoded within the instruction.
The remaining 3840 bytes of data memory (between
addresses 0x100 and OxFFF) must be accessed using
indirect or indirect-with-offset addressing modes. There is
one 16-bit register for the indirect address pointer, and two
16-bit registers for indirect-with-offset address pointers.
The offset is a 7-bit value encoded within the instruction.
For more information about the addressing modes, see
Section 4.1.

7 0
0x001 127
Special-Purpose
OXO7F Registers
0x080
128
Global Registers
OXOFF | _]
0x100
3840 Bytes
Data Memory
OxFFF

515-028a.eps

Figure 3-7 Data Memory Map

www.ubicom.com

IP2012 /1P2022 Data Sheet

3.3 Program Memory

Figure 3-8 is a map of the program memory. A program
memory address in the INTVECH/INVECL, IPCH/IPCL,
or PCH/PCL registers or on the hardware stack is a word
address. However, the GNU software tools require byte
addresses when referring to locations in program
memory. An address loaded in the
ADDRX/ADDRH/ADDL register is a byte address.

The program memory is organized as 8K-word pages
(16K bytes). Single-instruction jumps and subroutine calls
are restricted to be within the same page. Longer jumps
and calls require using a page instruction to load the
upper address bits into the PA2:0 bits of the STATUS
register. The page instruction must immediately precede
the jump or call instruction. The PA2:0 bits should not be
modified by writing directly to the STATUS register,
because this may cause a mismatch between the PA2:0
bits in the STATUS register and the current program
counter (see Section 3.3.2). For more information about
the flash program memory, see Section 4.7 and Section
7.0.2.

Word Byte
Address Address

15 0
0x0000 0x000000

Program RAM
Ox1FFF 0x003FFE
0x2000 0x004000

Reserved

(undefined data)
0x7FFF O0x00FFFE
0x8000 0x010000

O0x9FFF 0x013FFE
0xA000 0x014000

OxBFFF 0x017FFE
0xC000 0x018000

OxDFFF 0x01BFFE
0xE000 0x01C000

OxFFFF Ox01FFFE

Flash Program Memory

Flash Program Memory

Flash Program Memory

Flash Program Memory

515-006b.eps

Figure 3-8 Program Memory Map

External memory is not shown in Figure 3-8 because the
CPU cannot execute instructions directly out of external
memory. For more information about external memory,
see Section 5.11.

3.3.1 Loading the Program RAM
Software loads the program RAM from program flash
memory using the iread/ireadi and

iwrite/iwritei instructions. The iread instruction
reads the 16-bit word specified by the address held in the
ADDRX/ADDRH/ADDRL register. This word can be in
program flash memory, program RAM, or external
memory. When the iread instruction is executed, bits

19

1P2012 /1P2022 Data Sheet

15:8 of the word are loaded into the DATAH register, and
bits 7:0 are loaded into the DATAL register. The address is
a word-aligned byte address (i.e. an address that is zero
in its LSB). The ireadi instruction is identical to the
iread instruction, except that it also increments the
address by 2.

The iwrite instruction writes the 16-bit word held in the
DATAH/DATAL registers to the program RAM location
specified by the address held in the
ADDRX/ADDRH/ADDRL register. The iwritei
instruction is identical, except that it also increments the
address by 2. For more information about the
iread/ireadi and iwrite/iwritei instructions,
see Section 4.7.

3.3.2 Program Counter

The program counter holds the 16-bit address of the
instruction to be executed. The lower eight bits of the
program counter are held in the PCL register, and the
upper eight bits are held in the PCH register. A write to the
PCL register will cause a jump to the 16-bit address
specified by the PCH and PCL registers. If the PCL
register is written as the destination of an add or addc
instruction and carry occurs, the PCH register is
automatically incremented. (This may cause a mismatch
between the PA2:0 bits in the STATUS register and the
current program counter, therefore it is strongly
recommended that direct modification of the PCL register
is only used for jumps within a page.) The PCH register is
read-only.

The PA2:0 bits in the STATUS register are not used for
address generation, except when a jump or subroutine
call instruction is executed. However, when an interrupt is
taken, the PA2:0 bits are automatically updated with the
upper three bits of the interrupt vector (INTVECH/L).
These bits are restored from the STATUS shadow register
when the interrupt service routine returns (i.e. executes a
reti instruction).

3.4 Low Power Support

Software can change the execution speed of the CPU to
reduce power consumption. A mechanism is also
provided for automatically changing the speed on entry
and return from the interrupt service routine. The speed
instruction specifies power-saving modes that include a
clock divisor between 1 and 128. This divisor only affects
the clock to the CPU core, not the timers, SERDES,
external memory or ADC (see Figure 3-17). The speed
instruction also specifies the clock source (OSC clock,
RTCLK oscillator, or PLL clock multiplier) and whether to
disable the OSC clock oscillator or the PLL.

20

For maximum power savings when running from the OSC
clock, disable the RTCLK oscillator (RTOSC_EN bit in the
XCFG register), disable the watchdog timer (WDTE bit in
the FUSE1 register), disable the A/D converter (ADCGO
bit in the ADCCFG register, disable the analog
comparator (CMPEN bit in the CMPCFG register) and
check that no flash operation is in progress (FBUSY bit in
the XCFG register) before executing a speed #S$FF
instruction.

To summarize settings for lowest power:

+ XCFGbit4 =1

+ FUSE1bit3=0

+ CMPCFGbit7=0
+ ADCCFGbit3=0
+ XCFGbit0=0

Note: Before executing the speed instruction or
executing an interrupt (an interrupt will cause INTSPD to
be copied to SPDREG), insure that the FCFG register has
appropriate settings for the new clock frequency.

The SPDREG register (see Figure 3-5) holds the current
settings for the clock divisor, clock source, and disable
bits. These settings can be explicity changed by
executing a speed instruction, and they change
automatically on interrupts. The SPDREG register is read-
only, and its contents may only be changed by executing
a speed instruction, taking an interrupt, or returning from
an interrupt. Two consecutive speed instructions are not
allowed. The INTSPD register specifies the settings used
during execution of the interrupt service routine. The
INTSPD register is both readable and writable.

On return from interrupts, the reti instruction includes a
bit that specifies whether the pre-interrupt speed is
restored or the current speed is maintained (see Table 3-
5).

The actual speed of the CPU is indicated by the SPDREG
register unless the specified speed is faster than the flash
access time and the program is executing out of flash.
When program execution moves from program RAM to
program flash memory, the new clock divisor will be the
greater (slower) of the clock divisor indicated by the
SPDREG register and the clock divisor required to avoid
violating the flash memory access time. The SPDREG
register does not indicate if the flash clock divisor is being
used. The speed indicated by the SPDREG will be
overridden only if the speed is too fast for the flash
memory.

The FCFG register holds bits that specify the minimum
number of system clock cycles for each flash memory
cycle (see Section 4.7.1).

www.ubicom.com

3.4.1 Clock Stop Mode (SLEEP)

When a speed instruction occurs, it is possible for the
CPU clock source to be disabled. The clock to the CPU
core may be disabled while the system clock is left
running, or the system clock may be disabled which also
disables the CPU core clock. See SPDREG, Section
7.1.18.

3.4.2

Recovery from SLEEP (core clock stop) mode to normal
execution is possible from these sources:

Wakeup

+ External interrupts (i.e. Port B interrupts)
+ Real-time timer interrupts

+ Watchdog timer overflow reset

+ Brown-out voltage reset

+ RST external reset

The first two sources listed do not reset the chip, so
register and CPU states are maintained. The last three
sources reset the chip, so software must perform all of its
reset initialization tasks to recover. This usually requires
additional time, as compared to recovery through an
interrupt. If a Port B or Real Time Timer interrupt occurs
during core clock stop mode, the INTSPD register will be
copied to the SPDREG register, the ISR will be executed,
then mainline code will resume execution at the
instruction after the speed command that caused the
clock to stop.

Note: If wakeup triggers an ISR that has a reti
instruction which reinstates the pre-interrupt speed (see
Table 3-5), the device goes back to sleep. If a subsequent
wakeup occurs which does not reinstate the pre-interrupt
speed, then a nop must be inserted after the speed
instruction which puts it to sleep.

3.5 Speed Change

The speed instruction executes using the current clock
divisor. The new clock divisor takes effect with the
following instruction, as shown in the following code
example.

nop ;assume divisor is 4, so this
;instruction takes 4 cycles
speed #0x06 ;change the divisor to 8,
;instruction takes 4 cycles
nop ;instruction takes 8 cycles
speed #0x00 ;change the divisor to 1,
;instruction takes 8 cycles

nop ;instruction takes 1 cycle

www.ubicom.com

IP2012 /1P2022 Data Sheet

The automatic speed changes require a certain amount of
delay to take effect (see Figure 3-5 and Figure 3-17):

+ Changing the Core Clock Divisor—there is no delay
when the clock divisor is changed (the instruction af-
ter the speed instruction is executed at the new
speed).

+ Changing the System Clock Source—the delay is up
to one cycle of the slower clock. For example, chang-
ing between 4 MHz and 120 MHz could require up to
0.25 microseconds.

« Turning on the OSC Clock Oscillator (clearing the
‘OSC bit in the SPDREG register)—the system clock
suspend time is specified in the WUDX2:0 bits in the
FUSEQO register (see Section 3.10.1).

« Turning on the PLL Clock Multiplier (clearing the PLL
bit in the SPDREG register)—the system clock sus-
pend time is specified in the WUDP2:0 bits in the
FUSEO register.

If both the OSC oscillator and PLL are re-enabled
simultaneously, the delay is controlled by only the
WUDP2:0 bits. Bits in the FUSEO register are flash
memory cells which cannot be changed dynamically
during program execution.

3.6 Instruction Timing

All instructions that perform branches take 3 cycles to
complete, consisting of 1 cycle to execute and 2 cycles to
load the pipeline.

Table 3-3 Branch Timing

Instruction Execution Time P'pe!I'.?n‘: eLoad
Jjmp 1 2
call 1 2
ret 1 2
reti 1 2

In the case of an automatic speed change, the execution
time will be with respect to the original speed and the
pipeline load time will be with respect to the new speed.

Conditional branching is implemented in the IP2012 /
IP2022 by using conditional skip instructions to branch
over an unconditional jump instruction. To support
conditional branching to other pages, the conditional skip
instructions will skip over two instructions if the first
instruction is a page instruction. The 1loadh and 1loadl
instructions also cause an additional instruction to be
skipped. When any of these conditions occur, it is called
an extended skip instruction.

21

1P2012 /1P2022 Data Sheet

Skip instructions take 1 cycle if they do not skip, or 2
cycles if they skip over one instruction. An extended skip
instruction may skip over more than one 1oadh, loadl,
or page instruction, however this operation is
interruptible and does not affect interrupt latency.

The iread and iwrite instructions take 4 cycles. The
multiply instructions take 1 cycle.

3.7 Interrupt Support

There are three types of interrupt sources:

« On-Chip Peripherals—the serializer/deserializer units,
real-time timer, timer 0O, timer 1, and timer 2 are capa-
ble of generating interrupts. The Parallel Slave Periph-
eral does not generate interrupts on its own; it
requires programming one of the Port B external inter-
rupt inputs to generate interrupts on its behalf.

« External Interrupts—the eight pins on Port B can be
programmed to generate interrupts on either rising or
falling edges (see Section 5.1.1).

+ int Instruction-the int instruction can be executed
by software to generate an interrupt. The INT_EN bit
can be considered as the interrupt flag for the int in-
struction, if the ISR checks for interrupt source. The
INT_EN bit in the XCFG register must be set to enable
the int instruction to trigger an interrupt. Because
the reti instruction returns to the int instruction,
the INT_EN bit must be cleared in the interrupt ser-
vice routine (ISR) before returning.

Figure 3-9 shows the system interrupt logic. Each
interrupt source has an interrupt enable bit. To be capable
of generating an interrupt, the interrupt enable bit and the
global interrupt enable (GIE) bit must be set.

Port B Interrupt

SerDes Interrupt

Timer 0 TOIF Bit ——

Real-Time Timer RTIF Bit —
Timer 1 OFIF Bit —

Timer 1 CAP2IF/CMP2IF Bit
Timer 1 CAP1IF Bit

Timer 1 CMP1IF Bit

Timer 2 OFIF Bit —

Timer 2 CAP2IF/CMP2IF Bit —
Timer 2 CAP1IF Bit ——

Timer 2 CMP1IF Bit

int Instruction —
INT_EN Bit —

GIE Bit

I

Interrupt

)to CPU

515-067c.eps

Figure 3-9 System Interrupt Logic

22

3.7.1

There is one interrupt vector held in the INTVECH and
INTVECL registers, which is reprogrammable by
software. When an interrupt is taken, the current PC is
saved in the IPCH and IPCL registers. On return from
interrupt (i.e. execution of the reti instruction), the PC is
restored from the IPCH and IPCL registers. Optionally, the
reti instruction may also copy the incremented PC to
the INTVECH and INTVECL registers before returning.
This has the effect of loading the INTVECH and INTVECL
registers with the address of the next instruction following
the reti instruction. This option can be used to directly
implement a state machine, such as a simple round-robin
scheduling mechanism for a series of interrupt service
routines (ISRs) in consecutive memory locations.

Interrupt Processing

If multiple sources of interrupts have been enabled, the
ISR must check the interrupt flags of each source to
determine the cause of the interrupt. The ISR must clear
the interrupt flag for the source of the interrupt to prevent
retriggering of the interrupt on completion of the ISR (i.e.
execution of the reti instruction). Because the interrupt
logic adds a 2-cycle delay between clearing an interrupt
flag and deasserting the interrupt request to the CPU, the
flag must be cleared at least 2 cycles before the reti
instruction is taken.

When an interrupt is taken, the registers shown in Figure
3-10 are copied to a shadow register set. Each shadow
register is actually a 2-level push-down stack, so one level
of interrupt nesting is supported in hardware. The interrupt
processing mechanism is completely independent of the
16-level call/return stack used for subroutines.

The contents of the DATAH and DATAL registers are
pushed to their shadow registers 4 cycles after the
interrupt occurs, to protect the result of any pending
iread instruction. Therefore, software should not access
the DATAH or DATAL registers during the first instruction
of an ISR.

www.ubicom.com

IP2012 /1P2022 Data Sheet

INTVECH/INTVECL PC N IPCH/IPCL IPCH/IPCL
Register Register Shadow Register
INTSPD SPDREG N SPDREG N SPDREG
Register Register Shadow Register 1 Shadow Register 2

W N W N w
Register Shadow Register 1 Shadow Register 2
INTVECH STATUS N STATUS N STATUS
bits 7:5 copied Register Shadow Register 1 Shadow Register 2
MULH N MULH N MULH
Register Shadow Register 1 Shadow Register 2
IPH/IPL N IPH/IPL N IPH/IPL
Register Shadow Register 1 Shadow Register 2
DPH/DPL N DPH/DPL N DPH/DPL
Register Shadow Register 1 Shadow Register 2
SPH/SPL N SPH/SPL N SPH/SPL
Register Shadow Register 1 Shadow Register 2
DATAH/DATAL DATAH/DATAL N DATAH/DATAL
Register Shadow Register 1 Shadow Register 2
GIE=0 GIE »| GIE Shadow bit 1 [»| GIE Shadow bit 2
XCFG bit 7

515-068d.eps

Figure 3-10 Interrupt Processing (On Entry to the ISR)

Note: On entry to the ISR the W, MULH, IPH/IPL, DPH/DPL, SPH/SPL, ADDRSEL and DATAH/DATAL register values
don’t change from their mainline code values (they are copied to their shadow registers).

www.ubicom.com

23

1P2012 /1P2022 Data Sheet

On return from the ISR, these registers are restored from the shadow registers, as shown in Figure 3-11.

24

If reti
Instruction
Bit 2 is Set

If reti E ---------------------------------- i
Instruction 1 PC + 1 N INTVECH/'INTVECL
Bit 1is Set | Register
__________________________________ -l
IPCH/IPCL IPCH/IPCL
Shadow B Register | PC
If reti E ---------------------------------- H
Instruction ! TOTMR + W —> TOTMR
Bit 0 is Set | Register
SPDREG) SPDREG N SPDREG
Shadow Register 2 Shadow Register 1 Register
w W W
Shadow Register 2 e Shadow Register 1 B Register
STATUS L) STATUS N STATUS
Shadow Register 2 Shadow Register 1 Register
MULH MULH MULH
Shadow Register 2 > Shadow Register 1) Register
IPH/IPL IPH/IPL IPH/IPL
Shadow Register 2 e Shadow Register 1 e Register
DPH/DPL L) DPH/DPL N DPH/DPL
Shadow Register 2 Shadow Register 1 Register
SPH/SPL L) SPH/SPL N SPH/SPL
Shadow Register 2 Shadow Register 1 Register
DATAH/DATAL N DATAH/DATAL N DATAH/DATAL
Shadow Register 2 Shadow Register 1 Register
GIE Shadow bit2 [-»| GIE Shadow bit 1 |- GIE
adow bl XCFG bit 7

515-069c.eps

Figure 3-11 Interrupt Return Processing (upon execution of reti)

www.ubicom.com

3.7.2

The GIE bit serves two purposes:

Global Interrupt Enable Bit

+ Preventing an interrupt in a critical section of mainline
code
+ Supporting nested interrupts

The GIE bit is automatically cleared when an interrupt
occurs, to disable interrupts while the ISR is executing.
The GIE bit is automatically set by the reti instruction to
re-enable interrupts when the ISR returns.

Table 3-4 GIE Bit Handling

Event Effect
Enter ISR (interrupt) GIE bit is cleared
Exit ISR GIE bit is set

(reti instruction)

setb xcfg,7
instruction (inside ISR)

Enable interrupts for
nested interrupt support

clrb xcfg,7
instruction (inside ISR)

Nothing, the GIE bit is
already clear

setb xcfg,7
instruction (mainline code)

Enable interrupts

clrb xcfqg,7
instruction (mainline code)

Disable interrupts

To re-enable interrupts during ISR execution, the ISR
code must first clear the source of the first interrupt. It may
also be desirable to disable specific interrupts before
setting the GIE bit to provide interrupt prioritization. Even
with GIE deasserted, interrupt triggers are still captured
but an interrupt won't be triggered until GIE is re-enabled.
Caution must be taken not to exceed the interrupt shadow
register stack depth of 2.

Clearing the GIE bit in the ISR cannot be used to globally
disable interrupts so that they remain disabled when the
ISR returns, because the reti instruction automatically
sets the GIE bit. To disable interrupts in the ISR so that
they remain disabled after the ISR returns, the individual
interrupt enable bits for each source of interrupts must be
cleared.

www.ubicom.com

IP2012 /1P2022 Data Sheet

3.7.3

The interrupt latency is the time from the interrupt event
occurring to first ISR instruction being latched from the
decode to the execute stage (see Section 4.3). If the
interrupt comes from a Port B input and the SYNC bit in
the FUSE1 register is 0, an additional two core clock
cycles of synchronization delay are added to the interrupt
latency.

Interrupt Latency

The ireadi or iwritei instructions are blocking (i.e.
prevent other instructions and interrupts from being
executed) for 4 core clock cycles. The iread or
iwrite instructions are blocking for 4 core clock cycles
while operating on program RAM, and non-blocking
(single cycle) while operating on external memory.

When an interrupt event is triggered, the CPU speed is
changed to the speed specified by the INTSPD register
(the SPDREG register is copied to a shadow register, then
loaded with the value from the INTSPD register).

If INTSPD is set the same as SPDREG when an interrupt
occurs, then the interrupt latency is 3 core clock cycles for
synchronous interrupts. If not, then the interrupt latency is
3 core clock cycles, plus the speed change (delay
described in Section 3.5).

3.7.4 Return From Interrupt

The reti instruction word includes three bits which
control its operation, as shown in Table 3-5. The three bits
are specified from assembly language in a literal (e.g.
reti #0x7 to specify all bits as 1).

Table 3-5 reti Instruction Options

Bit Function

2 Reinstate the pre-interrupt speed
1 = enable, 0 = disable

1 Store the PC+1 value in the INTVECH and
INTVECL registers
1 = enable, 0 = disable

0 | Add W to the TOTMR register

1 = enable, 0 = disable

Updating the interrupt vector allows the programmer to
implement a sequential state machine. The next interrupt
will resume the code directly after the previous reti
instruction.

The reti instruction takes 1 cycle to execute, and there
is a further delay of 2 cycles at the mainline code speed to
load the pipeline before the mainline code is resumed.

25

1P2012 /1P2022 Data Sheet

Note: If RETI can return to Flash program memory, insure
that all Flash reads or writes are complete (XCFG bit 0 =
0) before RETI is executed.

3.7.5 Disabled Interrupt Resources

If a peripheral is disabled and its interrupt flag is cleared,
the peripheral does not have the ability to set an interrupt
flag. The interrupt flag, however, is still a valid source of
interrupt (If software sets an interrupt flag, the
corresponding interrupt enable bit is set, and the GIE bit
is set, then the CPU will be interrupted whether or not the
peripheral is enabled or disabled).

If a peripheral is disabled inside the ISR, then its interrupt
flag must be cleared to prevent an undesired interrupt
from being taken when the ISR completes or when GIE is
enabled (enabling nested interrupts - see Section 3.7.2).

3.8 Reset

There are five sources of reset:

+ Power-On Reset (POR; reset occurs at power up)
+ Brown-Out Reset (BOR)

+ Watchdog Reset

+ External Reset (from the RST pin)

+ Tool Reset (from the debugging interface)

Each of these reset conditions causes the program
counter to branch to the reset vector at the top of the
program memory (word address OxFFFO or byte address
0x1FFEOQ).

The IP2012 / IP2022 incorporates a Power-On Reset
(POR) detector that generates an internal reset as DVdd
rises during power-up. Figure 3-12 is a block diagram of
the reset logic. The startup timer controls the reset time-
out delay. The reset latch controls the internal reset signal.
On power-up, the reset latch is cleared (CPU held in
reset), and the startup timer starts counting once it
detects a valid logic high signal on the RST pin. Once the
startup timer reaches the end of the timeout period, the
reset latch is cleared, releasing the CPU from reset.

Note: CPU operation does not start until the CPU is
released from reset and valid core clocks are received
past the system clock suspend circuit (see WUDX block in
Figure 3-17). So, for a POR with FUSEO register
WUDX=350us, for example, the core starts operation
~70ms after power up. For a POR with WUDX= 1.1sec,
the core starts operation ~1.1sec after power up.

The PSPCFG (address 0x06E) register contains two bits
to indicate possible sources of the reset, WD and BO. The
WD bit is cleared on reset unless the reset was caused by
the watchdog timer, in which case the WD bit is set. The
BO bit is cleared on reset unless the reset was caused by
the brown-out logic, in which case, the BO bit is set.

Figure 3-13 shows a power-up sequence in which RST is
not tied to the DVDD pin and the DVDD signal is allowed
to rise and stabilize before RST pin is brought high. The
WUDX2:0 bits of the FUSEDO register specify the length of
time from the rising edge of RST until the device leaves
reset.

For RST, Tool Reset or Watchdog = WUDX2:0 (FUSEQ)

For POR or BOR = (1025 x 70us) = 70ms

Internal
Time-Out Reset Signal Core Reset
Watchdog Start-Up (active low) P FF [FF (active low,
RC Clock > Timer A A initially low)
(~14KHz) Clear Core Clock l 4[
DVDD E_@ Power-On Reset
Brown-Out
AVDD |Z|—
Detection
RST X [>o
Watchdog Timer Overflow
Tool Reset 515-023d.eps

Figure 3-12 On-Chip Reset Circuit Block Diagram

26

www.ubicom.com

|
DVDD /I
I |
RST j /
| I
POR I :
WUDX '¢—,
Startup Timer ' —
(Time-Out)
Internal |—
Reset Signal
515-019c.eps

Figure 3-13 Power-Up, Separate RST Signal

Figure 3-14 shows the on-chip Power-On Reset sequence
in which the RST and DVDD pins are tied together. The
DVDD signal is stable before the startup timer expires. In
this case, the CPU receives a reliable reset.

DVDD /
RST /

Startup Timer
(Time-Out)

I

Internal
Reset Signal

515-022e.eps

Figure 3-14 Power-On Reset, RST Tied To DVdd

However, Figure 3-15 depicts a situation in which DVDD
rises too slowly. In this scenario, the startup timer will time
out prior to DVDD reaching a valid operating voltage level
(DVDD min). This means the CPU will come out of reset
and start operating with the supply voltage below the level
required for reliable performance. In this situation, an
external RC circuit is recommended for driving RST. The
RC delay should exceed five times the time period
required for DVDD to reach a valid operating voltage.

pvobo L —
I I

RT L
|
: |
POR — |0
|

Startup Timer I

(Time-Out) !

Internal I|
Reset Signal 515-020e.eps

Figure 3-15 DVdd Rise Time Exceeds Tstartup

Figure 3-16 shows the recommended external reset
circuit. The external reset circuit is required only if the

www.ubicom.com

IP2012 /1P2022 Data Sheet

DVDD rise time has the possibility of being too slow (refer
to SVdd specification in Section 8.4).

DVDD

R2 1P2022

R1 _
RST

TC1

- 515-021a.eps

Figure 3-16 External Reset Circuit

The diode D discharges the capacitor when DVDD is
powered down.

R1 =100 Q to 1K Q will limit any current flowing into RST
from external capacitor C1. This protects the RST pin from
breakdown due to Electrostatic Discharge (ESD) or
Electrical Overstress (EOS).

R2 < 40K Q is recommended to make sure that voltage
drop across R2 leaves the RST pin above a Vih level.

C1 should be chosen so that R2 « C1 exceeds five times
the time period required for DVDD to reach a valid
operating voltage.

27

1P2012 /1P2022 Data Sheet

3.8.1

The on-chip brown-out detection circuitry resets the CPU
when AVdd dips below the brown-out voltage level
programmed in the BOR2:0 bits of the FUSE1 register
(refer to Section 3.10.2). Bits in the FUSET1 register are
flash memory cells which cannot be changed dynamically
during program execution.

Brown-Out Detector

The device is held in reset as long as AVdd stays below
the brown-out voltage. The CPU will come out of reset
when AVdd rises between 100mV and 200mV above the
brown-out voltage (the CPU may never come out of
brownout reset, even after AVdd returns to acceptable
level, if the brownout setting is too high). Therefore, the
2.10V setting is recommended. The brown-out level can
be programmed using the BOR2:0 bits in the FUSE1
register, as shown in Section 3.10.2.

3.8.2

After reset, the PC is loaded with OxFFFO, which is near
the top of the program memory space. Typical activities for
the reset initialization code include:

Reset and Interrupt Vectors

+ Setting up the FCFG register with appropriate values
for flash timing compensation.

+ Issuing a speed instruction to initialize the CPU core
clock speed.

+ Checking for the cause of reset (brown-out voltage,
watchdog timer overflow, or other cause). In some ap-
plications, a “warm” reset allows some data initializa-
tion procedures to be skipped.

+ Copying speed-critical sections of code from flash
memory to program RAM.

+ Setting up data memory structures (stacks, tables,
etc.).

+ Initializing peripherals for operation (timers, etc.).

+ Initializing the dynamic interrupt vector and enabling
interrupts.

Because the default interrupt vector location is 0, which is
in program RAM, interrupts should not be enabled until
the ISR is loaded in shadow RAM or the dynamic interrupt
vector is loaded with the address of an ISR in flash
memory. There is a single dynamic interrupt vector shared
by all interrupts. The interrupt vector can be changed by
loading the INTVECH and INTVECL registers, or by
issuing a reti instruction with an option specifying that
the interrupt vector should be updated with the current PC
value plus 1.

3.8.3 Register States Following Reset

The effect of different reset sources on a register depends
on the register and the type of reset operation. Some

28

registers are initialized to specific values, some are left
unchanged, and some are undefined.

A register that starts with an unknown value should be
initialized by the software to a known value if it is going to
be used (no need to initialize unused registers nor data
memory). Do not simply test the initial state and rely on it
starting in that state consistently. See Table 7-1 for more
detailed information.

www.ubicom.com

3.9

There are two clock oscillators, the OSC oscillator and the
RTCLK oscillator. Using the PLL clock multiplier, the OSC
clock is intended to provide the time base for running the
CPU core at speeds up to 120MHz for the standard
version, and at 160 MHz for the faster version. The RTCLK
oscillator operates at 32.768kHz using an external crystal.
This oscillator is intended for running the real-time timer
when the OSC oscillator and PLL clock multiplier are
turned off. Either clock source can be driven by an
external clock signal up to 120MHz.

Clock Oscillator

Figure 3-17 shows the clock logic for the 1P2022, and
Figure 3-18 shows that of the IP2012. The PLL clock

IP2012 /1P2022 Data Sheet

multiplier has a fixed multiplication factor of 50. The PLL is
preceded by a divider capable of any integer divisor
between 1 and 8, as controlled by the PIN2:0 bits of the
FUSEO register (refer to Section 3.10.1). The PLL is
followed by a second divider capable of any integer divisor
between 1 and 4, as controlled by the POUT1:0 bits of the
FUSEQO register. A third divider which only affects the clock
to the CPU core is controlled by the speed change
mechanism described in Section 3.4. See Section 3.10.1
for a description of the FUSEO WUDX2:0 and WUDP2:0
bits.

Note: Bits in the FUSEO register are flash memory cells
which cannot be changed dynamically during program
execution.

speed speed
Instruction Instruction
IP2022-120, IP2012-120: FUSEQ FUSEO (SPDREG (SPDREG
Crystal 4.75-5 MHz Register Register FUSEO bItS*5.4) bits 3:0)
Ext. 0-120 MHz (bits 11:9) 5| poo o (bits 13:12) N System
0SC1 i yp ¢ IWUDX2:0|—> 01Y Clock
0-120 4755] 237.5-250 0-120
E > 0SC | MHz | | pre- |MHz _MHz | Post- MHz SPDREG| , CPU Core
Driver Scaler » Clock ®| Scaler [[WVUDP2:0 00 Divider [0-120MHz
E{— Multiplier
0SsC2 ;
11 wuDx2-0h| 10 &——— P Timer0
1o ———— P Timer1
11 —— P Timer2
SXCLK (REO or RF4)[X] iing v ¢ »ADC
L External Memory Logic
(IP2022 only)
SxMode Register (CLKS1:0) » SERDES Clock
Crystal 32.768 kHz

Ext. 0-120 MHz
RTCLK1

X

RTCLK

—» RTTMR

Driver

X

RTCLK2

RTCFG Register, RTSS bit 515-002h.eps

Figure 3-17 1P2022-120 and 1P2012-120 Clock Logic

www.ubicom.com

29

1P2012 /1P2022 Data Sheet

speed speed
IP2022-160: Instruction Instruction
Crystal 4.75-5 MHz, FUSEO FUSEO éstP[;!iEG f)StPgT)EG
3.2 MHz Register Register FUSEO 'S*-) its 3:0)
Ext. 0-120 MHz (bits 11:9) PLL Bvpass (bits 13:12) N system
0SC1 i yp ¢ IWUDX2:0|—> 01Y Clock
E_’ 0-120 3.2 160 0-120, 160
OSC | MHz Pre- | MHz SOC)I(PII(-L MHz [Post- Wubp2-oks| 00 MHz SPDREG*CPU Core
Driver Scaler[or *] =% or "|Scaler : Divider | 0-120MHz, 160MHz
Xl 4.75-5 |Multiplier] 1537 5250
0scC2 MHz MHz _‘ e » Timer0
WUDX2:0(»{ 10
11 - ——— P Timer1
o L—> 11 &——P» Timer 2
10 = / o—p» ADC
SxCLK (REO or RF4)®_’ 3; L External Memory Logic
= » SERDES Clock
SxMode Register (CLKS1:0)
Crystal 32.768 kHz

Ext. 0-120 MHz
RTCLK1

X

RTCLK

7

—» RTTMR

Driver

X

RTCLK2

’

RTCFG Register, RTSS bit 515-101.eps

Figure 3-18 1P2022-160 Clock Logic

3.9.1

Figure 3-19 shows the connections for driving the OSC
and/or RTCLK clock sources with an external signal. To
drive the OSC clock source, the external clock signal is
driven on the OSC1 pin and the OSC2 pinis left open. The
external clock signal driven on the OSC1 pin may be any
frequency up to 120 MHz. To drive the RTCLK clock
source, the external clock signal is driven on the RTCLK1
input and the RTCLK2 output is left open. The external
clock signal driven on the RTCLK1 pin may be any
frequency up to 120 MHz.

External Connections

1P2012/IP2022
FUSEO FUSEO
bit 15=1 bit 14=1
0OSCH1 0SC2 RTCLK1 RTCLK2
Open Open
515-024a.eps
Externally Externally

Generated Clock Generated Clock
Figure 3-19 External Clock Inputs

30

Figure 3-20 shows the connections for attaching a crystal
to the OSC and/or RTCLK oscillator. For the OSC
oscillator, a crystal is connected across the OSC1 and
OSC2 pins. For the RTCLK oscillator, a 32.768kHz crystal
is connected across the RTCLK1 and RTCLK2 pins.

There is about 4pf of capacitance on each of OSC1 and
OSC2 pins to DVss and about 10pf of capacitance on
each of RTCLK1 and RTCLK2 pins to DVss. There is also
an internal feedback resistor (no external feedback
resistor needed). For the OSC crystal, a parallel resonant
crystal is recommended that has a maximum ESR of 100
ohms and a load capacitance rating of 12pF (requires
24pF on each of OSC1 and OSC2 pins). For the optional
RTCLK crystal, a parallel resonant crystal is
recommended that has a maximum ESR of 50K ohms,
and a load capacitance rating of 12.5pF (requires 25pF on
each of RTCLK1 and RTCLK2 pins).

The crystal manufacturer’s load capacitance rating (C,)
should be equal to (Cy x Co)/(Cy + C,), where Cq =
capacitance on OSC1 (4pF + stray board capacitance +
added capacitance), and C, = capacitance on OSC2 (4pF
+ stray board capacitance + added capacitance). The
trace length between the OSC pins and the crystal should
be as short as possible, to avoid noise coupling.

When RTCLK1 is unused, it should be tied to GND.

www.ubicom.com

1P2012/IP2022

XTAL RTCLK
(FUSEO bit 15=0) (FUSEO bit 14=0)

0OSC1 ﬁ 0SC2 RTCLK1E RTCLK2

Crystal Crystal
| 20pF _| 20pF | 15pF | 15pF

T

515-025c.eps

Figure 3-20 Crystal Connection

3.10 Configuration Block

The configuration block is a set of flash memory registers block

IP2012 /1P2022 Data Sheet

registers are used by software

tools. The

outside of both program memory and data memory. These
registers are not readable or writable at run time.

The FUSEO, FUSE1 registers hold settings that must be

specified by system designers. The other configuration

Table 3-6 Configuration Block

configuration block is readable but not writable when
Code Protection
configuration block registers.

is enabled. Table 3-6 lists the

Word Address Words Name Description
0x00010000 1 FUSEO FUSEQ register
0x00010001 1 FUSE1 FUSET1 register
0x00010002 to 0x00010003 2 - Reserved
0x00010004 1 TRIMO TRIMO register, factory programmed to
FBFE
0x00010005 to 0x0001001D 25 - Reserved
0x0001001E- 2 FREQ OSC1 input frequency during device pro-
0x0001001F gramming - used by tools only
0x00010020 to 0x00010027 8 VCOMPANY Company name
0x00010028 to 0x0001002F 8 VPRODUCT Product name
0x00010030 to 0x00010031 2 VVERSION Software version
0x00010032 to 0x00010033 2 VSOFTDATE Software date
0x00010034 to 0x00010035 2 VPROGDATE Programming date
0x00010036 to 0x0001003F 10 - Reserved
Total 16-bit words 64

www.ubicom.com

31

1P2012 /1P2022 Data Sheet

3.10.1 FUSEO Register (not run-time programmable)
15 14 3 12|11 10 9 8|7 6 5 4|3 2 1 0

|m| RTCLK | POUT1:0 PIN2:0 | Reserved | WUDP2:0 | WUDX2:0

Figure 3-21 FUSEO Register

XTAL OSC2 crystal drive output

0 = Enabled — Use for crystal clock

1 = Disabled — Use for external clock
RTCLK RTCLK2 crystal drive output

0 = Enabled — Use for crystal clock

1 = Disabled — Use for external clock
POUT1:0 Specifies PLL clock multiplier postscaler divisor

00 = 1 (reserved)

01=2
10=3
11=4
PIN2:0 Specifies PLL clock multiplier prescaler divisor
000 = 1 100=5
001 =2 101=6
010=3 110=7
011=4 111=8

WUDP2:0 Specifies system clock suspend time during PLL startup (after a speed instruction clears the PLL bit in
the SPDREG register).

000 = 140 us 100=1ms
001 =210 us 101 =2ms
010 = 350 ps 110=5ms
011 = 630 us 111=9ms

WUDX2:0 Specifies system clock suspend time during OSC and RTCLK start-up. Used to keep the clock from prop-
agating to the core before the crystal achieves valid signal levels (see Figure 3-17). Also keeps RST
asserted except for POR and BOR.

000 = 450 ps
001 =1ms
010 =5ms
011=9ms
100 =18 ms
101 =72ms

110 = 574 ms'
111 = 1147 mst

t. Clock suspend time after POR is twice this long if the Watchdog is enabled in FUSE1 to a value less than
WUDX.

32 www.ubicom.com

IP2012 /1P2022 Data Sheet

3.10.2 FUSET1 Register (not run-time programmable)

15 14 13 7 6 5 4 3 2 1 0
| CP |SYNC| Reserved | BOR2:0 | WDTE | wDPSs2:0
Figure 3-22 FUSE1 Register
CP Clear to enable code protection. Once cleared, this bit cannot be set until the entire device is erased.

When code protection is enabled, program memory reads as all 0 to an external device programmer.
This bit does not affect access to program memory made by software, using the iread, ireadi,
iwrite, iwritei, ferase, fwrite and fread instructions. In-system debugging is not
available when code protection is enabled. Code protection does not protect the configuration block
against reading, only against writing. Note: After clearing this bit during programming, Code Protect is
not activated until the part is powered down or reset.

0 = enabled
1 = disabled
SYNC Set to read directly from the port pins through the RxIN register, clear to read through a CPU core

clock synchronization register. This bit should be clear if any external devices that can be read from
I/0 port pins are running asynchronously to the CPU core clock. See Figure 5-1.

0 = enabled
1 = disabled
BOR2:0 Specifies brown-out voltage level. If AVdd goes below this level, the IP2012 / IP2022 is reset. This set-

ting should be at least 0.2V below the minimum operating AVdd, because there is a maximum of 0.2V
hysteresis to leave brownout reset after power up and after brownout reset occurs.

000 = 2.30V = 0.1V Do not use unless AvVdd > 2.50V
001 = 2.25V + 0.1V Do not use unless AvVdd > 2.45V
010 = 2.20V £ 0.1V

011 =215V +£0.1V

100 = 2.10V £ 0.1V Recommended

101 = Reserved

110 = Reserved

111 = Disabled, no brown-out reset can occur.

WDTE Enables Watchdog Timer in run mode. Disabled in debug mode regardless of this bit.
0 = disabled
= enabled
WDPS2:0 Specifies the Watchdog Timer prescaler divisor. This controls the time period before the Watchdog

Timer expires. If the Watchdog Timer is enabled, software must clear the Watchdog Timer periodically
within this time period to prevent a reset of the IP2012 / IP2022 from occurring. The cwdt instruction
or any reset clears both the Watchdog Timer and its prescaler. Care must be taken to ensure that this
setting is not greater than the maximum crystal start-up time plus the time required to get to the first
cwdt instruction.

000 = 1 (~20 ms) = 256 x WRC 100 = 16 (~320 ms)
001 = 2 (~40 ms) 101 = 32 (~640 ms)
010 = 4 (~80 ms) 110 = 64 (~1280 ms)
011 = 8 (~160 ms) 111 = 128 (~2560 ms)

www.ubicom.com 33

1P2012 /1P2022 Data Sheet

3.10.3 TRIMO Register

Factory programmed to $FBFE for 120MHz versions,
$FBFD for 160MHz versions operating at 160MHz. Must
leave at factory default for proper operation.

15 14 13 12 11 10 9 8 | 7 6 5 4 | 3 2 1 0

SQUELT3:0 SQUELT5| FPERT | CMPT2:0 |SQUELT4|VCOT3| SQUELT7:6 | VCOT2:0

Figure 3-23 TRIMO Register
SQUELT7:0 SERDES squelch trim bits

FPERT Controls flash block pulse erase, both for self-programming ferase and for the FERASE command
from the ISD/ISP interface

0 = 20 ms, if OSC1 frequency and FCFG register settings are optimal
1 = Reserved - 10ms block erase (do not use)
CMPT2:0 Comparator offset trim bits
VCOT3:0 PLL VCO frequency trim bits
1110 = 4.75-5.0 MHz into PLL
1101 = 3.2 MHz into PLL

34 www.ubicom.com

4.0 Instruction Set Architecture

The 1P2012 / IP2022 implements a powerful load-store
RISC architecture with a rich set of arithmetic and logical
operations, including signed and unsigned 8-bit « 8-bit
integer multiply with a 16-bit product.

The CPU operates on data held in 128 special-purpose
registers, 128 global registers, and 3840 bytes of data
memory. The special-purpose registers are dedicated to
control and status functions for the CPU and peripherals.
The global registers and data memory may be used for
any functions required by software, the only distinction
among them being that the 128 global registers
(addresses 0x080 to OxOFF) can be accessed using a
direct addressing mode. The remaining 3840 bytes of data
memory (between addresses 0x100 and OxFFF) must be
accessed using indirect or indirect-with-offset addressing
modes. The IPH/IPL register is the pointer for the indirect
addressing mode, and the DPH/DPL and SPH/SPL
registers are the pointers for the indirect-with-offset
addressing modes.

IP2012 /1P2022 Data Sheet

41 Addressing Modes

A 9-bit field within the instruction, called the “fr” field,
specifies the addressing mode and the address (in the
case of direct addressing) or the address offset (in the
case of indirect-with-offset addressing), as shown in Table
4-1. (See Figure 3-7 for data RAM map.)

4.1.1 Pointer Registers

When an addition or increment instruction (i.e. add, inc,
incsz, or incsnz) on the low byte of a pointer register
(i.e. IPL, DPL, SPL, or ADDRL) generates a carry, the
high part of the register is incremented. For example, if the
IP register holds 0xOOFF and an inc ipl instruction is
executed, the register will hold 0x0100 after the
instruction. When a subtraction or decrement instruction
(i.e. sub, subc, dec, decsz, or decsnz) generates a
borrow, the high part of the register is decremented.

Note: Because carry and borrow are automatically
handled, the addc and subc instructions are not needed
for arithmetic operations on pointer registers.

Table 4-1 Addressing Mode Summary

“fr” Field Mode Syntax Effective Address (EA) Restrictions
0 0000 0000 Indirect mov w, (ip) IPH Il IPL 0x020 < EA < OxFFF
mov (ip) ,w
0 Onnn nnnn Direct, special- mov w,fr nnnnnnn 0x002 < EA < Ox07F
purpose registers |mov fr,w
0 1nnn nnnn Direct, global mov w,fr 0x080 + nnnnnnn 0x080 < EA < OxOFF
registers mov fr,w
1 Onnn nnnn Indirect with offset, | mov w,offset (dp) DPH Il DPL + nnnnnnn | 0x000 < nnnnnnn < Ox07F
data pointer mov offset(dp) ,w 0x020 < EA < OxFFF
1 1nnn nnnn Indirect with offset, | mov w,offset (sp) SPH Il SPL + nnnnnnn | 0x000 < nnnnnnn < 0x07F
stack pointer mov offset(sp),w 0x020 < EA < OxFFF

www.ubicom.com

35

1P2012 /1P2022 Data Sheet

4.1.2 Direct Addressing Mode

Figure 4-1 shows the direct addressing mode used to
reference the special-purpose registers. Seven bits from
the “fr” field allow addressing up to 128 special-purpose
registers. (Not all 128 locations in this space are
implemented in the IP2012 / IP2022; several locations are
reserved for future expansion.)

9-Bit "fr" Field
from Instruction
876
o[
7 0
127
Special-Purpose
Registers
515-007a.eps

Figure 4-1 Direct Mode, Special-Purpose Registers

The following code example uses direct mode.

mov w,0x0012 ;load W with the contents of
;the memory location at 0x0012

; (the DATAL register)

Figure 4-2 shows the direct addressing mode used to
reference the global registers. This mode is distinguished
from the mode used to access the special-purpose
registers with bit 7 of the “fr” field. Because these registers
have this additional addressing mode not available for the
other data memory locations, they are especially useful
for holding global variables and frequently accessed data.

9-Bit "fr" Field
from Instruction
876

a nnnnnnn

| 127

Global Registers

515-008a.eps
Figure 4-2 Direct Mode, Global Registers

Note: Addresses from 0x000 to OxO1F can only be
accessed with Direct mode.

36

4.1.3 Indirect Addressing Mode

The indirect addressing mode is used when all of the bits
in the “fr” field are clear. The location of the operand is
specified by a 12-bit pointer in the IPH and IPL registers.
The upper four bits of the IPH register are not used. Figure
4-3 shows indirect mode.

9-Bit "fr" Field ! 0
from Instruction 127
8 0 Special-Purpose
000000000 Registers
128
IPH Register IPL Register Global Registers
7 43 07 R B P

|XXXX|nnnn|nnnnnnnn|

L

3840 Bytes
Data Memory

515-009a.eps
Figure 4-3 Indirect Mode

The following code example uses indirect mode.

mov w,#0x03 ;load W with 0x03

;load the high byte of the
;indirect pointer from W
;load W with 0x85

;load the low byte of the
;indirect pointer from W
;load W with the contents of
;the memory location at
;effective address 0x0385

mov iph,w

mov w,#0x85

mov ipl,w

mov w, (ip)

www.ubicom.com

4.1.4 Indirect-with-Offset Addressing

Mode

The indirect-with-offset addressing mode is used when bit
8 of the “fr” field is set. The location of the operand is
specified by a 7-bit unsigned immediate from the “fr” field
added to a 12-bit base address in a pointer register.

When bit 7 of the “fr” field is clear, the DPH/DPL register
is selected as the pointer register. This register is
accessed using the loadh and loadl instructions,
which load its high and low bytes, respectively. The upper
four bits of the DPH register are not used. Figure 4-4
shows indirect-with-offset addressing using the DPH/DPL
register as the pointer register.

9-Bit "fr" Field ! 0
from Instruction 127

876 0 Special-Purpose
128

Global Registers

DPH Register = DPL Register
7 43 07 0

|XXXX|nnnn|nnnnnnnn|

3840 Bytes
Data Memory

515-026a.eps

Figure 4-4 Indirect-with-Offset Mode, Data Pointer

The following code example uses indirect-with-offset
addressing mode.

MyStuff= 0x038D ;define address MyStuff

loadh MyStuff ;load the high byte of the
;DPH/DPL pointer register
;with 0x03

loadl MyStuff ;load the low byte of the

;DPH/DPL pointer register
;with 0x8D

www.ubicom.com

IP2012 /1P2022 Data Sheet

;load W with the contents of
;the memory location at
;effective address 0x038D
;(i.e. 0x0385 + 0x0008)

mov w, 8 (dp)

When bit 7 of the “fr” field is set, the SPH/SPL register is
selected as the pointer register. The upper four bits of the
SPH register are not used. Figure 4-5 shows indirect-with-
offset mode using the SPH/SPL register. In addition to this
indirect-with-offset addressing mode, there are also
push and pop instructions which automatically
increment and decrement the SPH/SPL register while
performing a data transfer between the top of stack and a
data memory location specified by the “fr” field. Stacks
grow down from higher addresses to lower addresses.
This stack addressing mechanism is completely
independent from the hardware stack used for subroutine
call and return.

When a pop instruction is used with the indirect-with-
offset addressing mode, the address calculation for the
“fr” operand is made using the value in the SPH/SPL
register before the automatic increment, even though the
stack operand itself is addressed using the value afterthe
automatic increment.

Figure 4-5 Indirect-with-Offset Mode, Stack Pointer

9-Bit "f" Field ’ 0
from Instruction 127
876 0 Special-Purpose
[[1fmmmmmmm RegRer
128

Global Registers

SPH Register ~ SPL Register
7 43 07 0

|XXXX|nnnn|nnnnnnnn|

3840 Bytes
Data Memory

515-027a.eps

37

1P2012 /1P2022 Data Sheet

4.2 Instruction Set

The instruction set consists entirely of single-word (16-bit)
instructions, most of which can be executed at a rate of
one instruction per clock cycle, for a throughput of up to
120 MIPS when executing out of program RAM.

Assemblers may implement additional instruction
mnemonics for the convenience of programmers, such as
a long jump instruction which compiles to multiple IP2012
/ 1P2022 instructions for handling the page structure of
program memory. Refer to the assembler documentation
for more information about any instruction mnemonics
implemented in the assembler.

4.2.1 Instruction Formats

There are five instruction formats:

+ Two-operand arithmetic and logical instructions

+ Immediate-operand arithmetic and logical instruc-
tions

+ Jumps and subroutine calls

+ Bit operations

+ Miscellaneous instructions

Figure 4-6 shows the two-operand instruction format. The
two-operand instructions perform an arithmetic or logical
operation between the W register and a data memory
location specified by the “fr” field. The D bit indicates the
destination operand. When the D bit is clear, the
destination operand is the W register. When the D bit is
set, the destination operand is specified by the “fr” field.

There are some exceptions to this behavior. The multiply
instructions always load the 16-bit product into the MULH
and W registers. The MULH register receives the upper 8
bits, and the W register receives the lower 8 bits.

Traditionally single-operand instructions, such as
increment, are available in two forms distinguished by the
D bit. When the D bit is clear, the source operand is
specified by the “fr” field and the destination operand is the
W register. When the D bit is set, the data memory
location specified by the “fr” field is both the source and
destination operand.

Also, there are a few cases of unrelated instructions, such
as clr and cmp, which are distinguished by the D bit.

15 10 9 8 0

| Opcode | D | “fr” Field

Figure 4-6 Two-Operand Instruction Format

Figure 4-7 shows the immediate operand instruction
format. In this format, an 8-bit literal value is encoded in
the instruction field. Usually the W register is the
destination operand, however this format also includes

38

instructions that use the top of the stack or a special-
purpose register as the destination operand.

15 8 7 0
| Opcode | 8-Bit Literal (“#1it8”) |
Figure 4-7 Immediate-Operand Instruction Format

Figure 4-8 shows the format of the jump and subroutine
call instructions. 13 bits of the entry point address are
encoded in the instruction. The remaining three bits come
from the PA2:0 bits of the STATUS register.

15 13 12 0
| Opcode | Entry Point Address (“addr13”) |

Figure 4-8 Jump and Call Instruction Format

Figure 4-9 shows the format of the instructions that clear,
set, and test individual bits within registers. The register is
specified by the “fr” field, and a 3-bit field in the instruction
selects one of the eight bits in the register.

15 12 11 9 8 0
| Opcode | Bit | “fr” Field |
Figure 4-9 Bit Operation Instruction Format

Figure 4-10 shows the format of the
instructions.

1514 13121110 9 8 0
[0[0]0][0|0[0]|O] Opcode |
Figure 4-10 Miscellaneous Instruction Format

remaining

4.2.2 Instruction Types

The instructions are grouped into the following functional
categories:

+ Logical instructions

+ Arithmetic and shift instructions
+ Bit operation instructions

+ Data movement instructions

+ Program control instructions

+ System control instructions

Logical Instructions

Each logic instruction performs a standard logical
operation (AND, OR, exclusive OR, or logical
complement) on the respective bits of the 8-bit operands.
The result of the logic operation is written to W or to the
data memory location specified by the “fr” field.

All of these instructions take one clock cycle for execution.
Arithmetic and Shift Instructions

Each arithmetic or shift instruction performs an operation
such as add, subtract, add with carry, subtract with carry,

www.ubicom.com

rotate left or right through carry, increment, decrement,
clear to zero, or swap high/low nibbles. The compare
(cmp) instruction performs the same operation as
subtract, but it only updates the C, DC, and Z flags of the
STATUS register; the result of the subtraction is
discarded.

There are instructions available (incsz, decsz) that
increment or decrement a register and simultaneously
test the result. If the 8-bit result is zero, the next instruction
in the program is skipped. These instructions can be used
to make program loops. There are also compare-and-skip
instructions (cse, csne) which perform the same
operation as subtract, but perform a conditional skip
without affecting either operand or the condition flags in
the STATUS register.

All of the arithmetic and shift instructions take one clock
cycle for execution, except in the case of the test-and-skip
instructions when the tested condition is true and a skip
occurs, in which case the instruction takes at least two
cycles. If a skip instruction is immediately followed by a
loadh, loadl, or page instruction (and the tested
condition is true) then two instructions are skipped and the
operation consumes three cycles. This is useful for
skipping over a conditional branch to another page, in
which a page instruction precedes a jmp instruction. If
several page or loadh/loadl instructions immediately
follow a skip instruction, then they are all skipped plus the
next instruction and a cycle is consumed for each. These
“extended skip instructions” are interruptible, so they do
not affect interrupt latency.

Bit Operation Instructions
There are four bit operation instructions:

+ setb—sets a single bit in a data register without af-
fecting other bits

+ clrb—clears asingle bitin a data register without af-
fecting other bits

+ sb—tests a single bit in a data register and skips the
next instruction if the bit is set

+ snb—tests a single bit in a data register and skips the
next instruction if the bit is clear

All of the bit operation instructions take one clock cycle for
execution, except for test-and-skip instructions when the
tested condition is true and a skip occurs.

Data Movement Instructions

A data movement instruction moves a byte of data from a
data memory location to either the W register or the top of
stack, or it moves the byte from either the W register or the
top of stack to a data memory location. The location is
specified by the “fr” field. The SPH/SPL register pair points
to the top of stack. This stack is independent of the
hardware stack used for subroutine call and return.

www.ubicom.com

IP2012 /1P2022 Data Sheet

Program Control Instructions

A program control instruction alters the flow of the
program by changing the contents of the program counter.
Included in this category are the jump, call, return-from-
subroutine, and interrupt instructions.

The jmp instruction has a single operand that specifies
the entry point at which to continue execution. The entry
point is typically specified in assembly language with a
label, as in the following code example:

snb status,0 ;test the carry bit

jmp do_carry ;jump to do_carry routine
;ifc =1

do_carry: ;jump destination label

;execution continues here

If the carry bit is set to 1, the jmp instruction is executed
and program execution continues where the do_carry
label appears in the program.

The call instruction works in a similar manner, except
that it saves the contents of the program counter to the
CALLH/CALLL registers before jumping to the new
address. It calls a subroutine that is terminated by a ret,
retw, or retnp instruction, as shown in the following
code example:

call add_2bytes ;call subroutine

;add_2bytes

nop ;execution returns to
;here after the
;subroutine is finished

add 2bytes: ;subroutine label

;subroutine code goes

;here

ret ;return from subroutine

Returning from a subroutine restores the saved program
counter contents from the CALLH/CALLL registers, which
causes program to resume execution with the instruction
immediately following the call instruction (a nop
instruction, in the above example)

A program memory address contains 16 bits. The jmp
and call instructions specify only the lowest thirteen bits
of the jump/call address. The upper 3 bits come from the
PA2:0 bits of the STATUS register. An indirect relative
jump can be accomplished by adding the contents of the
W register to the PCL register (i.e. an add pcl,w
instruction).

Program control instructions such as jmp, call, and
ret alter the normal program sequence. When one of

39

1P2012 /1P2022 Data Sheet

these instructions is executed, the execution pipeline is
automatically cleared of pending instructions and refilled
with new instructions, starting at the new program
address. Because the pipeline must be cleared, three
clock cycles are required for execution, one to execute the
instruction and two to reload the pipeline.

System Control Instructions

A system control instruction performs a special-purpose
operation that sets the operating mode of the device or
reads data from the program memory. Included in this
category are the following types of instructions:

+ speed—changes the CPU core speed (for saving
power)

+ break—enters debug mode

+ page—writes to the PA2:0 bits in the STATUS regis-
ter

*+ loadh/loadl—loads a 16-bit pointer into the DPH
and DPL registers

+ iread-—reads a word from external memory, pro-
gram flash memory, or program RAM

+ ireadi-—reads aword (and auto-increments ADDR
by 2) from program flash memory, or program RAM

+ iwrite—writes a word to external memory or pro-
gram RAM

*+ iwritei—writes a word
ADDR by 2) to program RAM

+ fread—reads a word from flash program memory

+ fwrite—writes a word to flash program memory

+ ferase—erases a block of flash program memory

+ cwdt—clears the Watchdog Timer

(and auto-increments

40

4.3 Instruction Pipeline

An instruction goes through a four-stage pipeline to be
executed, as shown in Figure 4-11. The first instruction is
fetched from the program memory on the first core clock
cycle. On the second clock cycle, the first instruction is
decoded and a second instruction is fetched. On the third
clock cycle, the first instruction is executed, the second
instruction is decoded, and a third instruction is fetched.
On the fourth clock cycle, the first instruction’s results are
written to its destination, the second instruction is
executed, the third instruction is decoded, and a fourth
instruction is fetched. Once the pipeline is full, instructions
are executed at the rate of one per clock cycle.

Stage Core Core Core Core
Cycle 1 Cycle 2 Cycle 3 Cycle 4
Fetch |Instruction 1|Instruction 2|Instruction 3|Instruction 4
Decode Instruction 1|Instruction 2|Instruction 3
Execute Instruction 1|Instruction 2
Write Instruction 1

Figure 4-11 Pipeline Execution

Instructions that directly affect the contents of the program
counter (such as jumps and calls) require that the pipeline
be cleared and subsequently refilled. Therefore, these
instructions take two additional clock cycles (the PC will
be changed during the execute cycle of a jump
instruction).

www.ubicom.com

4.4 Subroutine Call/Return Stack

A 16-level hardware call/return stack is provided for
saving the program counter on a subroutine call and
restoring the program counter on subroutine return. The
stack is not mapped into the data memory address space
except for the top level, which is accessible as the CALLH
and CALLL registers. Software can read and write these
registers to implement a deeper stack, in those cases
which require nesting subroutines more than 16 levels
deep. This stack is completely independent of the stack
used with the push and pop instructions and the
SPH/SPL register pair.

Note: The CALLL and CALLH registers require special
attention as modification of these values (the top of the
stack) changes the return vector.

When a subroutine is called, the return address is pushed
onto the subroutine stack, as shown in Figure 4-12.
Specifically, each saved address in the stack is moved to
the next lower level to make room for the new address to
be saved. Stack 1 receives the contents of the program
counter. Stack 16 is overwritten with what was in Stack 15.
The contents of stack 16 are lost.

| Program Counter (15:0) |

Stack 1

Stack 2

Stack 3
Stack 4
Stack 5
Stack 6
Stack 7
Stack 8
Stack 9
Stack 10
Stack 11
Stack 12
Stack 13
Stack 14
Stack 15
Stack 16

CALLH/CALLL |—>

“—— — — — — —
— — — — — — — —

Stack 16 Contents
are Discarded 515-010a.eps

Figure 4-12 Stack Operation on Subroutine Call

When a return instruction is executed the subroutine stack
is popped, as shown in Figure 4-13. Specifically, the
contents of Stack 1 are copied into the program counter

www.ubicom.com

IP2012 /1P2022 Data Sheet

and the contents of each stack level are moved to the next
higher level. When a value is popped off the stack, the
bottom entry is initialized to OxFFFF. For example, Stack 1
receives the contents of Stack 2, etc., and Stack 15 is
overwritten with the contents of Stack 16. Stack 16 is
initialized to OxFFFF.

| Program Counter (15:0) |

Stack 1
Stack 2
Stack 3
Stack 4
Stack 5
Stack 6
Stack 7
Stack 8
Stack 9
Stack 10
Stack 11
Stack 12
Stack 13
Stack 14
Stack 15
Stack 16

T

Stack 16 Contents
Loaded with OXFFFF

Figure 4-13 Stack Operation on Subroutine Return

—> —> —> —> —> —> —> —>

— —> —> —> —> —> —> —>

515-011.eps

For program bugs involving stack underflow, the
instruction at byte address Ox1FFFE (word address
O0xFFFF) can be used to jump to an appropriate handler.
For example, system recovery may be possible by
jumping to the reset vector at byte address Ox1FFEO
(word address OxFFFO).

The options for returning from a CALL are:

1. RET - The stack will be popped (CALLH/L will be load-
ed into PCH/L) and the page bits (PA2:0 in the STA-
TUS register) will be loaded with the upper 3 bits of
CALLH.

RETNP - Same as above, but PA2:0 are not changed.
RETW #lit - Same as RET, but also moves literal to W.

SR

41

1P2012 /1P2022 Data Sheet

4.5 Key to Abbreviations and Symbols

Symbol Description

Symbol Description

(address) |Contents of memory referenced by address

addr13 |13-bit address in assembly language instruc-

tion

A Logical exclusive OR

addr16 |16-bit address in assembly language instruc-

tion

I Logical OR

Il Concatenation

bit Bit position selector bit in opcode

BO Brown-out bit in the PSPCFG register (bit 0)

C Carry bit in the STATUS register (bit 0)

DC Digit Carry bit in the STATUS register (bit 1)

DPH |Upper half of data pointer for indirect-with-off-
set addressing (global file register 0x00C)

DPL |Lower half of data pointer for indirect-with-off-
set addressing (global file register 0x00D)

f File register address bit in opcode

fr File register field (a 9-bit file register address
specified in the instruction)

IPH |Indirect Pointer High - Upper half of pointer for
indirect addressing (global file register 0x004)

IPL Indirect Pointer Low - Lower half of pointer for
indirect addressing (global file register 0x005)

k Constant value bit in opcode

n Numerical value bit in opcode

PA2:PAO |Page bits in the STATUS register (bits 7:5)

PCL |Virtual register for direct PC modification (glo-
bal file register 0x009)

SPH |Upper half of stack pointer for indirect-with-off-

set addressing (global file register 0x006)

SPL |Lower half of stack pointer for indirect-with-off-
set addressing (global file register 0x007)

STATUS |STATUS register (global file register 0x00B)

w Working register

WD |Watchdog Timeout bit in the PSPCFG register
(bit 1)

WDT |Watchdog Timer counter and prescaler

z Zero bit in the STATUS register (bit 2

, File register/bit selector separator
(e.9.clrb status, z)

I= inequality

Immediate literal designator in assembly lan-
guage instruction (e.g. mov w, #0xff)

#lit8 |8-bit literal value in assembly language
instruction

& Logical AND

42

4.6 Instruction Set Summary Tables

Table 4-2 through Table 4-7 list all of the IP2012 / 1P2022
instructions, organized by category. For each instruction,
the table shows the instruction mnemonic (as written in
assembly language), a brief description of what the
instruction does, the number of instruction cycles required
for execution, the binary opcode, and the flags in the
STATUS register affected by the instruction.

Although the number of clock cycles for execution is
typically 1, for the skip instructions the exact number of
cycles depends whether the skip is taken or not taken.
Taking the skip adds 1 cycle. The effect of extended skip
instructions (i.e. a skip followed by a 1oadh, 1loadl, or
page instruction) is not shown.

For more detailed description, refer to the Programmer’s
Reference Manual.

www.ubicom.com

Table 4-2 Logical Instructions

IP2012 /1P2022 Data Sheet

Asvntax | Definition” Description Cycies Opcode Affeciad
and fr,w fr=fr&WwW AND fr,W into fr 1 0001 011f ffff £fff Z
and w,fr W=W &fr AND W,fr into W 1 0001 010f ffff £fff Z
and w,#1it8 |W =W & it8 AND Wi,literal into W 1 0111 1110 kkkk kkkk Z
not fr fr="1r Complement fr into fr 1 0010 011f ££ff £££ff z
not w,fr W=fr Complement fr into W 1 0010 010f ffff ffff z
or fr,w fr=frIW OR fr,W into fr 1 0001 001f ffff £fff Z
or w,fr W=WIfr OR W, frinto W 1 0001 000f ffff £fff Z
or w,#1it8 W=W1Iit8 OR W, literal into W 1 0111 1101 kkkk kkkk Z
xor fr,w fr=frAW XOR fr,W into fr 1 0001 101f £ffff f£fff Z
xor w,fr W =W Afr XOR W,fr into W 1 0001 100f ffff ffff Z
xor w,#1it8 |W =W 7|it8 XOR W,literal into W 1 0111 1111 kkkk kkkk Z

Table 4-3 Arithmetic and Shift Instructions
add fr,w fr=fr+W Add fr,W into fr 1 0001 111f f£ff £££f£ | C, DC, Z
add w,fr W=W +fr Add W,fr into W 1 0001 110f f£fff ££fff | C,DC, Z
add w,#1it8 |W =W +it8 Add W,literal into W 1 0111 1011 kkkk kkkk | C, DC, Z
addc fr,w fr=C+fr+W Add carry,fr,W into fr 1 0101 111f ffff ££ff | C,DC, Z
addc w, fr W=C+W +fr Add carry,W,fr into W 1 0101 110f ffff ££fff | C,DC, Z
clr fr fr=0 Clear fr 1 0000 011f ffff ffff Z
cmp w,fr fr-W Compare W,fr 1 0000 010f ffff ffff | C, DC, Z
then update STATUS
cmp w,#1it8 |[it8 -W Compare W,literal 1 0111 1001 kkkk kkkk | C, DC, Z
then update STATUS
cse w,fr if (fr-W)=0 Compare W,fr then skip if equal 1or |0100 001f f£f£ff £££f| None
then skip 2 (skip)
cse w,#1it8 |if (lit8-W)=0 Compare W,literal then skip if 1or |0111 0111 kkkk kkkk | None
then skip equal 2 (skip)
csne w,fr if (fr-W)!=0 Compare W,fr then skip if not 1or |0100 000f ££f£ff ££££f| None
then skip equal 2 (skip)
csne w,#1it8 |if (lit8 - W) =0 Compare W, literal then skipifnot | 1or |0111 0110 kkkk kkkk | None
then skip equal 2 (skip)
cwdt WDT =0 Clear Watchdog Timer 1 0000 0000 0000 0100 | None
dec fr fr="1r-1 Decrement fr into fr 1 0000 111f £fff £fff Z
dec w, fr W = fr -1 Decrement fr into W 1 0000 110f £fff £fff Z
decsnz fr fr="1r-1 Decrement fr into fr then skip if 1or |0100 111f £££f ££££| None
if fr I= 0 then skip not zero (STATUS not updated) | 2 (skip)
www.ubicom.com 43

1P2012 /1P2022 Data Sheet

Table 4-3 Arithmetic and Shift Instructions (continued)

Assembler Pseudocode - Core Flags
Syntax Definition Description Cycles Opcode Affected
decsnz w,fr |W=fr-1 Decrement fr into W then skip if 1or |0100 110f ££f£ff ££££| None
if fr I= 0 then skip not zero (STATUS not updated) | 2 (skip)
decsz fr fr="Ar-1 Decrement fr into fr then skip if 1or |0010 111f £££f ££££| None
if fr = 0 then skip zero (STATUS not updated) 2 (skip)
decsz w, fr W =fr-1 Decrement fr into W then skip if 1or |0010 110f £££ff ££££f| None
if fr = 0 then skip zero (STATUS not updated) 2 (skip)
inc fr fr="1r+1 Increment fr into fr 1 0010 101f ffff £fff 4
inc w,fr W=fr+1 Increment fr into W 1 0010 100f £fff ffff Z
incsnz fr fr="fr+1 Increment fr into fr then skip if 1or |0101 101f ££f£ff ££££| None
if fr I= 0 then skip not zero (STATUS not updated) | 2 (skip)
incsnz w,fr |W="fr+1 Increment fr into W then skip if 1or |0101 100f £££ff ££££f| None
if fr I= 0 then skip not zero (STATUS not updated) | 2 (skip)
incsz fr fr="1r+1 Increment fr into fr then skip if 1or |0011 111f £ffff ££££| None
if fr = 0 then skip zero (STATUS not updated) 2 (skip)
incsz w, fr W=fr+1 Increment fr into W then skip if 1or |0011 110f ££££f ££££| None
if fr = 0 then skip zero (STATUS not updated) 2 (skip)
muls w,fr MULH Il W =W « fr | Signed 8 - 8 multiply (bit 7 = 1 0101 010f ffff f£££| None
sign); W x fr into MULH Il W (bit 7
of MULH is result sign)
muls w,#1it8 | MULH IIW =W < |it8 | Signed 8 - 8 multiply (bit 7 = 1 0111 0011 kkkk kkkk | None
sign); W x literal into MULH Il W
(bit 7 of MULH is result sign)
mulu w,fr MULH I W =W fr | Unsigned 8 - 8 multiply; W x fr 1 0101 000f ffff ££££| None
into MULH Il W
mulu w,#1it8 | MULH [IW =W < |it8 | Unsigned 8 « 8 multiply; W x lit- 1 0111 0010 kkkk kkkk | None
eral into MULH Il W
rl fr friC=Cllfr Rotate fr left through carry into fr 1 0011 011f ffff ffff C
rl w, fr WIIC=Cllfr Rotate fr left through carry into W 1 0011 010f ffff £fff C
rr fr Clifr=frlI C Rotate fr right through carry into 1 0011 001f ffff ffff C
fr
rr w,fr ClIw=frlIC Rotate fr right through carry into 1 0011 000f ffff ffff C
w
sub fr,w fr=1fr-W Subtract W from fr into fr 1 0000 101f ffff ££fff | C,DC, Z
sub w,fr W=1r-W Subtract W from fr into W 1 0000 100f ffff ££fff | C,DC, Z
sub w,#1it8 |W=1it8 -W Subtract W from literal into W 1 0111 1010 kkkk kkkk | C, DC, Z
subc fr,w fr=fr-C-W Subtract carry,W from fr into fr 1 0100 101f ££££ ££££ | C,DC, Z
subc w,fr W=fr-C-W Subtract carry,W from fr into W 1 | 0100 100f ££££ ££££| C,DC, Z

44

www.ubicom.com

Table 4-3 Arithmetic and Shift Instructions (continued)

IP2012 /1P2022 Data Sheet

Assembler Pseudocode - Core Flags
Syntax Definition Description Cycles Opcode Affected
swap fr fr=1r3:0 Il fr7:4 Swap high,low nibbles of fr into fr 1 0011 101f £fff ££££| None
swap w,fr W =13:0 Il fr7:4 Swap high,low nibbles of fr into 1 0011 100f ffff ££££| None
w
test fr if fr=0thenZ =1 Test fr for zero and update Z 1 0010 001f ffff ffff Z
elseZ=0
Table 4-4 Bit Operation Instructions
Assembler Pseudocode - Core Flags
Syntax Definition Description Cycles Opcode Affected
clrb fr,bit |frbit=0 Clear bit in fr 1 1000 bbbf £fff ££££f| None
sb fr,bit if fr,bit = 1 then skip | Test bit in fr then skip if set 1or |1011 bbbf £££f ££££| None
2 (skip)
setb fr,bit |frbit=1 Set bit in fr 1 1001 bbbf £fff ££££| None
snb fr,bit if fr,bit = 0 then skip | Test bit in fr then skip if clear 1or |1010 bbbf ff£f ££££f| None
2 (skip)
Table 4-5 Data Movement Instructions
Assembler Pseudocode - Core Flags
Syntax Definition Description Cycles Opcode Affected
mov fr,w fr=W Move W into fr 1 0000 001f £fff ££££| None
mov w,fr W = fr Move fr into W 1 0010 000f ffff ffff Z
mov w,#1it8 W = lit8 Move literal into W 1 0111 1100 kkkk kkkk| None
push fr (SP) = fr, then Move fr onto top of stack 1 0100 010f ffff £££ff| None
SP=SP -1
push #1it8 (SP) = 1it8, then [Move literal onto top of stack 1 0111 0100 kkkk kkkk| None
SP=SP -1
pop fr fr = (SP + 1), then |Move top of stack + 1 into fr 1 0100 011f ffff ££££f| None
SP=SP +1
www.ubicom.com 45

1P2012 /1P2022 Data Sheet

Table 4-6 Program Control Instructions

Assembler - Core Flags
Syntax Description Cycles Opcode Affected
call addrl3 Call subroutine 3 110k kkkk kkkk kkkk None
jmp addrl3 Jump 111k kkkk kkkk kkkk None
int Software interrupt 3 0000 0000 0000 0110 None
nop No operation 1 0000 0000 0000 0000 None
ret Return from subroutine 3 0000 0000 0000 0111 PA2:0
retnp Return from subroutine, without updating 3 0000 0000 0000 0010 None
page bits
reti #1it3 Return from interrupt (see Section 3.7.4) 3 0000 0000 0000 1lnnn All
retw #1it8 Return from subroutine with literal into W 3 0111 1000 kkkk kkkk PA2:0
Table 4-7 System Control Instructions
Assembler _— Flags
Syntax Description Core Cycles Opcode Affected
break Software breakpoint. Keeps PC from 1 0000 0000 0000 0001 None
advancing and stops timers, including the
Watchdog Timer
breakx Software breakpoint, extending the skip 1 0000 0000 0000 0101 None
ferase Erase a 256 word flash block 1T 0000 0000 0000 0011 None
fread Read flash memory 1T 0000 0000 0001 1011 None
fwrite Write flash memory 17 0000 0000 0001 1010 None
iread Read external/program memory 4(blocking), 0000 0000 0001 1001 None
1 T(nonblocking)
ireadi Read program memory and increment 4(blocking), 0000 0000 0001 1101 None
ADDRL to next even ADDRL 1T(nonblocking)
iwrite Write into external memory/program RAM| 4(blocking), 0000 0000 0001 1000 None
1T(nonblocking)
iwritei Write into program RAM and increment 4(blocking), 0000 0000 0001 1100 None
ADDRL to next even ADDRL 1T(nonblocking)
loadh addrs8 Load high data address into DPH 1 0111 0000 kkkk kkkk None
loadl addr8 Load low data address into DPL 1 0111 0001 kkkk kkkk None
page addr3 Load page bits from program address into 1 0000 0000 0001 Onnn PA2:0
PA2:0 of the STATUS register
speed #1it8 Change CPU speed by writing into the 1 0000 0001 nnnn nnnn None
SPDREG register

1. Only occupies the CPU pipeline for 1 cycle, but the operation is not complete until XCFG:0 = 0. (Refer to Sec-

tion 4.7)

46

www.ubicom.com

4.7

IP2012 /1P2022 Data Sheet

Program Memory Self-Programming and Read Instructions

Table 4-8 Instructions Used for Self-Programming

; Program RAM Flash External Memory
Operation (ADDRX = 00) (ADDRX =01) (ADDRX = 80 or 81)

Read iread (Blocking) fread (Nonblocking) 1 iread (Nonblocking)

ireadi (Blocking) iread?
ireadi?

Write iwrite (Blocking) fwrite (Nonblocking) 3 iwrite (Nonblocking)
iwritei (Blocking)

Erase N/A ferase (Nonblocking) 3 N/A

1 — Rules 1, 2, 3, 5, 7, and 10 below apply.

executed from flash, it is blocking.

3 — Rules 1, 2, and 4—10 below apply.

2 — Rules 2, 3, 5, 7, and 10 below apply. If executed from program RAM, the instruction is nonblocking; if

The IP2012 /1P2022 has several instructions used to read
and write the program RAM and the program flash
memory. These instructions allow the program flash
memory to be read and written through special-purpose
registers in the data memory space, which allows the
flash memory to be used to store both program code and
data.

Because no special programming voltage is required to
write to the flash memory, any application may take
advantage of this feature at run-time. Typical uses include
saving phone numbers and passwords, downloading new
or updated software, and logging infrequent events such
as errors and Watchdog Timer overflow.

The self-programming instructions are not affected by the
code-protection flag (the CP bit of the FUSE1 register), so
the entire program memory is readable and writable by
any software running on the 1P2012 / IP2022.

Note: It is highly recommended to enable the brown-out
reset feature if self-programming instructions are being
used in user program code (see Section 3.8.1 for more
information about BOR). This will avoid corruption of flash
memory during power down.

There are seven instructions used for self-programming,
as shown in Table 4-8. Certain uses of the instructions are
not valid. In these cases, the instruction is executed as
though it were a nop instruction (i.e. the program counter
is incremented, but no other registers or bits are affected).

Blocking instructions take 4 cycles to complete, and
prevent other instructions from executing. Non-blocking
instructions occupy the CPU pipeline for only one cycle,
but they launch a multi-cycle operation which is not

www.ubicom.com

complete until indicated by the FBUSY bit in the XCFG
register becoming clear.

The DATAH/DATAL register is a 16-bit data buffer used for
loading or unloading data in program memory. The
ADDRX/ADDRH/ADDRL register holds a 24-bit byte
address used to specify the low-byte of the desired word
location in program memory. Like the other pointer
registers (IPH/IPL, DPH/DPL, and SPH/SPL), addition to
the low byte of the register that results in carry will cause
the high part of the register (ADDRX/ADDRH) to be
incremented. Subtraction from the low byte of the register
that results in borrow will cause the high part of the
register to be decremented.

Note: If ADDRSEL is modified in the ISR, it must first be
shadowed in software, and restored before reti.

Note: ADDRL bit 0 is ignored as the AO address bit is
handled automatically in hardware.

Software should use the FBUSY bit to check that a
previous flash write or erase operation has completed
before executing another instruction that accesses flash
memory, before jumping to or calling program code in
flash memory, and before changing the CPU core speed.
It is not necessary to check the FBUSY bit if enough
cycles are allowed for the flash operation to complete. See
description of FRDTS1:0, FRDTC1:0 and FWRT3:0 in
Section 7.1.5 for more details. Software must not attempt
to execute out of flash memory while the FBUSY bit is set,
because the flash memory is unreadable during that time.
Therefore, code which reads, writes, or erases flash
memory, using the fread, fwrite or ferase
instructions, must execute from program RAM. Software
must provide at least four cycles between an £read and

47

1P2012 /1P2022 Data Sheet

reading DATAH/DATAL, or ensure that the minimum flash
read time is met.

Unlike RAM, flash memory requires an explicit erase
operation before being written. The ferase instruction is
used to erase a 512-byte (256-word) block of flash
memory (it brings all bits to 1, see Table 4-9). After the
block has been erased, individual words can be written
with the fwrite instruction (Ewrite will not change a
0to 1). For example, an ferase instruction executed on
any byte address from 0x10000 to Ox100FE erases the
whole block spanning those addresses. The self-
programming instructions have no access to the flash
memory bits in the configuration block.

Table 4-9 ferase Addresses (ADDRX=01,

ADDRL=xx)
Flash Byte
ADDRH Addresses
0x00 0x10000 - 0x101FE
0x02 0x10200 - 0x102FE
OxFE Ox1FEOO - Ox1FFFE

Rules/Troubleshooting for fread/fwrite/ferase
and iread/ireadi of flash:

1. Must be executing out of program RAM, with ADDRX
=01.

2. FCFG register must be correctly configured (refer to
Section 7.1.5).

3. For an fread or iread/ireadi of flash, there
must be at least 3 core cycles between the read in-
struction and a read of DATAH or DATAL, or the mini-
mum flash read time must be met.

4. No speed commands while fread, fwrite or fe-
rase are busy (while XCFG bit 0 = 1).

5. Do not jump to flash memory while executing
fread/fwrite/ferase. If INTVEC is in flash, en-
sure interrupts are disabled.

6. fwrite will not change a 0 to a 1 (use ferase
first).

7. XCFG bit 0 = 0 before execution (even during ISR) or
sufficient time is allowed to complete previous opera-
tions on flash.

8. XCFG bit6 =1, otherwise fwrite and ferase be-
have as nop.

9. Make sure interrupts are disabled or that the INTSPD
value matches the SPDREG value. For iread or
ireadi of flash from flash, a more practical solution
is to jump to a routine in program RAM.

48

10. Wait 1 cycle after changing ADDRX bit 7, EMCFG bit
7, or ADDRSEL before executing an fread,
fwrite, ferase, iread, ireadi, iwrite, or
iwritei instruction.

11. Do not write to DATAH at the same time an iread of
External Memory is causing a write of DATAL.

4.7.1 Flash Timing Control

The FCFG register controls the timing of flash memory
operations. See Section 7.1.5 for a description of the
FCFG register.

4.7.2 Interrupts During Flash Operations

Before starting a flash write or erase operation, the FCFG
register (see Section 7.1.5) must be set up properly for the
current speed. The CPU core clock is the time base for the
flash write timing compensation, so it is critical that the
CPU core clock speed is not changed during a flash write
or erase operation. Interrupts may be taken during a flash
write or erase operation, if the INTSPD register is set up
so the speed does not change when an interrupt occurs.

If the flash read timing compensation is set up for a clock
divisor of 1 (i.e. fastest speed), interrupts will not cause
fread/iread instructions to fail, so no special
precautions need to be taken to avoid violating the flash
read access time.

www.ubicom.com

5.0 Peripherals

The IP2012 / IP2022 provides an array of on-chip
peripherals needed to support a broad range of
embedded Internet applications:

« 2 Serializer/Deserializer (SerDes) units (IP2012 has

one unit)

+ Real-time timer

+ TOtimer

+ 2 General-purpose timers with compare and capture
Registers

+ Watchdog timer

+ 10-bit, 8-channel A/D converter

+ Analog comparator

+ Parallel slave peripheral interface

+ External memory interface (1P2022 only)

All of the peripherals except the Watchdog Timer and the
Real-Time Timer use alternate functions of the 1/O port
pins to interface with external signals.

5.1 I/0 Ports

The IP2022 contains one 4-bit I/0O port (Port A) and six 8-
bit 1/0 ports (Port B through Port G). The IP2012 contains
one 4-bit 1/0 port (Port A), two 6-bit I/O ports (Ports D and
F) and four 8-bit I/O ports (Ports B, C, E, and G). The four
Port A pins have 24 mA current drive capability. All the
ports have symmetrical drive. Inputs are 5V-tolerant.
Outputs can use the same 2.3-2.7V power supply used
for the CPU core and peripheral logic, or they can use a
higher voltage (up to 3.6V). The 10Vdd pins are provided
for the 1/0O port pin output drivers. Port G has a separate
GVdd pin which can be used to run the Port G output
drivers at a voltage different from that used for the other
ports, since Port G must run from a 2.3-2.7V power

supply.

Each port has separate input (RxIN), output (RxOUT),
and direction (RxDIR) registers, which are memory
mapped. The numbers in the pin names correspond to the
bit positions in these registers. These registers allow each
port bit to be individually configured as a general-purpose
input or output under software control. Unused pins
should be configured as outputs, to prevent them from
floating. Port B has three additional registers for
supporting external interrupts (see Section 5.1.1).

Each port pin has an alternate function used to support
the on-chip hardware peripherals, as listed in Table 2-1.
Port A and Port B support the multi-function timers Timer
1 and Timer 2. On the 1P2022, Port B, Port C, and Port D
support the Parallel Slave Peripheral (PSP) and external
memory functions. On the 1P2012, Port B and Port C
support the PSP. Port E and Port F support the
serializer/deserializer (SERDES) units (only Port E on the

www.ubicom.com

IP2012 /1P2022 Data Sheet

IP2012). Port G supports the analog to digital converter
(ADC) and the analog comparator. Before enabling a
hardware peripheral, configure the port pins for input or
output as required by the peripheral.

Note: There is positive-feedback circuitry present on the
I/0 ports when configured as input. This causes an input
that was previously high, then subsequently tri-stated (i.e.
not driven), to be actively driven by the IP2012 / IP2022 to
a voltage level of approximately 1.7V, or one diode drop
below (IOVdd). See Section 8.2 for details.

Figure 5-1 shows the internal hardware structure and
configuration registers for each pin of a port.

AN

»

RxDIR
Register

0 = Output
1 = Hi-Z Input

Port Pin
RxOUT

» Register
>
@
8 N
8 SYNC bit

(FUSE1)

SYNC bit set
" RRX‘IN -
egister SYNC bit clear

N\

Core Clock —— 515-030a.eps

Figure 5-1 Port Pin Block Diagram

5.1.1 Port B Interrupts

Any of the 8 Port B pins can be configured as an external
interrupt input. Logic on these inputs can be programmed
to sense rising or falling edges. When an edge is detected,
the interrupt flag for the port pin is set.

The recommended initialization sequence is:

1. Configure the port pins used for interrupts as inputs
by programming the RBDIR register.

2. Be sure all enabled interrupt pins are driven to valid
logic levels, not floating.

3. Select the desired edge for triggering the interrupt
by programming the INTED register. This may set
interrupt flags.

4. nop, nop.

5. Clear the interrupt flags in the INTF register.

6. nop

49

1P2012 /1P2022 Data Sheet

7. Enable the interrupt input(s) by setting the corre-
sponding bit(s) in the INTE register.
8. Set the GIE bit.

Figure 5-2 shows the Port B interrupt logic. Port B has
three registers for supporting external interrupts, the
INTED (Section 5.1.6), INTF (Section 5.1.7), and INTE
(Section 5.1.8) registers. The INTED register controls the
logic which selects the edge sensitivity (i.e. rising or falling

edge) of the Port B pins. When an edge of the selected
type occurs, the corresponding flag in the INTF register is
set, whether or not the interrupt is enabled. The interrupt
signal passed to the system interrupt logic is the OR
function of the AND of each interrupt flag in the INTF
register with its corresponding enable bit in the INTE
register. See Section 5.1.8.

A X =

A

A 4
—»
<
—»
<
[]

INTED Register

A 4

INTF Register

Data Bus

. PortB

" Interrupt

A 4
[]

) INTE Register

N\

Figure 5-2 Port B Interrupt Logic

515-031.eps

5.1.2

The port registers are memory-mapped into the data
memory address space between 0x020 and Ox03A. In
addition, Port B has three extra registers located at 0x017
through 0x019 (INTED, INTF, and INTE), which support
external interrupt inputs.

Reading and Writing the Ports

Generally, successive read and write operations on the
same |/O port is not an issue, as there are separate IN an
OUT registers for each 1/0O port. Care must be given to
ensure that enough time is allowed for data written to the
OUT register to propagate to the IN register on a given
port. If this is an issue, two instructions (or four
instructions if the SYNC bit in the FUSE1 register is clear)
should be inserted between any read-modify-write
instruction sequences (or more nop instructions if the pin
is capacitively loaded).

50

5.1.3

The RxIN registers are virtual registers that provide read-
only access to the physical I/0 pins. Reading these
registers returns the states on the pins, which may be
driven either by the IP2012 / IP2022 or an external device.
If the SYNC bit in the FUSE1 register is clear, the states
are read from a synchronization register. If an application
reads data from a device running asynchronously to the
IP2012 /1P2022, the SYNC bit should be cleared to avoid
the occurrence of metastable states (i.e. corrupt data
caused by an input which fails to meet the setup time
before the sampling clock edge, which theoretically could
interfere with the operation of the CPU).

RxIN Registers

5.1.4 RxOUT Registers

The RxOUT registers are data output buffer registers. The
data in these registers is driven on any /O pins that are
configured as outputs. On reads, the RxOUT registers
return the data previously written to the data output buffer
registers, which might not correspond to the states

www.ubicom.com

actually present on pins configured as inputs or pins
forced to another state by an external device.

5.1.5 RxDIR Registers

The RxDIR registers select the direction of the port pins.
For each output port pin, clear the corresponding RxDIR
bit. For each input port pin, set the corresponding RxDIR
bit. Unused pins that are left open-circuit should be
configured as outputs, to keep them from floating.

For example, to configure Port A pins RA3 and RA2 as
outputs and RA1 and RAO as inputs, the following code
could be used:

;load W with the value 0x03
;(bits 3:2 low, and bits 1:0
;high)

;write 0x03 to RADIR
;register

mov w,#0x03

mov 0x022 ,w

The second move instruction in this example writes the
RADIR register, located at address 0x022. Because Port
A has only four I/O pins, only the four least significant bits
of this register are used.

To drive the RA1 pin low and the RAO pin high, the
following code then could be executed:

;load W with the value 0x01
;(bits 3:1 low, and bit 0
;high)

;write 0x01 to RAOUT
;register

mov w,#0x01

mov 0x021,w

The second move instruction shown above writes the
RAOQOUT register, located at address 0x021. When reading
the Port A pins through the RAIN register (0x020), the
upper four bits always read as zero.

When a write is performed to the RxOUT register of a port
pin that has been configured as an input, the write is
performed but it has no immediate effect on the pin. If that
pin is later configured as an output, the pin will be driven
with the data that had been previously written to the
RxOUT register.

5.1.6 INTED Register

The INTED register consists of 8 edge detection bits that
correspond to the 8 pins of Port B. A set bit in the INTED
register makes the corresponding port pin trigger on
falling edges, while a clear bit makes the pin trigger on
rising edges.

www.ubicom.com

IP2012 /1P2022 Data Sheet

5.1.7 INTF Register

The INTF register consists of 8 interrupt flags that
correspond to the 8 pins of Port B. If the trigger condition
for a Port B pin occurs, the corresponding bit in the INTF
register is set. The bit is set even if the port pin is not
enabled as a source of interrupts.

The interrupt service routine (ISR) can check this register
to determine the source of an external interrupt. If a Port
B pin enabled for generating interrupts has a set bit in the
INTF register, software must clear the bit prior to exiting to
prevent repeated calls to the ISR.

The Port B interrupt logic is asynchronous (e.g. functions
without a clock in clock-stop mode). A side effect is that
there is a 2-cycle delay between the instruction that clears
a INTF bit and the bit being cleared. This means that
software must clear the bit at least 2 cycles before
executing a return from interrupt (reti) instruction.

5.1.8 INTE Register

The INTE register consists of 8 interrupt enable bits that
correspond to the 8 pins of Port B. A Port B pin is enabled
as a source of interrupts by setting the corresponding bit
in the INTE register. The pin is disabled as an interrupt
source by clearing the corresponding INTE bit, but takes
up to 1 core clock cycle for the interrupt to be disabled.

5.1.9

On power-up, all the port control registers (RxDIR) are
initialized to OxFF. Therefore, each port pin is configured
as a high-impedance input. This prevents any false
signalling to external components which could occur if the
ports were allowed to assume a random configuration at
power-up.

Port Configuration Upon Power-Up

5.2 Timer 0

Timer 0 is an 8-bit timer with an 8-bit prescaler intended
to generate periodic interrupts for ipModule™ instances
that require being called at a constant rate, such as UART
and DTMF functions. When the TOTMR register counts up
to FF and rolls over to 00, the TOIF flag in the TOCFG
register will be set, and an interrupt will occur if the TOIE
and TOEN bit are set (see TOCFG register description in
Section 7.1.20). To clear the interrupt, either the TOIE or
TOEN bit should be cleared, and then the TOIF flag must
be cleared.

Note: If TOIF is not cleared after disabling the TimerO
interrupt (TOIE = 0) or disabling Timer0 (TOEN = 0), it is
assumed that another interrupt has occurred, and the

51

1P2012 /1P2022 Data Sheet

interrupt will occur on the next return, or when GIE is set
(enabling nested interrupts - see Section 3.7.2).

The Timer 0 interrupt is also supported in the instruction
set by an option for the reti instruction which adds the
W register to the TOTMR register when returning from an
interrupt. Figure 5-3 shows the Timer 0 logic.

Operation of Timer 0 to generate periodic interrupts:

+ TOTMR = 00 when entering ISR from TO interrupt

+ Keeps counting up while in ISR

« Add W to TOTMR with execution of reti (refer to Ta-
ble 3-5). Interrupt frequency is adjusted by adjusting
value loaded in W, and depending on core clock divid-
er, since TOTMR runs on the system clock. If W added
to TOTMR exceeds OxFF, no interrupt is taken until the
TOTMR rolls over from OxFF to Ox00 again. If the
TOTMR rolls over during the 3 core cycles in the re-
turn from interrupt, the ISR is executed again (and
never again returns to mainline code as long as the
ISR executes the same).

Note: Do not enable Timer O interrupt before enabling the
Timer O itself.

TOPS 3:0 TOEN TOIE
8-bit TOIF
System 8-Bit TOTMR
Clock Prescaler Register
8
Data Bus 515-091c.eps

Figure 5-3 Timer 0 Block Diagram

The control and status register for Timer 0 is the TOCFG
register, described in detail in Section 7.1.20.

Note: TOIF can only be asserted when TOIE = 1, TOEN =
1 and TOTMR overflow occurs.

5.3 Real-Time Timer (RTTMR)

The Real-Time Timer is an 8-bit timer intended to provide
a periodic system wake-up interrupt. Unlike the other
peripherals (except the Watchdog Timer and Port B
interrupts), the Real-Time Timer continues to function
when the system clock is disabled. For those applications
which spend much of their time with the OSC clock
oscillator turned off to conserve power, there are 5
available mechanisms to exit this mode: external reset
(RST pin), reset from the Watchdog Timer, reset from
Brown-out, interrupt from a Port B input, and interrupt

52

from the Real-Time Timer. By using an interrupt rather
than reset, more of the CPU state is preserved and some
reset procedures such as initializing the port direction
registers can be skipped. Figure 5-4 shows the Real-Time
Timer logic. (When RTCLK1 is not used, it should be tied
to GND.)

When the RTTMR register counts up to FF and rolls over
to 00, the RTIF flag in the RTCFG register will be set, and
an interrupt will occur if the RTIE and RTEN bit are set
(see RTCFG register description in Section 7.1.9). To
clear the interrupt, either the RTIE or RTEN bit should be
cleared, and then the RTIF flag be cleared.

Note: A nop is required between a speed instruction
and an instruction that enables or writes to RTTMR.

Note: If RTIF is not cleared after disabling the Real-Time
Timer interrupt (RTIE = 0) or disabling the Real-Time
Timer (RTEN = 0), it is assumed that another interrupt has
occurred, and the interrupt will occur on the next return, or
when GIE is set (enabling nested interrupts - see Section
3.7.2).

Note: The system clock must be slower or equal to the
RTCLK clock, for a write to the RTTMR to work correctly.

The real-time timer is readable and writable as the
RTTMR register. The control and status register for the
timer is the RTCFG register, as described in Section
7.1.9.

The RTEOS bit (XCFG bit 5, see Section 7.1.26) selects
the sampling mode for the external input. If the RTEOS bit
is set, the external input is over-sampled with the system
clock. The CPU can always read the value in the RTTMR
register, if the system clock is at least twice the frequency
of the external input. If the system clock source is
changed to RTCLK or turned off, then the RTEOS bit must
be clear for the Real-Time Timer to function.

Note: if the RTEOS bit is cleared, expect a 3 cycle system
clock delay for the overflow interrupt, due to
synchronization circuitry.

If the RTEOS bit is clear then the external input directly
clocks the Real-Time Timer (i.e. RTCLK is not
oversampled). The Real-Time Timer will always function
whether the clock input is synchronous or asynchronous.
However, the CPU cannot reliably read the value in the
RTTMR register unless the RTCLK clock is synchronous
to the system clock (RTEOS=1).

If the value in the RTTMR register does not need to be
used by the CPU (i.e. only the interrupt flag is of interest),
then the RTEOS bit should be clear (i.e. RTCLK not
oversampled), which allows the Real-Time Timer to
function for any configuration of the system clock.

www.ubicom.com

If the value in the RTTMR register needs to be used by the
CPU, but the Real-Time Timer is not required to function
when the system clock is set to RTCLK or turned off, then
the RTEOS bit should be set to ensure the CPU can
reliably read the RTTMR register.

If the value in the RTTMR register needs to be used by the
CPU and the Real-Time Timer is required to function
when the system clock is set to RTCLK or off, then
software must change the RTEOS bit when changing the
system clock source. To read the RTTMR register when
the system clock is not synchronous to the RTCLK, the
RTEOS bit must be set to ensure reliable operation.
Before the system clock is changed to RTCLK or turned
off, the RTEOS bit must be clear (i.e. RTCLK not
oversampled) for the Real-Time Timer to continue to
function.

Note: When using development tools in single stepping
mode, the RTSS bit must be cleared and RTEOS must be
set, otherwise the counter will behave erratically.

Note: Care must be exercised if Port B interrupts and
RTTMR interrupts are enabled, because the RTTMR may
receive sporadic clocks during crystal startup while the
system clock is waiting for WUDX2:0 (see Figure 3-17).

RTEOS
np—|g
RTSS One 1
Shot e
0OSC1 0
0\ Enable
RTCLK1 N Q ~ CLK
1
> RTTMR
System Clock /(
RTEOS 515-015b.eps

Figure 5-4 Real-Time Timer Block Diagram

www.ubicom.com

IP2012 /1P2022 Data Sheet

53

1P2012 /1P2022 Data Sheet

54

Multi-Function Timers (T1 and T2)

System
Clock |
15-Bit Prescaler
RA2 for T1 K Tl Nowre
RB2 for T2
TxCNTH/TxCNTL TxCFGI1L bit 6
System Register (OEN)
Clock [RAOUT bit 3 for T1
! | RBOUT bit 3 for T2
TXCPI1 TxOUT
RAO for T1 X T l i || TXCAPTH/TXCAPIL TXCMP1H/TXCMP1L
RBO for T2 Register Register RA3 for T1
RB3 for T2
> TXCAP2H/TxCAP2L
) Tl i L »| or TXCMP2H/TXCMP2L
RA1 for T1\en 2 Register
RB1 for T2 X ’
or 515-005a.eps

Figure 5-5 Multifunction Timer Block Diagram

The 1P2012 / 1P2022 contains two independent 16-bit
multi-function timers, called T1 and T2 (notated below as
Tx). These versatile, programmable timers reduce the
software burden on the CPU in real-time control
applications such as PWM generation, motor control, triac
control, variable-brightness display control, sine-wave
generation, and data acquisition.

Each timer consists of a 16-bit counter register supported
by a dedicated 16-bit capture register and two 16-bit
compare registers. The second compare register can also
serve as capture register. Each timer may use up to four
external pins: TxCPI1 (Capture Input), TxCPI2 (Capture
Input), TXCLK (Clock Input), TXOUT (Output). These pins
are multiplexed with general-purpose 1/O port pins. The
port direction register has priority over the timer
configuration, so the port direction register must be
programmed appropriately for each of these four signals if
their associated timer functions are used.

Figure 5-5 is a block diagram showing the registers and
I/O pins of one timer. Each timer is based on a 16-bit
counter/timer driven by a 15-bit prescaler. The input of the
prescaler can be either the system clock or an external
clock signal which is internally synchronized to the system
clock. The counter cannot be directly written by software,
but it may be cleared by writing to the TxRST bit in the
TxCTRL register.

5.4.1

Each timer can be configured to operate in one of the
following modes:

Timers T1,T2 Operating Modes

54

+ Pulse-Width Modulation (PWM)

+ Timer
« Capture/Compare
PWM Mode

In PWM Mode, the timer can generate a pulse-width
modulated signal on its output pin, TXOUT. The period of
the PWM cycle (high + low), in number of system clocks,
is specified by the value in the TxCAP2H/TxCAP2L
register. The high time of the pulse is specified by the
value in the TXCMP1H/TxCMP1L register.

PWM mode can be used to generate an external clock
signal that is synchronous to the IP2012 / IP2022 system
clock. For example, by loading TXCMP1H/TxCMP1L with
1 and TXCAP2H/TxCAP2L with 2 (the high registers must
be written last for this to work), a symmetric external clock
can be generated at | the frequency of the system clock.
In some applications, this can eliminate crystals or
oscillators required to produce clock signals for other
components in the system. SerDes GPSI mode can also
produce clock outputs.

The 16-bit counter/timer counts upward, starting with the
TxOUT output driven high. After reaching the value stored
in the TXCMP1H/TxCMP1L register minus one, at the next
clock edge the TxOUT pin is driven low. The counter/timer
is unaffected by this event and continues to increment.
After reaching the value stored in the TXCAP2H/TxCAP2L
register minus one, at the next clock edge the timer is
cleared. When the counter is cleared, the TxOUT output is
driven high, unless the TXCMP1H/TXCMP1L register is
clear, in which case the TxOUT pin is driven low.

www.ubicom.com

There are two special cases. When the
TXCMP1H/TXCMP1L register is clear, the TxOUT pin is
driven with a continuous low, corresponding to a duty-
cycle of 0%. When the value in the TXCMP1H/TxCMP1L
register is equal to the value in the TXCAP2H/TxCAP2L
register, the TxOUT output is driven with a continuous
high, corresponding to a duty-cycle of 100%.

The behavior of the timers is undefined when the value in
the TXCMP1H/TxCMP1L register is greater than the value
in the TXCAP2H/TxCAP2L register.

The timer is glitch-free no matter when the
TxCMP1H/TxCMP1L register or the TXCMP2H/TxCMP2L
register are changed relative to the value of the internal
counter/timer. The new duty cycle or period values do not
take effect until the current PWM cycle is completed (the
counter/timer is reset).

Interrupts, if enabled through the TXCFG1H register, can
be generated whenever the timer output is set or cleared.
If the TXCMP1H/TXCMP1L register is clear, or if the value
in the TXCMP1H/TxCMP1L register is equal to the value
in the TXCAP2H/TxCAP2L register, an interrupt can be
generated each time the counter/timer is reset to zero.

In PWM mode, the Capture 1 input remains active (if
enabled by the CPI1EN bit in the TXCFG1L register) and,
when triggered, captures the current counter/timer value
into the TXCAP1 register.

The multifunction timers can be configured to interrupt on
a Capture 1 event and reset the counter/timer on the
event. For PWM operation without Capture 1, software
must disable the Capture 1 input by clearing the CPI1EN
bit in the TXCFG1L register.

Timer Mode

This is not a separate timer mode (from the hardware
point of view), but is a conceptual mode for programmers.
It is the PWM mode, except that software disables the
timer output by clearing the OEN bit in the TXCFG register.

Capture/Compare Mode

In Capture/Compare mode, one or both of the timer
capture inputs (TxCPI1 and TxCPI2) may be used. Their
pin functions must be enabled in the TxCFG1 register.
Each capture input can be programmed in the TXCFG2
register to trigger on a rising edge, falling edge, or both
rising and falling edges.

When a trigger event occurs on either capture pin, the
current value of the counter/timer is captured into the
TxCAP1H/TXCAP1L register or the TxCAP2H/TxCAP2L
register for that input pin.

The counter/timers can also be configured to reset on a
TxCPI1 input event, in which case the value of the

www.ubicom.com

IP2012 /1P2022 Data Sheet

counter/timer before it was reset is captured in the
TxCAP1H/TXCAP1L register and the counter/timer is
reset to zero. This mode is useful for measuring the
frequency (or width) of external signals. By using both
capture inputs and configuring them for opposite edges,
the duty cycle of a signal can also be measured. To avoid
wasting I/O port pins in this configuration, the CPI2EN bit
in the TXCFG1L register is provided to internally tie the
TxCPI1 and TxCPI2 inputs together, which frees the
TxCPI2 pin to be used as a general-purpose /O port pin.

An interrupt can be generated for any capture event and
for counter/timer overflows.

This mode also features an output-compare function. The
TxCMP1H/TCMP1L register is constantly compared
against the internal counter/timer. When the counter/timer
reaches the value of the TXCMP1H/TxCMP1L register
minus one, at the next counter clock the TxOUT output is
toggled. The TxOUT output, if enabled via the OEN bit,
can be driven high or low by writing to the TOUTSET and
TOUTCLR bits in the TXCFG2L register. An interrupt can
be enabled for this event.

Interrupts

When a Multi-Function Timer interrupt occurs, the
corresponding interrupt flag (depending on the mode;
OFIF, CAP2IF/CMP2IF, CAP1IF or CMP1IF) in the
TxCFG1H register will be set, and an interrupt will occur if
the TMREN bit (TxCFG1L register), the TxIE bit (TCTRL
register) and an interrupt source is enabled (depending on
the mode; OFIE, CAP2IE/CMP2IE, CAP1IE or CMP1IE)
are set (TxCFG1H register). To clear the interrupt, either
the TMREN bit, TxIE bit or the interrupt source (OFIE,
CAP2IE/CMP2IE, CAP1IE or CMP1IE) should be cleared,
and then the interrupt flag (OFIF, CAP2IF/CMP2IF,
CAP1IF or CMP1IF) should be cleared.

Note: The interrupt flag can only be asserted when the
multi-function timers are enabled, the timer interrupts are
enabled, an interrupt source is enabled, and timer event
occurs.

Note: If the interrupt flag is not cleared after disabling
either the interrupt enable or the Multi-Function Timer
enable (TMREN = 0), it is assumed that another interrupt
has occurred, and the interrupt will occur on the next
return, or when GIE is set (enabling nested interrupts -
see Section 3.7.2).

55

1P2012 /1P2022 Data Sheet

5.4.2

The following table lists the 1/0 port pins associated with
the Timer T1 and Timer T2 1/O functions.

Table 5-1 Timer T1/T2 Pin Assignments

T1 and T2 Timer Pin Assignments

I/0 Pin Timer T1/T2 Function

RAO |Timer T1 Capture 1 Input

RA1 |Timer T1 Capture 2 Input

RA2 |Timer T1 External Event Clock Source
RA3 |Timer T1 Output
RBO |Timer T2 Capture 1 Input

RB1 |Timer T2 Capture 2 Input

RB2 |Timer T2 External Event Clock Source
RB3 |Timer T2 Output
5.4.3 T1 and T2 Timer Registers

Each timer has six 16-bit register pairs, which are
accessed as 8-bit registers in the special-purpose register
space. There is also one 8-bit register shared by both
timers.

TxCNTH/TxCNTL Register

The TXCNTH/TxCNTL register indicates the value of the
counter/timer and increments synchronously with the
rising edge of the system clock. This register is read-only.
The timer counter may be cleared by writing to the TXRST
bit in the TCTRL register.

Reading the TXCNTL register returns the least-significant
8 bits of the internal TXCNT counter and causes the most-
significant 8 bits of the counter to be latched into the
TXCNTH register. This allows software to read the
TxCNTH register later and still be assured of atomicity.

56

TxCAP1H/TxCAP1L Register

The TxCAP1H/TxCAP1L register captures the value of
the counter/timer when the TxCPI1 input is triggered. This
register is read-only.

Reading the TxCAP1L register returns the least-
significant 8 bits of an internal capture register and causes
the most-significant 8-bits of the register to be latched into
the TxCAP1H register. This allows software to read the
TxCAP1H register later and still be assured of atomicity.

TxCMP1H/TxCMP1L Register

In Capture/Compare mode, the TxOUT output pin is
toggled (if enabled by the OEN bit in the TXCFG1 register)
when the counter/timer increments to the value in the
TxCMP1 register. In this mode, the value written to the
TxCMP1 register takes effect immediately.

Writing to the TXCMP1L register causes the value to be
stored in the TXCMP1L register with no other effect.
Writing to the TxCMP1H register causes an internal
compare register to be loaded with a 16-bit value in which
the low 8 bits come from the TXCMP1L register and high
8 bits come from the value being written to the TXCMP1H
register. Software should write the TXCMP1L register
before writing the TXCMP1H register, because writing to
the TXCMP1H register is used as an indication that a new
compare value has been written. Writing to the TXCMP1H
register is required for the new compare value to take
effect - this means that TxCMP1H must be written AFTER
TxCMP1L for the value to have any effect. In PWM mode,
the 16-bit number latched into the internal compare
register by writing to the TXxCMP1H register does not take
effect until the end of the current PWM cycle.

Reading the TXCMP1H or TXCMP1L registers returns the
previously written value whether or not the value stored in
these registers has been transferred to the internal
compare register by writing to the TXCMP1H register.

TxCAP2H/TxCAP2L or TXCMP2H/TxCMP2L Register

This register may be called the TxCAP2H/TxCAP2L
register or TXCMP2H/TxCMP2L register.

In PWM mode, this register determines the period of the
PWM signal. In this mode, this register is both readable
and writable. However, on writes the value is not applied
until the end of the current PWM cycle.

Writing to the TxCAP2L register causes the value to be
stored in the TxCAP2L register with no other effect.
Writing to the TxCAP2H register causes an internal
compare register to be loaded with a 16-bit value in which
the low 8 bits come from the TxCAP2L register and the
high 8 bits come from the val