

Product Description

Stanford Microdevices' SHF-0186 is a high performance GaAs Heterostructure FET housed in a low-cost surface-mount plastic package. HFET technology improves breakdown voltage while minimizing Schottky leakage current for higher power added efficiency and improved linearity.

Output power at 1dB compression for the SHF-0186 is +28 dBm when biased for Class AB operation at 8V and 100mA. The +40 dBm third order intercept makes it ideal for high dynamic range, high intercept point requirements. It is well suited for use in both analog and digital wireless communication infrastructure and subscriber equipment including cellular PCS, CDPD, wireless data, and pagers.

SHF-0186 DC-12 GHz, 0.5 Watt AIGaAs/GaAs HFET

Product Features

- Patented AlGaAs/GaAs Heterostructure FET Technology
- +28 dBm P1dB Typical
- +40 dBm Output IP3 Typical
- High Drain Efficiency: Up to 46% at Class AB
- 17 dB Gain at 900 MHz (Application circuit)
- 15 dB Gain at 1900 MHz (Application circuit)
- Gmax Guaranteed at 12 GHz

Applications

- Analog and Digital Wireless System
- Cellular PCS, CDPD, Wireless Data, Pagers
- AN-020 Contains detailed application circuits

Symbol	Device Characteristics, T = 25°C V _{DS} = 8V, I _{DQ} = 100 mA	Units	Min.	Тур.	Max.	
G _{MAX}	Maximum Available Gain	$ \begin{array}{l} \text{f} = 900 \text{ MHz, } Z_{\text{s}} \!\! = \!\! Z_{\text{s}}^{*}, Z_{\text{t}} \!\! = \!\! Z_{\text{t}}^{*} \\ \text{f} = 1960 \text{ MHz, } Z_{\text{s}} \!\! = \!\! Z_{\text{s}}^{*}, Z_{\text{t}} \!\! = \!\! Z_{\text{t}}^{*} \\ \text{f} = 12000 \text{ MHz, } Z_{\text{s}} \!\! = \!\! Z_{\text{s}}^{*}, Z_{\text{t}} \!\! = \!\! Z_{\text{t}}^{*} \end{array} $	dB	4.0	23.4 20.1 5.0	
S ₂₁	Insertion Power Gain	$f = 900 \text{ MHz}, Z_s = Z_L = 50 \text{ Ohms}$ $f = 1960 \text{ MHz}, Z_s = Z_L = 50 \text{ Ohms}$	dB	13.7	18.0 15.2	
S ₂₁	Gain	$ \begin{aligned} & \text{f} = 900 \text{ MHz, } Z_{\text{S}} = & Z_{\text{SOPT}}, \ Z_{\text{L}} = & Z_{\text{LOPT}} \\ & \text{f} = 1960 \text{ MHz, } Z_{\text{S}} = & Z_{\text{SOPT}}, \ Z_{\text{L}} = & Z_{\text{LOPT}} \end{aligned} $	dB		17.9 14.6	
P1dB	Output 1 dB compression point	$ \begin{aligned} & f = 900 \text{ MHz, } Z_{\rm S} = & Z_{\rm SOPT}, \ Z_{\rm L} = & Z_{\rm LOPT} \\ & f = 1960 \text{ MHz, } Z_{\rm S} = & Z_{\rm SOPT}, \ Z_{\rm LOPT} \end{aligned} $	dBm		28.0 28.8	
OIP ₃	Output Third Order Intercept Point	$ \begin{aligned} & f = 900 \text{ MHz, } Z_{S} = & Z_{SOPT}, \ Z_{L} = & Z_{LOPT} \\ & f = 1960 \text{ MHz, } Z_{S} = & Z_{SOPT}, \ Z_{LOPT} \end{aligned} $	dBm		40.9 40.4	
l _{DSS}	Saturated Drain Current $V_{DS} = 3V, V_{GS} = 0V$		mA		300	
$g_{\scriptscriptstyle m}$			mS		175	
V _P	Pinch-Off Voltage $V_{DS} = 3V$, $I_{DQ} = 1mA$		V	-2.7	-1.9	-1.0
V_{bgs}	Gate-to-Source Breakdown Voltage, lgs = 1.2mA		V		-20	-17
V_{bgd}	Gate-to-Drain Breakdown Voltage, lgd = 1.2mA		V		-20	-17
Rth	Thermal Resistance (junction to lead)		₀C\M		66	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

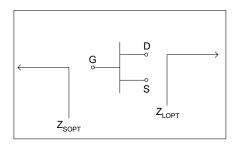
EDS-101574 Rev A

SHF-0186 DC-12 GHz 0.5 Watt AlGaAs/GaAs HFET

Absolute Maximum Ratings

Operation of this device above any one of these parameters may cause permanent damage.

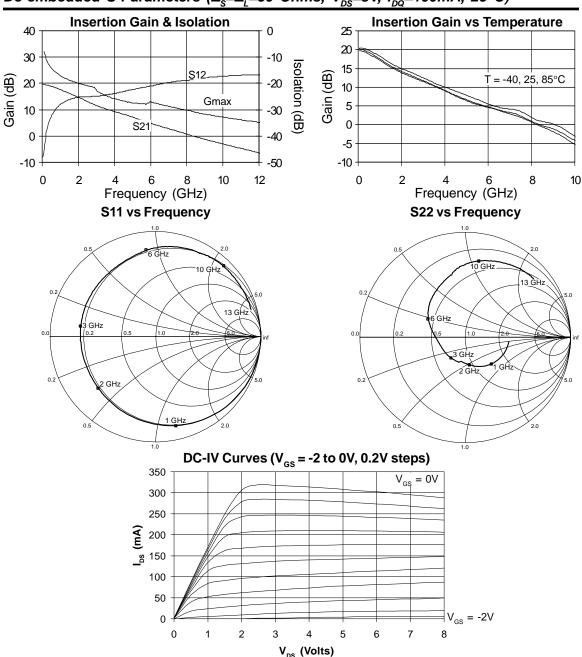
Bias Conditions should also satisfy the following expression: $I_{DS}V_{DS}$ (max) < $(T_L - T_L)/R_{TH}$


<u> </u>			
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DS}	+12	V
Gate-to-Source Voltage	V_{gs}	-5 to 0	V
RF Input Power	$P_{\mathbb{N}}$	200	mW
Operating Temperature	T _{OP}	-45 to +85	С
Storage Temperature Range	T _{stor}	-65 to +175	С
Operating Junction Temperature	T_{J}	+175	С

Typical Performance - Engineering Application Circuits (See AN-020)

Freq (MHz)	V _{DS} (V)	I _{DQ} (mA)	P1dB (dBm)	OIP3* (dBm)	Gain (dB)	S11 (dB)	S22 (dB)	NF (dB)	Z _{sopt} Mag ∠ Ang	Z _{LOPT} Mag ∠ Ang
945	8	100	28.0	41.0	17.9	-19.4	-9.62	3.1	.45 ∠ 40	.02 ∠ 50
1960	8	100	28.8	39.5	14.6	-15.8	-5.31	2.5	.50 ∠ 105	.16 ∠ –168
2140	8	100	28.7	39.0	14.5	-12.3	-7.02	3.0	.50 ∠ 120	.18 ∠ 170
2450	8	100	28.5	39.5	14.0	-14.7	-5.28	2.9	.60 ∠ 130	.08 ∠ 130

^{* 15}dBm per tone


Data above represents typical performance of the application circuits noted in Application Note AN-020. Refer to the application note for additional RF data, PCB layouts, and BOMs for each application circuit. The application note also includes biasing instructions and other key issues to be considered. For the latest application notes please visit our site at www.stanfordmicro.com or call your local sales representative.

SHF-0186 DC-12 GHz 0.5 Watt AlGaAs/GaAs HFET

De-embedded S-Parameters ($Z_S = Z_L = 50$ Ohms, $V_{DS} = 8V$, $I_{DQ} = 100$ mA, 25° C)

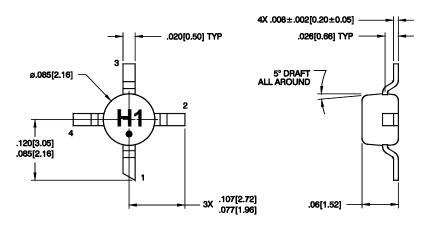
Note: S-parameters are de-embedded to the device leads. The data represents typical performace of the device. Measured s-parameter data files can be downloaded using a link found on the SHF-0186 device page from our web site at www.stanfordmicro.com.

SHF-0186 DC-12 GHz 0.5 Watt AlGaAs/GaAs HFET

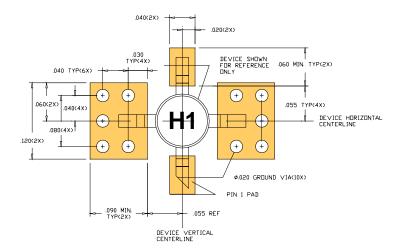
Caution: ESD sensitive

Appropriate precautions in handling, packaging and testing devices must be observed.

Pin #	Function	Description
1	Gate	Gate pin.
2	GND & Source	Connection to ground. Use via holes to reduce lead inductance. Place vias as close to ground leads as possible.
3	Drain	Drain pin.
4	GND & Source	Same as Pin 2


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel		
SHF-0186	7"	1000		


Part Symbolization

The part will be symbolized with an "H1" designator on the top surface of the package.

Package Dimensions

PCB Pad Layout

