feATURES

- 3MHz Gain Bandwidth
- 200V/us Slew Rate
- 250 1 A Supply Current per Amplifier
- C-Load ${ }^{\text {TM }}$ Op Amp Drives All Capacitive Loads
- Unity-Gain Stable
- Maximum Input Offset Voltage: $600 \mu \mathrm{~V}$
- Maximum Input Bias Current: 50nA
- Maximum Input Offset Current: 15nA
- Minimum DC Gain, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}: 30 \mathrm{~V} / \mathrm{mV}$
- Input Noise Voltage: $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Settling Time to 0.1%, 10 V Step: 700 ns
- Settling Time to 0.01%, 10 V Step: $1.25 \mu \mathrm{~s}$
- Minimum Output Swing into $1 \mathrm{k}: \pm 13 \mathrm{~V}$
- Minimum Output Swing into 500Ω : $\pm 3.4 \mathrm{~V}$
- Specified at $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$

APPLICATIONS

- Battery-Powered Systems
- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

January 1996

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1352 / \mathrm{LT} 1353$ are dual and quad, very low power, high speed operational amplifiers with outstanding AC and DC performance. The amplifiers feature much lower supply current and higher slew rate than devices with comparable bandwidth. The circuit combines the slewing performance of a current feedback amplifier in a true operational amplifier with matched high impedance inputs. The high slew rate ensures that the large signal bandwidth is not degraded. Each output is capable of driving a $1 \mathrm{k} \Omega$ load to $\pm 13 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a 500Ω load to $\pm 3.4 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies.
The LT1352/LT1353 are members of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced bipolar complementary processing. For higher bandwidth devices with higher supply current seethe LT1354through LT1365 data sheets. Bandwidths of 12MHz, 25MHz, 50MHz and 70 MHz are available with $1 \mathrm{~mA}, 2 \mathrm{~mA}, 4 \mathrm{~mA}$ and 6 mA of supply current per amplifier. Singles, duals and quads of each amplifier are available.

TYPICAL APPLICATION

Large-Signal Response

$A_{V}=-1$
1352/53 TA02

LT1352/LT1353

ABSOLUTE MAXImUM RATINGS

Total Supply Voltage (${ }^{+}$to V^{-}) 36V	Specified Temperature Range
Differential Input Voltage $\pm 10 \mathrm{~V}$	LT1352C/LT1353C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Voltage .. $\pm \mathrm{V}_{S}$	Maximum Junction Temperature (See Below)
Output Short-Circuit Duration (Note 1) Indefinite	Plastic Package ... $150^{\circ} \mathrm{C}$
Operating Temperature Range	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1352C/LT1353C $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ}, v_{c m}=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage				0.2	0.6	mV
			$\pm 5 \mathrm{~V}$		0.2	0.6	mV
			$\pm 2.5 \mathrm{~V}$		0.3	0.8	mV
los	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5	15	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		15	50	nA
e_{n}	Input Noise Voltage	$f=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$f=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$ Differential	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	300	$\begin{gathered} 600 \\ 20 \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		3		pF
	Positive Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 12.0 \\ 2.5 \\ 0.5 \end{array}$	$\begin{array}{r} 13.5 \\ 3.5 \\ 1.0 \end{array}$		V
	Negative Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$		$\begin{array}{r} \hline-13.5 \\ -3.5 \\ -1.0 \end{array}$	$\begin{array}{r} \hline-12.0 \\ -2.5 \\ -0.5 \end{array}$	V V V

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ},, v_{c m}=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 80 \\ & 78 \\ & 68 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		90	106		dB
$A_{\text {VOL }}$	Large-Signal Voltage Gain	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \\ & 30 \\ & 25 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 40 \\ & 60 \\ & 50 \\ & 30 \\ & 40 \end{aligned}$		V / mV V / mV V/mV V / mV V/mV V / mV V / mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & R_{L}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=2 k, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=1 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=5 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.5 \\ 13.4 \\ 13.0 \\ 3.5 \\ 3.4 \\ 1.3 \end{array}$	$\begin{array}{r} 14.0 \\ 13.8 \\ 13.4 \\ 4.0 \\ 3.8 \\ 1.7 \end{array}$		$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 13 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{array}{r} 13.0 \\ 6.8 \\ \hline \end{array}$	$\begin{array}{r} 13.4 \\ 7.6 \end{array}$		mA mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	30	44		mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 \mathrm{k}$ (Note 2)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 120 \\ 30 \end{array}$	$\begin{array}{r} 200 \\ 50 \end{array}$		$\begin{aligned} & V / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
	Full-Power Bandwidth	10V Peak (Note 3) 3V Peak (Note 3)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 3.2 \\ & 2.6 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.7 \\ & 2.5 \\ & \hline \end{aligned}$		MHz MHz MHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 46 \\ & 53 \end{aligned}$		ns
	Overshoot	$A_{V}=1,0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 13 \\ & 16 \end{aligned}$		\%
	Propagation Delay	$A_{V}=1,50 \% V_{\text {IN }}$ to $50 \% V_{\text {OUT }}, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 41 \\ & 52 \end{aligned}$		ns
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 10 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{array}{r} 700 \\ 1250 \\ 950 \\ 1400 \end{array}$		ns ns ns ns
R_{0}	Output Resistance	$A_{V}=1, \mathrm{f}=20 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5		Ω
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	101	120		dB
Is	Supply Current	Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 250 \\ & 230 \end{aligned}$	$\begin{aligned} & 320 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECFRICRL CHARFCTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$\mathrm{V}_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 0.8 \\ & 0.8 \\ & 1.0 \end{aligned}$	mV mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 4)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			20	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			75	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 79 \\ & 77 \\ & 67 \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		89			dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 25 \\ & 20 \\ & 15 \\ & 20 \\ & 15 \\ & 10 \\ & 15 \end{aligned}$			V / mV V / mV
V OUT	Output Swing	$\begin{aligned} & R_{L}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=5 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.4 \\ 13.3 \\ 12.0 \\ 3.4 \\ 3.3 \\ 1.2 \end{array}$			$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
$\mathrm{I}_{\text {OUT }}$	Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 12.0 \\ 6.6 \end{array}$			mA mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	24			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k$ (Note 2)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 100 \\ 21 \end{array}$			$\mathrm{V} / \mu \mathrm{S}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \end{aligned}$			MHz MHz
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	100			dB
Is	Supply Current	Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 350 \\ & 330 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	V SUPPLY	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage		$\pm 15 \mathrm{~V}$			1.0	mV
			$\pm 5 \mathrm{~V}$			1.0	mV
			$\pm 2.5 \mathrm{~V}$			1.2	mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 4)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			30	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			100	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 77 \\ & 76 \\ & 66 \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		88			dB

ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{C} M}=0 \mathrm{~V}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPL }}$	MIN	TYP	MAX	UNITS
Avol	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 20 \\ 15 \\ 15 \\ 10 \\ 8 \\ 10 \end{array}$			V / mV V/mV V / mV V / mV V / mV V/mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & R_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.3 \\ 13.2 \\ 10.0 \\ 3.3 \\ 3.2 \\ 1.1 \end{array}$			$\begin{aligned} & \pm V \\ & \pm V \end{aligned}$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 3.2 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 10.0 \\ 6.4 \end{array}$			mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	20			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 \mathrm{k}$ (Note 2)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 50 \\ & 15 \end{aligned}$			$\mathrm{V} / \mu \mathrm{S}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	99			dB
Is	Supply Current	Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 380 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 2: Slew rate is measured between $\pm 8 \mathrm{~V}$ on the output with $\pm 12 \mathrm{~V}$ input for $\pm 15 \mathrm{~V}$ supplies and $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies.

Note 3: Full-power bandwidth is calculated: $\mathrm{FPBW}=($ Slew Rate $) / 2 \pi \mathrm{~V}_{\mathrm{p}}$.
Note 4: This parameter is not 100% tested.
Note 5: The LT1352/LT1353 are not tested and are not quality assurance sampled at $-40^{\circ} \mathrm{C}$ and at $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design, correlation and/or inference from $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $/ 0$ r $70^{\circ} \mathrm{C}$ tests.

SIMPLIFIED SCHEMATIC

APPLICATIONS InFORMATION

Layout and Passive Components

The LT1352/LT1353 amplifiers are easy to use and tolerant of less than ideal layouts. For maximum performance (for example, fast 0.01% settling) use a ground plane, short lead lengths and RF-quality bypass capacitors ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$). For high drive current applications use Iow ESR bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum).
The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole which can cause peaking or even oscillations. If feedback resistors greater than 10 k are used, a parallel capacitor of value, $\mathrm{C}_{\mathrm{F}}>\left(\mathrm{R}_{\mathrm{G}}\right)\left(\mathrm{C}_{\mathrm{IN}} / \mathrm{R}_{\mathrm{F}}\right)$, should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications such as current-to-voltage converter where a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}.

Capacitive Loading

The LT1352/LT1353 are stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response.

Circuit Operation

The LT1352/LT1353 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. The inputs are buffered by complementary NPN and PNP emitter followers which drive a 1 k resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node and compensation capacitor C_{T}. Complementary followers form an output stage which buffers the gain node from the load. The output devices Q19 and Q22 are connected to form a composite PNP and a composite NPN. Capacitive
load compensation is provided by R_{C} and C_{C}. The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10 V output step in a gain of 10 has only a 1 V input step whereas the same output step in unity-gain has a 10 times greater input step. In higher gain configurations the large-signal performance becomes the same as the small-signal performance with both responses looking like a 1-pole lowpass filter.

Power Dissipation

The LT1352/LT1353 combine high speed and large output drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature of $150^{\circ} \mathrm{C}$ under certain conditions. Maximum junction temperature T_{j} is calculated from the ambient temperature T_{A} and power dissipation P_{D} as follows:

$$
\begin{aligned}
& \text { LT1352CN8: } T_{J}=T_{A}+\left(P_{D}\right)\left(130^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1352CS8: } T_{J}=T_{A}+\left(P_{D}\right)\left(190^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1353CS: } \\
& T_{J}=T_{A}+\left(P_{D}\right)\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

Worst-case power dissipation occurs at the maximum supply current and when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ supply voltage). For each amplifier $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ is:

$$
P_{D(\text { MAX })}=\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\left(\mathrm{I}_{\mathrm{S}(\mathrm{MAX})}\right)+\left(\mathrm{V}^{+} / 2\right)^{2} / \mathrm{R}_{\mathrm{L}}
$$

Example: LT 1353 in S 14 at $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}(\pm 5 \mathrm{~mA})$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=(30 \mathrm{~V})(380 \mu \mathrm{~A})+(15 \mathrm{~V}-2.5 \mathrm{~V})(5 \mathrm{~mA})=74 \mathrm{~mW} \\
& \mathrm{~T}_{J}=85^{\circ} \mathrm{C}+(4)(74 \mathrm{~mW})\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=129^{\circ} \mathrm{C}
\end{aligned}
$$

TYPICAL APPLICATIONS

DAC Current-to-Voltage Converter

400kHz Photodiode Preamp with 10kHz Highpass Loop

PACKAG DESCRIPTION Dimension in incteles mililimeters unless olterisise noled.

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1354	$12 \mathrm{MHz}, 400 \mathrm{~V} / \mu \mathrm{s}$ Op Amp	High Slew Rate, Wide Bandwidth, C-Load Drive, Low Power
LT1355/LT1356	Dual/Quad 12MHz, 400V/ $\mu \mathrm{s}$ Op Amps	High Slew Rate, Wide Bandwidth, 1.2mA Max Supply Current per Op Amp, C-Load Drive

