

Data Sheet

August 1999

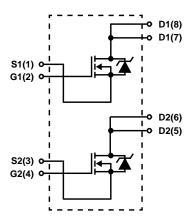
File Number

4469.3

5.8A, 30V, 0.037 Ohm, Dual N-Channel, Logic Level Power MOSFET

This power MOSFET is manufactured using an innovative process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Ordering Information


PART NUMBER	PACKAGE	BRAND		
HP4936DY	SO-8	P4936DY		

NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HP4936DYT.

Features

- · Logic Level Gate Drive
- 5.8A, 30V
- $r_{DS(ON)} = 0.037\Omega$ at $I_D = 5.8A$, $V_{GS} = 10V$
- $r_{DS(ON)} = 0.055\Omega$ at $I_D = 4.7A$, $V_{GS} = 4.5V$
- · Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

SO-8

HP4936DY

Absolute Maximum Ratings $T_A = 25^{\circ}C$, Unless Otherwise Specified

	HP4936DY	UNITS
Drain to Source Voltage (Note 1)V _{DSS}	30	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	30	V
Gate to Source Voltage	±16	V
Drain Current ContinuousI _D Pulsed Drain Current (10μs Pulse Width)	5.8 30	A A
Power Dissipation PD Derate Above 25°C	2 0.02	W/°C
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_A = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_A = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V	30	-	-	V
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$ (Figure 9)	1	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 30V, V _{GS} = 0V	-	-	1	μΑ
		V _{DS} = 30V, V _{GS} = 0V, T _A = 55°C	-	-	25	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±16V	-	-	100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 4.7A, V _{GS} = 4.5V (Figures 6, 8)	-	0.042	0.055	Ω
		I _D = 5.8A, V _{GS} = 10V (Figures 6, 8)	-	0.030	0.037	Ω
Turn-On Delay Time	t _{d(ON)}	V_{DD} = 15V, I_D \cong 1A, R_L = 15Ω, V_{GEN} = 10V, R_{GS} = 6Ω (Figures 12, 13)	-	10	16	ns
Rise Time	t _r		-	10	16	ns
Turn-Off Delay Time	t _d (OFF)		-	27	40	ns
Fall Time	t _f		-	24	35	ns
Total Gate Charge	Qg	V _{DS} = 15V, V _{GS} = 10V, I _D ≅ 5.8A (Figures 14, 15)	-	18	25	nC
Gate to Source Charge	Q _{gs}		-	4.5	-	nC
Gate to Drain Charge	Q _{gd}		-	2.5	-	nC
Input Capacitance	C _{ISS}	$V_{DS} = 25V$, $V_{GS} = 0V$, f = 1MHz (Figure 4)	-	625	-	pF
Output Capacitance	C _{OSS}		-	270	-	pF
Reverse Transfer Capacitance	C _{RSS}		-	50	-	pF
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Pulse Width <10s (Figure 11) Device Mounted on FR-4 Material	-	-	62.5	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 1.7A (Figure 7)	-	0.8	1.2	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 1.7A$, $dI_{SD}/dt = 100A/\mu s$	-	45	80	ns

Typical Performance Curves Unless Otherwise Specified

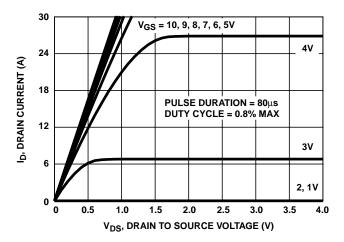


FIGURE 1. OUTPUT CHARACTERISTICS

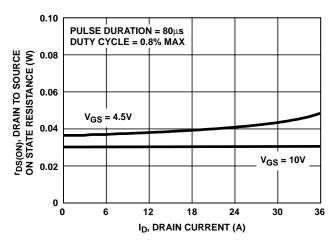


FIGURE 3. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

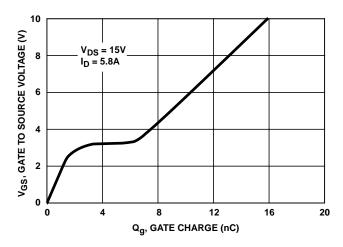


FIGURE 5. GATE TO SOURCE VOLTAGE vs GATE CHARGE

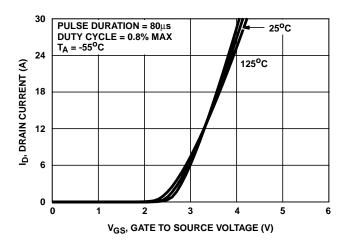


FIGURE 2. TRANSFER CHARACTERISTICS

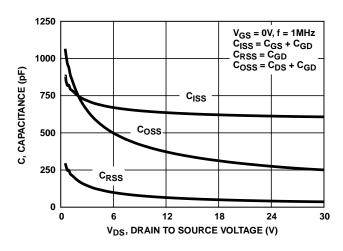


FIGURE 4. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

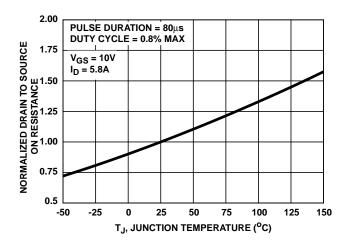


FIGURE 6. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

0.09

Typical Performance Curves Unless Otherwise Specified (Continued)

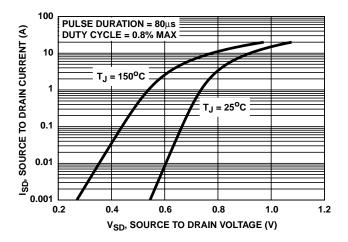


FIGURE 7. SOURCE TO DRAIN DIODE VOLTAGE

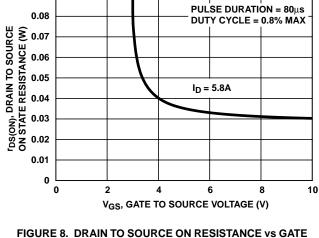


FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
TO SOURCE VOLTAGE

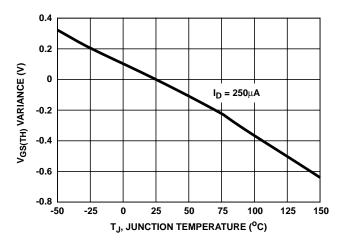


FIGURE 9. GATE THRESHOLD VOLTAGE VARIANCE vs JUNCTION TEMPERATURE

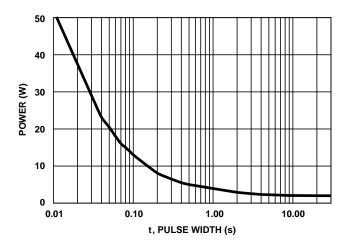


FIGURE 10. SINGLE PULSE POWER CAPABILITY vs PULSE WIDTH

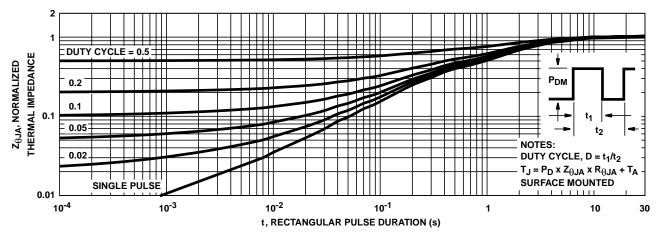


FIGURE 11. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Test Circuits and Waveforms

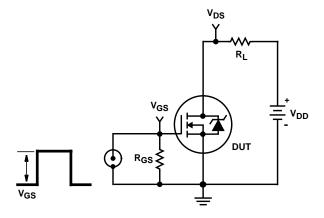


FIGURE 12. SWITCHING TIME TEST CIRCUIT

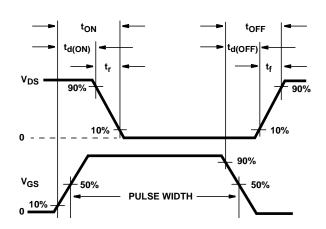


FIGURE 13. SWITCHING TIME WAVEFORM

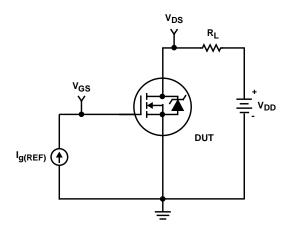


FIGURE 14. GATE CHARGE TEST CIRCUIT

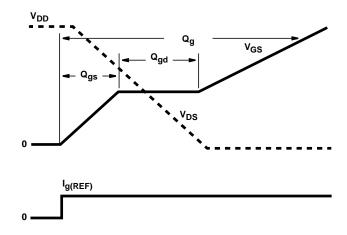


FIGURE 15. GATE CHARGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.2111

ASIA

Intersil (Taiwan) Ltd.

7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029