

100MHz Pentium[®]II Clock Synthesizer/Driver with Spread Spectrum for Mobile PCs

Features

- · Mixed 2.5V and 3.3V operation
- Complete clock solution for Pentium® II, and other similar processor-based motherboards
 - Two CPU clocks at 2.5V up to 100 MHz
 - Six synchronous PCI clocks, one free-running
 - One 3.3V Ref. clock at 14.318 MHz
 - One 3.3V USB clock at 48 MHz (-2S only)
- Spread Spectrum clocking for EMI control (-11S, -2S)
- 1.5-4.0 ns delay between CPU and PCI clocks
- · Power-down, CPU stop and PCI stop pins
- Low skew outputs, ≤ 175 ps between CPU clocks
- Factory-EPROM programmable output drive and slew rate for EMI customization
- Available in space-saving 28-pin SSOP package

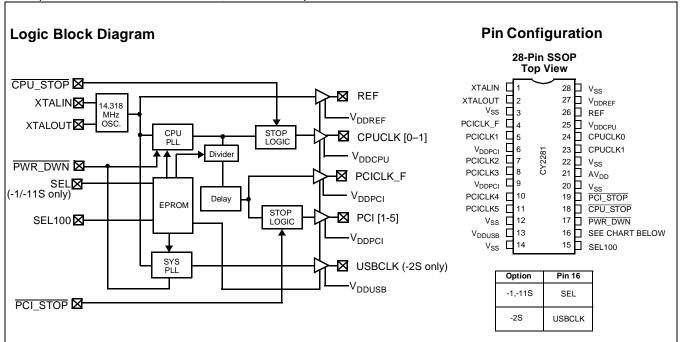
Functional Description

The CY2281 is a clock synthesizer/driver for Pentium II, or other similar processor-based mobile PCs requiring up to 100 MHz support. The CY2281 outputs two CPU clocks at 2.5V. There are six PCI clocks, running at one-half or one-third the CPU clock frequency of 66.6 MHz and 100 MHz respectively. One of the PCI clocks is free-running. Additionally, the part outputs one 3.3V reference clock at 14.318 MHz. The CY2281-2S also provides one 3.3V USB clock at 48 MHz.

The CY2281-11S and CY2281-2S incorporate the Intel®-defined spread spectrum feature. They provide a −0.6% downspread on the CPU and PCI clocks, which can help re-

duce EMI in certain high-speed systems. A summary of clock outputs for both devices is shown below.

The part possesses power-down, CPU stop, and PCI stop pins for power management control. The signals are synchronized on-chip, and ensure glitch-free transitions on the outputs. When the CPU_STOP input is asserted, the CPU clock outputs are driven LOW. When the PCI_STOP input is asserted, the PCI clock outputs (except the free-running PCI clock) are driven LOW. When the PWR_DWN pin is asserted, the reference oscillator and PLLs are shut down, and all outputs are driven LOW.


The CY2281 clock outputs are designed for low EMI emissions. Controlled rise and fall times, unique output driver circuits, and innovative circuit layout techniques enable the CY2281 to have lower EMI than clock devices from other manufacturers. Additionally, factory-EPROM programmable output drive and slew-rate control enable optimal configurations.

CY2281 Selector Guide

Clock Outputs	-1	-11S	-28
CPU (66, 100 MHz)	2	2	2
PCI (CPU/2, CPU/3)	6 ^[1]	6 ^[1]	6 ^[1]
REF (14.318 MHz)	1	1	1
USB (48 MHz)	N/A	N/A	1
CPU-PCI delay	1.5-4.0 ns	1.5–4.0 ns	1.5–4.0 ns
Spread Spectrum	None	-0.6%	-0.6%

Note:

1. One free-running PCI clock.

Intel and Pentium are registered trademarks of Intel Corporation.

Pin Summary

Name	Pins	Description
V _{DDPCI}	6, 9	3.3V Digital voltage supply for PCI clocks
V _{DDREF}	27	3.3V Digital voltage supply for REF clocks
V _{DDCPU}	25	2.5V Digital voltage supply for CPU clocks
V _{DDUSB}	13	3.3V Digital voltage supply for USB clock
AV _{DD}	21	Analog voltage supply, 3.3V
V _{SS}	3, 12, 14, 20, 22, 28	Ground
XTALIN ^[2]	1	Reference crystal input
XTALOUT ^[2]	2	Reference crystal feedback
PCI_STOP	19	Active LOW control input to stop PCI clocks
CPU_STOP	18	Active LOW control input to stop CPU clocks
PWR_DWN	17	Active LOW control input to power down device
SEL	16	CPU frequency select input (-1 and -11S options only)
USBCLK	16	USB clock output, 48 MHz fixed (-2S option only)
SEL100	15	CPU frequency select input, selects between 100 MHz and 66.6 MHz (see table below)
CPUCLK[0:1]	23, 24	CPU clock outputs
PCICLK[1:5]	5, 7, 8, 10, 11	PCI clock outputs, at one-half or one-third the CPU frequency of 66.6 MHz or 100 MHz respectively
PCICLK_F	4	Free-running PCI clock output
REF	26	3.3V Reference clock output

Function Table

SEL100	SEL ^[4]	CPU/PCI Ratio	CPUCLK	PCICLK_F PCICLK	USBCLK ^[5]	REF
0	0	2	Hi-Z	Hi-Z		Hi-Z
0	1	2	66.66 MHz	33.33 MHz	48 MHz	14.318 MHz
1	0	3	TCLK/2	TCLK/6		TCLK ^[3]
1	1	3	100 MHz	33.33 MHz	48 MHz	14.318 MHz

- 2. For best accuracy, use a parallel-resonant crystal, C_{LOAD} = 18 pF.
 3. TCLK supplied on the XTALIN pin in Test Mode.
 4. SEL available on options -1 and -11S only. SEL tied HIGH internally on option -2S
 5. USBCLK available on option -2S only.

Actual Clock Frequency Values

Clock Output	Target Frequency (MHz)	Actual Frequency (MHz)	PPM
CPUCLK	66.67	66.654	-195
CPUCLK	100	99.77	-2346
USB	48	48.008	167

Power Management Logic

CPU_STOP	PCI_STOP	PWR_DWN	CPUCLK	PCICLK	PCICLK_F	Other Clocks	Osc.	PLLs
X	Х	0	Low	Low	Low	Low	Off	Off
0	0	1	Low	Low	Running	Running	Running	Running
0	1	1	Low	Running	Running	Running	Running	Running
1	0	1	Running	Low	Running	Running	Running	Running
1	1	1	Running	Running	Running	Running	Running	Running

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage -0.5V to +7.0V Input Voltage -0.5V to V_{DD}+0.5

Storage Temperature (Non-Condensing) –65°C to +150°C
Max. Soldering Temperature (10 sec) +260°C
Junction Temperature +150°C
Static Discharge Voltage \geq 1700V (per MIL-STD-883, Method 3015, like V_{DD} pins tied together)

Operating Conditions^[6]

Parameter	Description	Min.	Max.	Unit
AV _{DD} , V _{DDPCI} , V _{DDREF} , V _{DDUSB}	Analog and Digital Supply Voltage	3.135	3.465	V
V _{DDCPU}	CPU Supply Voltage	2.375	2.625	V
T _A	Operating Temperature, Ambient	0	70	°C
CL	Max. Capacitive Load on CPUCLK PCICLK REF		20 30 20	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

Electrical Characteristics Over the Operating Range

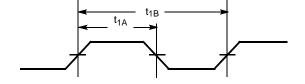
Parameter	Description	Test Conditions				Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Inputs ^[7]			2.0		V
V _{IL}	Low-level Input Voltage	Except Crystal Inputs ^[7]				0.8	V
V _{OH}	High-level Output Voltage	V _{DDCPU} = 2.375V	I _{OH} = 12 mA	CPUCLK	2.0		V
V_{OL}	Low-level Output Voltage	V _{DDCPU} = 2.375V	$I_{OL} = 12 \text{ mA}$	CPUCLK		0.4	V
V_{OH}	High-level Output Voltage	V _{DDPCI} , AV _{DD} , V _{DDREF} = 3.135V	$I_{OH} = 14.5 \text{ mA}$	PCICLK	2.4		٧
			$I_{OH} = 16 \text{ mA}$	REF, USB			
V_{OL}	Low-level Output Voltage	V _{DDPCI} , AV _{DD} , V _{DDREF} = 3.135V	$I_{OL} = 9.4 \text{ mA}$	PCICLK		0.4V	V
		$I_{OL} = 9 \text{ mA}$ REF, USB					
I _{IH}	Input High Current	$V_{IH} = V_{DD}$			-10	+10	μΑ
I _{IL}	Input Low Current	$V_{IL} = 0V$				10	μΑ
I _{OZ}	Output Leakage Current	Three-state			-10	+10	μΑ
I _{DD25}	Power Supply Current for 2.5V Clocks	$V_{DDCPU} = 2.625V$, $V_{IN} = 0$ or V_{DD} , Load	= 66.6 MHz		70	mA	
I _{DD25}	Power Supply Current for 2.5V Clocks	V_{DDCPU} = 2.625V, V_{IN} = 0 or V_{DD} , Loaded Outputs, CPU = 100 MHz				100	mA
I _{DD33}	Power Supply Current for 3.3V Clocks	$V_{DD} = 3.465V$, $V_{IN} = 0$ or V_{DD} , Loaded Outputs				170	mA
I _{DDS}	Powerdown Current	Current draw in powerdown state				500	μΑ

Notes:

^{6.} Electrical parameters are guaranteed with these operating conditions.7. Crystal Inputs have CMOS thresholds.

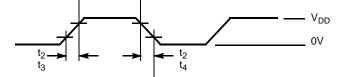
$\textbf{Switching Characteristics}^{[8]} \ \text{Over the Operating Range}$

Parameter	Output	Description	Test Conditions	Min.	Тур.	Max.	Unit
t ₁	All	Output Duty Cycle ^[9]	$t_1 = t_{1A} \div t_{1B}$	45	50	55	%
t ₂	CPUCLK	CPU Clock Rising and Falling Edge Rate	Between 0.4V and 2.0V	0.85		4.0	V/ns
t ₂	PCICLK	PCI Clock Rising and Falling Edge Rate	Between 0.4V and 2.4V	1.0		4.0	V/ns
t ₂	REF, USB	REF Clock Rising and Falling Edge Rate	Between 0.4V and 2.4V	0.5		2.0	V/ns
t ₃	CPUCLK	CPU Clock Rise Time	Between 0.4V and 2.0V	0.4		1.6	ns
t ₄	CPUCLK	CPU Clock Fall Time	Between 2.0V and 0.4V	0.4		1.6	ns
t ₅	CPUCLK	CPU-CPU Clock Skew	Measured at 1.25V		100	175	ps
t ₆	CPUCLK, PCICLK	CPU-PCI Clock Skew	Measured at 1.25V for 2.5V clocks, and at 1.5V for 3.3V clocks	1.5		4.0	ns
t ₇	PCICLK, PCICLK	PCI-PCI Clock Skew	Measured at 1.5V			250	ps
t ₁₀	CPUCLK	Cycle-Cycle Clock Jitter	Measured at 1.25V			550	ps
t ₁₁	PCICLK	Cycle-Cycle Clock Jitter	Measured at 1.5V			550	ps
t ₁₂	CPUCLK, PCICLK	Power-up Time	CPU and PCI clock stabilization from power-up			3	ms

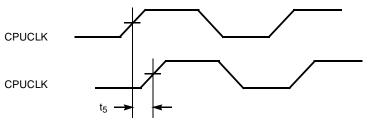

Notes:

All parameters specified with loaded outputs. Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V.

Switching Waveforms

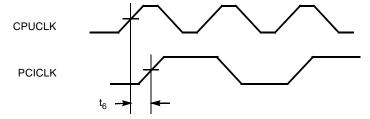

Duty Cycle Timing

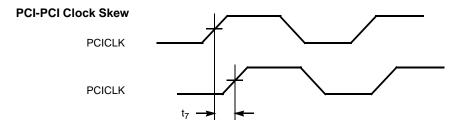
OUTPUT



All Outputs Rise/Fall Time

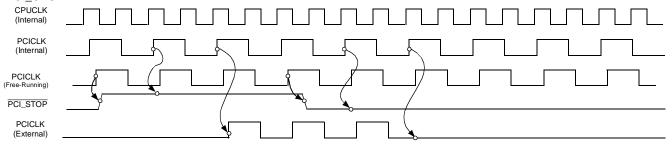
OUTPUT

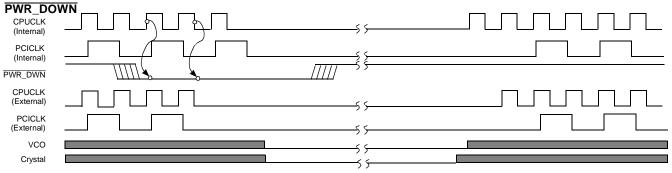

CPU-CPU Clock Skew



Switching Waveforms (continued)

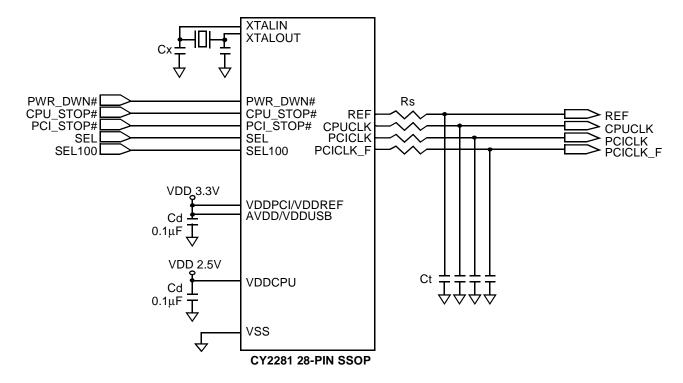
CPU-PCI Clock Skew





CPU_STOP

PCI_STOP


Shaded section on the VCO and Crystal waveforms indicates that the VCO and crystal oscillator are active, and there is a valid clock.

Application Information

Clock traces must be terminated with either series or parallel termination, as they are normally done.

Application Circuit

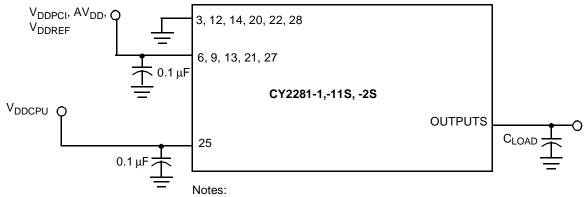
Cd = DECOUPLING CAPACITORS

Ct = OPTIONAL EMI-REDUCING CAPACITORS

Cx = OPTIONAL LOAD MATCHING CAPACITOR

Rs = SERIES TERMINATING RESISTORS

Summary


- A parallel-resonant crystal should be used as the reference to the clock generator. The operating frequency and C_{LOAD} of
 this crystal should be as specified in the data sheet. Optional trimming capacitors may be needed if a crystal with a different
 C_{LOAD} is used. Footprints must be laid out for flexibility.
- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF.
 In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the clock generator (specified in the data sheet), and Rseries is the series terminating resistor.

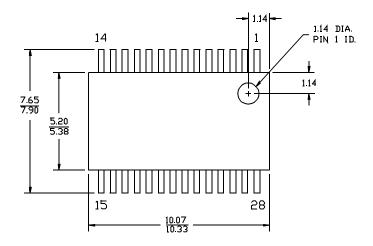
Rseries > Rtrace - Rout

- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF.
- A Ferrite Bead **may** be used to isolate the Board VDD from the clock generator VDD island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 μF–22 μF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

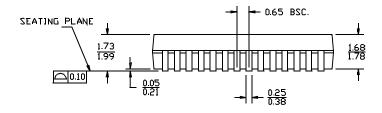
Test Circuit

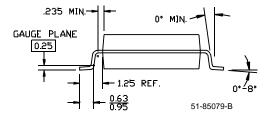
Each supply pin must have an individual decoupling capacitor All capacitors must be placed as close to the pins as is possible.

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2281PVC-1	O28	28-Pin SSOP	Commercial
CY2281PVC-11S	O28	28-Pin SSOP	Commercial
CY2281PVC-2S	O28	28-Pin SSOP	Commercial

Document #: 38-00660-C




Package Diagram

28-Lead (210-Mil) Shrunk Small Outline Package O28

DIMENSIONS IN MILLIMETERS MIN.

[©] Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.