TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH165FK

8-Bit Shift Register (P-In, S-Out)

The TC7MH165FK is an advanced high speed CMOS 8-bit parallel/serial-in, serial-out shift register fabricated with silicon gate $\rm C^2MOS$ technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

It consists of parallel-in or serial-in, serial-out 8-bit shift register with a gated clock input. When the SHIFT/ \overline{LOAD} input is held high, the serial data input is enabled and the eight flip-flops perform serial shifting with each clock pulse.

When the SHIFT/LOAD input is held low, the parallel data is loaded synchronously into the register at positive going transition of the clock pulse.

The CK-INH input should be shifted high only when the CK input is held high.

An Input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Weight: 0.02 g (typ.)

Features

- High speed: $f_{max} = 150 \text{ MHz}$ (typ.) (VCC = 5 V)
- Low power dissipation: $ICC = 4 \mu A \text{ (max) (Ta} = 25 \text{°C)}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: $t_pLH \approx t_pHL$
- Wide operating voltage range: VCC (opr) = 2~5.5 V
- Pin and function compatible with 74ALS165

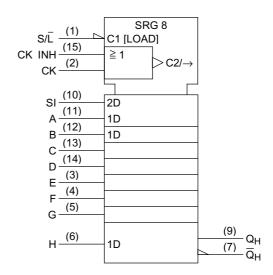
000630EBA

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The products described in this document are subject to the foreign exchange and foreign trade laws

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.


[•] The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

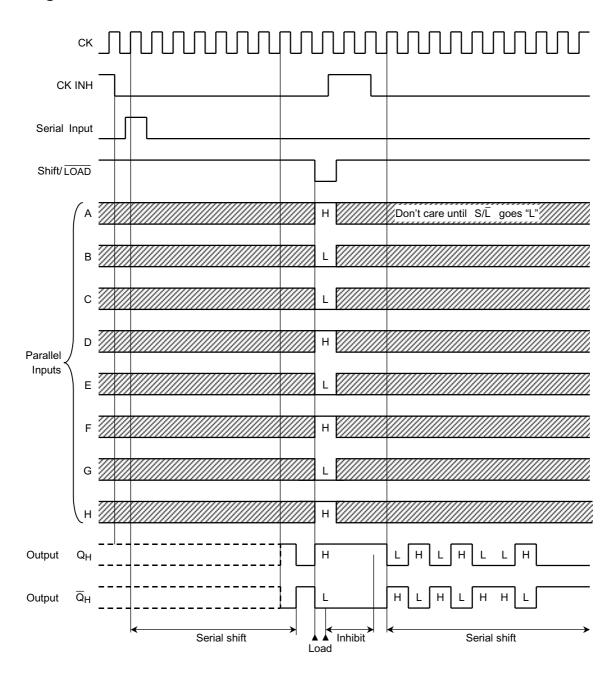
Pin Assignment (top view)

$\text{S}/\bar{\text{L}}$ 16 V_{CC} CK CK INH Е D F С 13 G В Н 6 Α $\overline{\mathtt{Q}}_{\mathsf{H}}$ SI 10 GND 8 Q_H

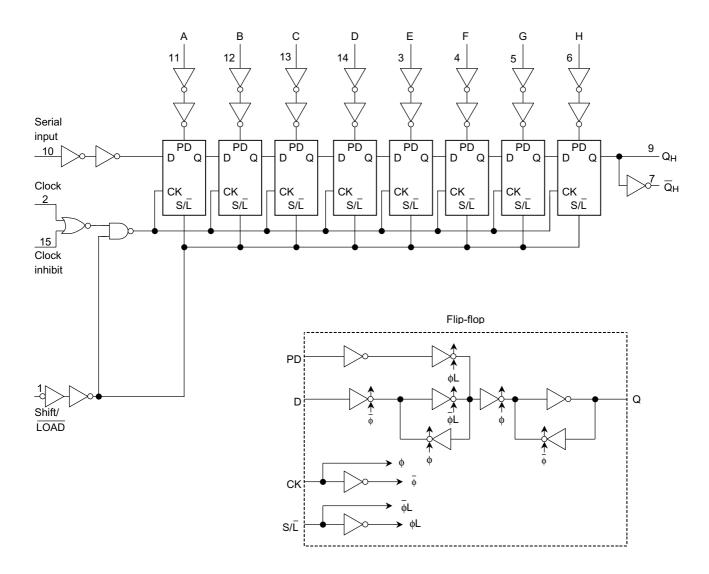
IEC Logic Symbol

Truth Table

		Inputs		Internal	Outputs	Outputs					
Shift/ LOAD	CK INH	CK	Serial In	Parallel AH	Q _A	Q _B	Q _H	Q _H			
L	Х	Х	Х	ah	а	b	h	h			
Н	L		Н	Х	Н	Q _{An}	Q _{Gn}	Q _{Gn}			
Н	L		L	Х	L	Q _{An}	Q _{Gn}	$\overline{\overline{Q}}_{Gn}$			
Н	_	L	Н	Х	Н	Q _{An}	Q _{Gn}	\overline{Q}_Gn			
Н		L	L	Х	L	Q _{An}	Q _{Gn}	$\overline{\overline{Q}}_{Gn}$			
Н	Х	Н	Х	Х	No change						
Н	Н	Х	Х	Х	No change						


X: Don't care

ah: The level of steady state input voltage at inputs A through H respectively


 Q_{An} - Q_{Gn} : The level of Q_{A} - Q_{G} , respectively, before the most recent positive transition of the CK.

Timing Chart

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5	٧
Input diode current	I _{IK}	-20	mA
Output diode current	I _{OK}	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2.0~5.5	V
Input voltage	V _{IN}	0~5.5	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	$0\sim100 \text{ (V}_{CC} = 3.3 \pm 0.3 \text{ V)}$ $0\sim20 \text{ (V}_{CC} = 5 \pm 0.5 \text{ V)}$	ns/V

Electrical Characteristics

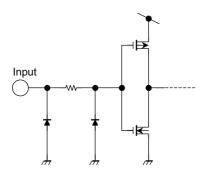
DC Characteristics

Characteristics		Symbol	bol Test Condition			Ta = 25°C			Ta = -40~85°C		Unit
Characte	Characteriotics				V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
lanut valtaga		V _{IH}	_		2.0	1.50	_	_	1.50	_	V
	High level				3.0~5.5	$\begin{matrix} V_{CC} \\ \times 0.7 \end{matrix}$	_	_	V _{CC} ×0.7	_	
Input voltage					2.0	_	_	0.50	_	0.50	
	Low level	V _{IL}			_	Max — —					
	High level				2.0	1.9	2.0	_	1.9	_	
		V _{ОН}	or V _{IL}	$I_{OH} = -50 \mu A$	3.0	2.9	3.0	_	2.9	_	V
					4.5	4.4	4.5	_	4.4	_	
				$I_{OH} = -4 \text{ mA}$	3.0	2.58	_	_	2.48	_	
Output voltage				$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	
Output Voltage					2.0	_	0	0.1	_	0.1	v
	Low level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \mu A$	3.0	_	0	0.1	_	0.1	
					4.5		0	0.1	_	0.1	
				$I_{OL} = 4 \text{ mA}$	3.0	_	_	0.36	_	0.44	
				$I_{OL} = 8 \text{ mA}$	4.5			0.36	_	0.44	
Input leakage current		I _{IN}	V _{IN} = 5.5 V or GND		0~5.5	_		±0.1	_	±1.0	μΑ
Quiescent supply current		I _{CC}	V _{IN} = V _{CC} or GND		5.5			4.0		40.0	μΑ

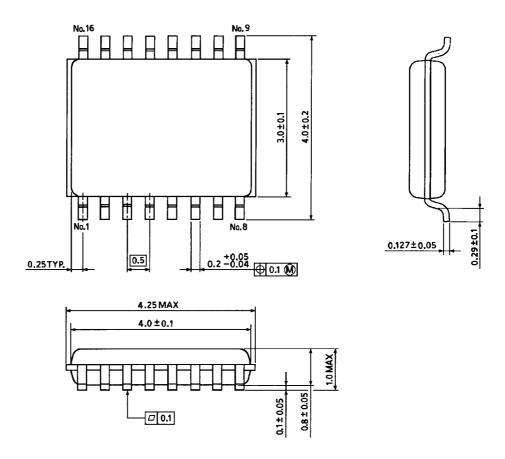
Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	Ta = 25°C		Ta = -40~85°C	Unit		
Characteristics	Symbol	rest Condition	V _{CC} (V)	Тур.	Limit	Limit	Offic	
Minimum pulse width	t _{w (L)}		3.3 ± 0.3	_	6.0	7.0		
(CK, CK INH)	t _{w (H)}	_	5.0 ± 0.5	_	4.0	4.0	ns	
Minimum pulse width	t		3.3 ± 0.3		7.5	9.0	no	
(S/L)	t _{W (L)}		5.0 ± 0.5		5.0	6.0	ns	
Minimum set-up time	+		3.3 ± 0.3	_	7.5	8.5	ns	
(A~H- S/L)	t _s	_	5.0 ± 0.5	_	5.0	5.0		
Minimum set-up time	+		3.3 ± 0.3	_	5.0	6.0	ns	
(SI-CK, CK INH)	t _s	_	5.0 ± 0.5	_	4.0	4.0	lis	
Minimum set-up time	+		3.3 ± 0.3	_	5.0	6.0	no	
(S/L-CK, CK INH)	t _s	_	5.0 ± 0.5	_	4.0	4.0	ns	
Minimum hold time	4.		3.3 ± 0.3	_	0.5	0.5	no	
(A~H- S/L)	t _h	_	5.0 ± 0.5	_	1.0	1.0	ns	
Minimum hold time	4.		3.3 ± 0.3	_	0	0	ns	
(SI-CK, CK INH)	t _h		5.0 ± 0.5		0.5	0.5	115	
Minimum hold time	+.		3.3 ± 0.3		0	0	ns	
(S/L -CK, CK INH)	t _h		5.0 ± 0.5		0.5	0.5	115	
Minimum removal time			3.3 ± 0.3		5.0	5.0		
(CK INH-CK)	t _{rem}	_	5.0 ± 0.5	_	3.5	3.5	ns	
(CK-CK INH)			3.0 ± 0.5	_	3.3	3.0		

AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)


Characteristics	Symbol Test Condition				Ta = 25°C			Ta = -4	0~85°C	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
		pLH	3.3 ± 0.3	15	_	9.9	15.4	1.0	18.0	- - ns
Propagation delay time	t _{pLH}			50	_	12.4	18.9	1.0	21.5	
(CK, CK INH-Q _H , \overline{Q}_H)	t _{pHL}	<u>—</u>	5.0 ± 0.5	15		6.6	9.9	1.0	11.5	
			3.0 ± 0.5	50		8.1	11.9	1.0	13.5	
			3.3 ± 0.3	15		9.9	15.8	1.0	18.5	- ns
Propagation delay time	t _{pLH}		3.3 ± 0.3	50		12.4	19.3	1.0	22.0	
$(S/L-Q_H, \overline{Q}_H)$	t _{pHL}	_	5.0 ± 0.5	15		6.7	9.9	1.0	11.5	
			3.0 ± 0.5	50		8.2	11.9	1.0	13.5	
	t _{pLH} t _{pHL}	_	3.3 ± 0.3	15		9.2	14.1	1.0	16.5	ns
Propagation delay time			0.0 ± 0.0	50		11.7	17.6	1.0	20.0	
$(H-Q_H, \overline{Q}_H)$			5.0 ± 0.5	15		5.9	9.0	1.0	10.5	
				50		7.4	11.0	1.0	12.5	
		3.3 ± 0.3	15	65	85		55	_		
Maximum clock frequency			3.3 ± 0.3	50	60	105		50	_	- MHz
Maximum clock frequency	f _{max}	<u>—</u>	5.0 ± 0.5	15	110	150	_	90	_	
			J.U ± 0.5	50	95	130		85	_	
Input capacitance	C _{IN}	-				4	10	_	10	pF
Power dissipation capacitance	C _{PD}			(Note)	_	50	_	_	_	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Input Equivalent Circuit

Package Dimensions

Weight: 0.02 g (typ.)