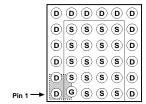
December 1999 ADVANCE INFORMATION

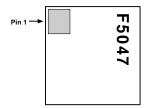
FDZ5047N

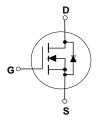
30V N-Channel Logic Level PowerTrench® BGA MOSFET

General Description

Combining Fairchild's 30V PowerTrench process with state of the art BGA packaging, the FDZ5047N minimizes both PCB space and $R_{\rm DS(ON)}.$ This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low $R_{\rm DS(ON)}.$


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS(ON)}}$ specifications resulting in DC/DC power supply designs with higher overall efficiency.


Applications


- DC/DC Converters
- · Solenoid drive

Features

- 22 A, 30 V. $R_{DS(ON)} = 0.0035 \; \Omega \; @ \; V_{GS} = 10 \; V$ $R_{DS(ON)} = 0.0050 \; \Omega \; @ \; V_{GS} = 4.5 \; V.$
- Occupies only 27.5 mm² of PCB area.
 1/5 of the area of a TO-220 package.
- Ultra-thin package: less than 0.80 mm height when mounted to PCB.
- Outstanding thermal transfer characteristics.
- $\bullet~$ Ultra-low gate charge x $R_{\text{DS(ON)}}~$ product.
- 175°C maximum junction temperature rating.

Bottom

Top

Absolute Maximum Ratings T_A=25°C unless otherwise noted

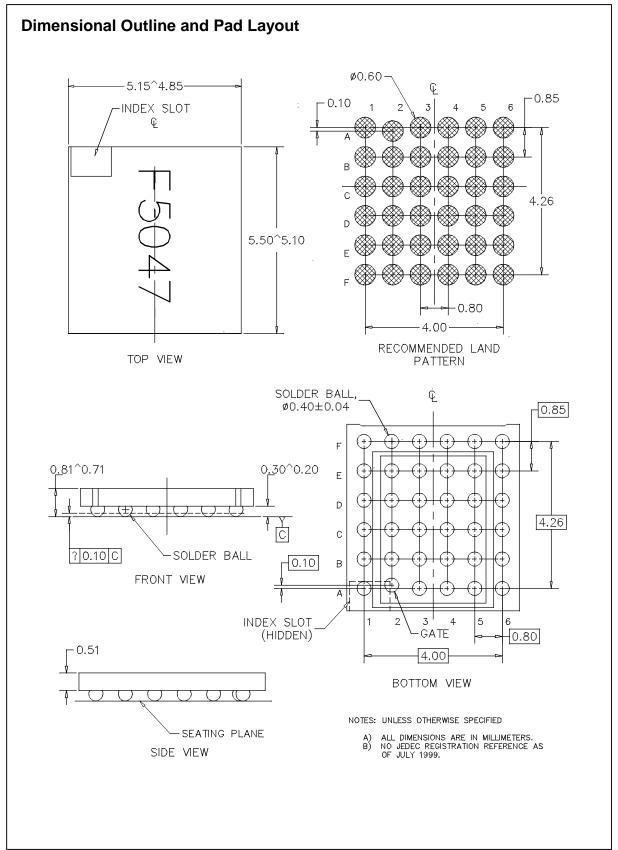
Symbol	Parameter	Ratings	Units
V_{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1a)	22	Α
	- Pulsed	75	1
P _D	Total Power Dissipation @ T _A = 25°C	3.3	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-65 to +175	°C

Thermal Characteristics

$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	45	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
F5047	FDZ5047N	TBD	TBD	TBD


Electri	cal Characteristics	T _A = 25°C unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		•	•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSSF}	Gate-Body Forward Leakage	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Reverse Leakage	$V_{GS} = -20 \text{ V}$ $V_{DS} = 0 \text{ V}$			100	nA
On Char	acteristics (Note 2)				ı	u
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.5	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{,l}}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		- 5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 22 \text{ A} $ $V_{GS} = 4.5 \text{ V}, \qquad I_D = 18 \text{ A}$		3.0 4.2	3.5 5.0	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	50			Α
Dynamic	Characteristics	•	•		•	
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		5400		pF
Coss	Output Capacitance	f = 1.0 MHz		1170		pF
C _{rss}	Reverse Transfer Capacitance			530		pF
Switchir	ng Characteristics (Note 2)				ı	u
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 1 \text{ A},$		50	70	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		16		nC
Q _{gd}	Gate-Drain Charge			16		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	Diode Forward Current (Note 1a)			3	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 22 \text{ A}$ (Note 2)		0.95	1.2	V

Notes:

1. R_{0JA} is a function of the junction-to-case (R_{0JC}), case-to-ambient (R_{0CA}) and the PC Board (R_{0BA}) thermal resistance. For the purpose of determining R_{0JC} the case thermal reference is defined as the top surface of the package. R_{0JC} is guaranteed by design while R_{0CA} and R_{0BA} are determined by the user's

⁽a). $\rm R_{\theta JA} = 45^{\circ} C/W$ (steady-state) when mounted on 1 in 2 of 2 oz. copper.

^{2.} Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} E^2 CMOS^{TM} & Power Trench^{\circledR} \\ FACT^{TM} & QFET^{TM} \\ FACT \ Quiet \ Series^{TM} & QS^{TM} \end{array}$

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet\,Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.