

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

Customer		:			_		
Model Ty	pe	:	LCD Mo	dule	_		
Sample C	ode	:					
Mass Pro	duction	Code:	_PG1286	64LRS	- ANN - B		
Edit		:	0				
Customer Sign	Sales	Sign	Approved	Ву	Prepared	Ву	

CONTENTS

1.SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- 1/64 Duty, 1/9 bias
- STN LCD, positive, gray
- Transflective LCD
- 6 o'clock viewing angle
- 8 bits parallel data input ,without controller IC
- Built-in negative voltage and LED backlight

1.2 Mechanical Specifications

• Outline dimension : 93.0mm(L) *70.0mm(W)*14.0mm max.(H)

Viewing area : 72.0mm *40.0mm
 Active area : 66.52mm *33.24mm
 Dot size : 0.48mm *0.48mm
 Dot pitch : 0.52mm *0.52mm

1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vdd	-	4.5	5.5	V
LCD drive Supply voltage	VDD-VEE	ı	8.0	17	V
Input voltage	VIN	-	-0.3	VDD+0.3	V
Operating temperature	TOPR	-	0	40	°C
Storage temperature	TSTG	-	-20	60	°C
Humidity*1	HD	-	-	90	%RH

1.4 DC Electrical Characteristics

VDD=+5V+10%,VSS=0V,TA=25°C

					0, 100 01,	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	Vdd	-	4.5	5	5.5	V
"H" input voltage	Vih	-	0.7VDD	ı	Vdd	V
"L" input voltage	VIL	-	0	-	0.3VDD	V
"H" output voltage	Vон	-	VDD-0.4	-	-	V
"L" output voltage	Vol	-	-	-	0.4	V
Supply current	Idd	VDD=5V	-	-	13	mA
LCD driving voltage	VOP	VDD-VO	-	9.4	-	V

1.5 Optical Characteristics

1/64 duty, 1/9 bias, Vopr=9.5V, Ta=25°C

				• • • • • • • • • • • • • • • • • • • •	/ 1	
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Viewing angle	θ	C≥2.0,Ø=0°C	35°	-	1	Notes 1 & 2
Contrast	C	θ=5°, Ø=0°	-	3	ı	Note 3
Response time(rise)	tr	θ=5°, Ø=0°	_	130ms	200ms	Note 4
Response time(fall)	tf	θ=5°, Ø=0°	-	300ms	500ms	Note 4

 \mathbf{C}

Note 1: Definition of angles θ and \emptyset

Light (when reflected) $z (\theta=0^{\circ})$ Sensor Y'(∅=180°) LCD panel X(∅=90°) Ø $Y(\emptyset=0^\circ)$ Light (when transmitted) $(\theta=90^\circ)$

Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$

viewing angle θ (\emptyset fixed) Optimum viewing angle with the Note: naked eye and viewing angle θ at Cmax. Above are not always the same

Note 3: Definition of contrast C

Brightness (reflection) of unselected dot (B2) Brightness (reflection) of selected dot (B1)

Note 4: Definition of response time

panel which is displayed 1 cm²

V OPR: Operating voltage f FRM: Frame frequency t_r: Response time (rise) t_f: Response time (fall)

POWERTIP TECHNOLOGY CORPORATION

1.6 Backlight Characteristic

The LCD Module is using a LED backlight

•.Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	ı	975	mA
Reverse voltage	VR	TA=25°C	ı	8	V
Power dissipation	Po	TA=25°C	ı	4.5	W
Operating Temperature	TOPR	-	-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

•. Electrical Ratings

TA=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	VF	IF=390mA		4.2	4.6	V
Reverse current	IR	VR=8V	-	-	0.2	mA
Luminous intensity	IV	IF=390mA	184	230	-	cd/m ²
Wavelength	λр	IF=390mA	565	-	571	nm
Color	Yellow Gre	en				

2. MODULE STRUCTURE

2.1 Counter Drawing

*See Appendix

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	Vss	Signal ground (GND)
2	Vdd	Power supply for logic (+5V)
3	Vo	Operating voltage for LCD (variable)
4	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
5	R/W	R/W signal input is used to select the read/write mode High =Read mode, Low =Write mode
6	Е	Start enable signal to read or write the data
7-10	DB0~ DB3	Four low order bi-directional three-state data bus lines. Use for data transfer between the MPU and the LCD module. These four are not used during 4-bit operation.
11-14	DB4~ DB7	For high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
15	CS1	Chip enable for D2 (segment 1 to segment 64)
16	CS2	Chip enable for D3 (segment 65 to segment 128)
17	RST	Reset signal
18	Vout	Negative voltage power supply
19	A	Power supply for LED backlight (+)
20	K	Power supply for LED backlight (-)

Contrast Adjust

2.3 Timing Characteristics

MPU write timing

Characteristic	Symbol	Min.	Тур	Max	Unit
E Cycle	tC	1000	-	-	ns
E High Level Width	tWH	450	-	-	ns
E Low Level Width	tWL	450	-	-	ns
E Rise Time	tR	-	-	25	ns
E Fall Time	tF	-	-	25	ns
Address Set-Up time	tASU	140	-	-	ns
Address Hold Time	tAH	10	-	-	ns
Data Set-Up Time	tsu	200		ı	ns
Data Delay Time	tD	-	-	320	ns
Data Hold Time (Write)	tDHW	10	-	_	ns
Data Hold Time (Read)	tDHR	20	_	_	ns

2.4 Display command

			Code								_		
	R/	D/I	DB7	DB	DB5	DB	DB	DB	DB	DB0			
Instructions	W			6		4	3	2	1		Functions		
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls dis	splay on/off. R	AM data and
											internal stat	us are not affe	cted.
Display start line	0	0	1	1	Disp	lay s	start	line	(0-0	63)	•	e RAM line di	splayed at the top of
											the screen.		
Set Page (x	0	0	1	0	1	1	1	Pa	ge (0-7)	Sets the pag	ge (X address)	of RAM at the page
address)											(X address)	register.	
Set Y address	0	0	0	1	Y ad	dres	s (0-	-63)			Sets the Y a	address in the Y	address in the
											counter.		
Status read	1	0	Busy	0	ON/	Res	set 0	0	0	0	Reads the s	tatus.	
					OFF						Reads	1: Reset	
												0: Normal	
											ON/OFF	1: Display of	ff
												0: Display or	n
											Busy	1: Internal of	peration
												0: Ready	
Write display data	0	1	Writ	e da	ıta						Writes data	DB0 (LSB)	Has access to the
											to DB7 (MS	SB) on the	address of the
											data bus int	o display	display RAM
											RAM.		specified in
Read display data	1	1	Read	d da	ta						Reads data	DB0 (LSB)	advance. After the
											to DB7 (MS	SB) from the	access, Y address
											display RA	M to the data	is increased by 1.
											bus.		

Detailed Explanation

Display On/Off

	R/W	D/I	DB7.							.DB0
Code	0	0	0	0	1	1	1	1	1	D
			MSB							LSB

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

Display Start Line

	R/W	D/I	DB7.							DB0
Code	0	0	1	1	A	A	A	A	A	A
			MSB							LSB

Z address AAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed. See figure 1.

Set page (X address)

X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

Set Y Address

Y address AAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

• Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1,

so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.

When on/off is 0, the display is in on condition.

RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.

RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data

Write 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out 8-bit data DDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

Figure 2 Address Configuration of Display Data RAM

Note: "128*64" consist of 2 "64*64"

CS1⇒ Chip enable for left 64*64 (segment1 to segment 64)

CS2⇒ Chip enable for right 64*64 (segment 65 to segment 128)