Features - High-density 1.5M SRAM module - High-speed CMOS SRAMs - Access time of 25 ns - 56-pin, 0.5-inch-high ZIP package - · Low active power - -2.8W (max. for $t_{AA} = 25$ ns) - SMD technology - . TTL-compatible inputs and outputs - · Commercial temperature range - Small PCB footprint - —1.05 sq. in. ### **Functional Description** The CYM1730 is a high-performance 1.5M static RAM module organized as 64K words by 24 bits. This module is constructed # 64K x 24 Static RAM Module using six 32K x 8 static RAMs in SOJ packages mounted onto an epoxy laminate board with pins. Writing to the device is accomplished when the chip select (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW. Data on the input/output pins $(I/O_0$ through $I/O_{23})$ of the device is written into the memory location specified on the address pins $(A_0$ through $A_{15})$. Reading the device is accomplished by taking the chip select (\overline{CS}) and output enable (\overline{OE}) LOW while write enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins. The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH. ## **Selection Guide** | | 1730–25 | 1730–30 | 1730–35 | |--------------------------------|---------|---------|---------| | Maximum Access Time (ns) | 25 | 30 | 35 | | Maximum Operating Current (mA) | 510 | 510 | 510 | | Maximum Standby Current (mA) | 180 | 180 | 180 | ## **Maximum Ratings** DC Input Voltage -0.5V to +7.0V ## **Operating Range** | Ambient
Range Temperature | | v _{cc} | | |------------------------------|--------------|-----------------|--| | Commercial | 0°C to +70°C | 5V ± 10% | | ## **Electrical Characteristics** Over the Operating Range | Parameter | Description | Test Conditions | Min. | Max. | Unit | |------------------|--|--|------|-----------------------|------| | V _{OH} | Output HIGH Voltage | V_{CC} = Min., I_{OH} = -4.0 mA | 2.4 | | V | | V_{OL} | Output LOW Voltage | $V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$ | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | 2.2 | V _{CC} + 0.3 | V | | V _{IL} | Input LOW Voltage | | -0.3 | 0.8 | V | | I _{IX} | Input Load Current | $GND \le V_1 \le V_{CC}$ | -20 | +20 | μΑ | | I _{OZ} | Output Leakage Current | $\begin{aligned} &\text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$ | -10 | +10 | μΑ | | Icc | V _{CC} Operating Supply Current | $V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$ | | 510 | mA | | I _{SB1} | Automatic CS Power-Down Current ^[1] | Max. V_{CC} , $\overline{CS} \ge V_{IH}$,
Min. Duty Cycle = 100% | | 180 | mA | | I _{SB2} | Automatic CS Power-Down Current ^[1] | $\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V or V}_{\text{IN}} \leq 0.2\text{V} \end{aligned}$ | | 180 | mA | ## Capacitance^[2] | Parameter Description Test Cond | | Test Conditions | Max. | Unit | |---------------------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 50 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 5.0V$ | 20 | pF | #### Notes: 1. A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given. 2. Tested on a sample basis. ### **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT 1.73V ## Switching Characteristics Over the Operating Range^[3] | | | 1730–25 | | 1730–30 | | 1730–35 | | | |-------------------|-------------------------------------|---------|------|---------|------|---------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | | | | | | | t _{RC} | Read Cycle Time | 25 | | 30 | | 35 | | ns | | t _{AA} | Address to Data Valid | | 25 | | 30 | | 35 | ns | | t _{OHA} | Output Hold from Address Change | 5 | | 5 | | 5 | | ns | | t _{ACS} | CS LOW to Data Valid | | 25 | | 30 | | 35 | ns | | t _{DOE} | OE LOW to Data Valid | | 12 | | 15 | | 20 | ns | | t _{LZOE} | OE LOW to Low Z | 3 | | 3 | | 3 | | ns | | t _{HZOE} | OE HIGH to High Z | | 10 | | 15 | | 20 | ns | | t _{LZCS} | CS LOW to Low Z ^[4] | 5 | | 5 | | 5 | | ns | | t _{HZCS} | CS HIGH to High Z ^[4, 5] | | 10 | | 15 | | 15 | ns | | WRITE CYCLE | [6] | | | | | | | | | t _{WC} | Write Cycle Time | 25 | | 30 | | 35 | | ns | | t _{SCS} | CS LOW to Write End | 20 | | 25 | | 30 | | ns | | t _{AW} | Address Set-Up to Write End | 22 | | 25 | | 30 | | ns | | t _{HA} | Address Hold from Write End | 2 | | 2 | | 2 | | ns | | t _{SA} | Address Set-Up to Write Start | 2 | | 2 | | 2 | | ns | | t _{PWE} | WE Pulse Width | 20 | | 23 | | 25 | | ns | | t _{SD} | Data Set-Up to Write End | 13 | | 15 | | 20 | | ns | | t _{HD} | Data Hold from Write End | 2 | | 2 | | 2 | | ns | | t _{LZWE} | WE HIGH to Low Z | 3 | | 3 | | 5 | | ns | | t _{HZWE} | WE LOW to High Z ^[5] | 0 | 10 | 0 | 10 | 0 | 15 | ns | ### Notes: - Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance. - The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and write and write and write and write and by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 6. ## **Switching Waveforms** ## Read Cycle No. 1^[7, 8] t_{RC} **ADDRESS** toha DATA OUT PREVIOUS DATA VALID DATA VALID 1730-6 ### Notes: - WE is HIGH for read cycle. Device is continuously selected, CS = V_{IL} and OE = V_{IL}. Address valid prior to or coincident with CS transition LOW. Data I/O will be high impedance if OE = V_{IH}. # Switching Waveforms (continued) ## Write Cycle No. 2 (CS Controlled) [6, 10, 11] #### Note: 11. If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state. ## **Truth Table** | CS | WE | OE | Input/Outputs | Mode | |----|----|----|---------------|---------------------| | Н | Х | Χ | High Z | Deselect/Power-Down | | L | Н | L | Data Out | Read Word | | L | L | Χ | Data In | Write Word | | L | Н | Н | High Z | Deselect | ## **Ordering Information** | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|---------------|-----------------|-------------------|--------------------| | 25 | CYM1730PZ-25C | PZ07 | 56-Pin ZIP Module | Commercial | | 30 | CYM1730PZ-30C | PZ07 | 56-Pin ZIP Module | Commercial | | 35 | CYM1730PZ-35C | PZ07 | 56-Pin ZIP Module | Commercial | Document #: 38-M-00049-A # **Package Diagram** #### 56-Pin ZIP Module PZ07