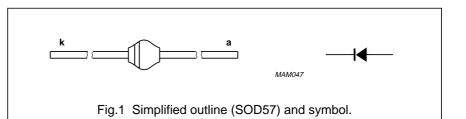

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 1996 May 30 1996 Jul 01

Product specification

BYV36 series

Fast soft-recovery controlled avalanche rectifiers


FEATURES

- · Glass passivated
- High maximum operating temperature
- · Low leakage current
- Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack.

DESCRIPTION

Rugged glass SOD57 package, using a high temperature alloyed

construction. This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYV36A		_	200	V
	BYV36B		_	400	V
	BYV36C		_	600	V
	BYV36D		_	800	V
	BYV36E		_	1000	V
	BYV36F		_	1200	V
	BYV36G		_	1400	V
V _R	continuous reverse voltage				
	BYV36A		_	200	V
	BYV36B		_	400	V
	BYV36C		_	600	V
	BYV36D		_	800	V
	BYV36E		_	1000	V
	BYV36F		_	1200	V
	BYV36G		_	1400	V
I _{F(AV)}	average forward current	$T_{tp} = 60 \text{ °C}; \text{ lead length} = 10 \text{ mm};$			
	BYV36A to C	see Figs 2; 3 and 4	_	1.6	A
	BYV36D and E	averaged over any 20 ms period; see also Figs 14; 15 and 16	_	1.5	A
	BYV36F and G		_	1.5	A
I _{F(AV)}	average forward current	T _{amb} = 60 °C; PCB mounting (see			
	BYV36A to C	Fig.25); see Figs 5; 6 and 7	_	0.87	A
	BYV36D and E	averaged over any 20 ms period; see also Figs 14; 15 and 16	_	0.81	А
	BYV36F and G		_	0.81	A

BYV36 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FRM}	repetitive peak forward current	T _{tp} = 60 °C; see Figs 8; 9 and 10			
	BYV36A to C		_	18	A
	BYV36D and E		_	17	A
	BYV36F and G		_	15	A
I _{FRM}	repetitive peak forward current	T _{amb} = 60 °C; see Figs 11; 12 and 13			
	BYV36A to C		_	9	A
	BYV36D and E		_	8	A
	BYV36F and G		_	8	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j max}$ prior to surge; $V_R = V_{RRMmax}$	_	30	A
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j max}$ prior to surge; inductive load switched off	_	10	mJ
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Figs 17 and 18	-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$ unless otherwise specified.

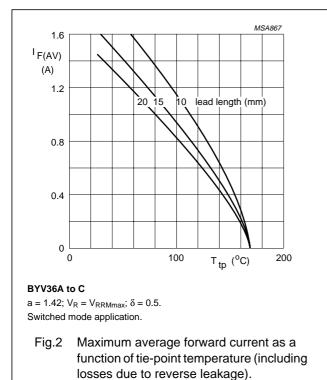
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 1 A; T_j = T_{j max};$				
	BYV36A to C	see Figs 19; 20 and 21	-	-	1.00	V
	BYV36D and E		-	-	1.05	V
	BYV36F and G		_	-	1.05	V
V _F	forward voltage	I _F = 1 A;				
	BYV36A to C	see Figs 19; 20 and 21	-	-	1.35	V
	BYV36D and E		_	_	1.45	V
	BYV36F and G		_	-	1.45	V
$V_{(BR)R}$	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYV36A		300	_	_	V
	BYV36B		500	_	_	V
	BYV36C		700	_	_	V
	BYV36D		900	-	_	V
	BYV36E		1100	-	_	V
	BYV36F		1300	_	_	V
	BYV36G		1500	_	_	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.22	_	_	5	μA
		$V_R = V_{RRMmax};$ T _j = 165 °C; see Fig.22	_	_	150	μA

BYV36 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{rr}	reverse recovery time	when switched from				
	BYV36A to C	$I_{\rm F} = 0.5 \text{ A to } I_{\rm R} = 1 \text{ A};$	_	_	100	ns
	BYV36D and E	measured at I _R = 0.25 A; see Fig. 26	_	_	150	ns
	BYV36F and G	366 Fig. 20	_	_	250	ns
C _d	diode capacitance	f = 1 MHz; V _R = 0 V;				
	BYV36A to C	see Figs 23 and 24	_	45	_	pF
	BYV36D and E		_	40	_	pF
	BYV36F and G		_	35	-	pF
dl _R dt	maximum slope of reverse recovery current	when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V and}$				
	BYV36A to C	$dI_F/dt = -1 A/\mu s;$	_	_	7	A/μs
	BYV36D and E	see Fig.27	-	_	6	A/μs
	BYV36F and G		_	_	5	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	46	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	100	K/W


Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.25. For more information please refer to the *"General Part of associated Handbook"*.

BYV36 series

Fast soft-recovery controlled avalanche rectifiers

GRAPHICAL DATA

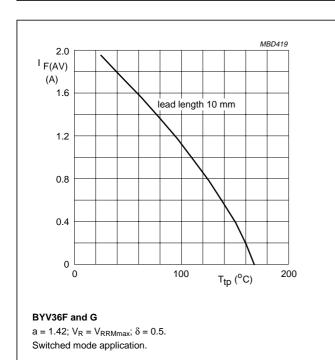
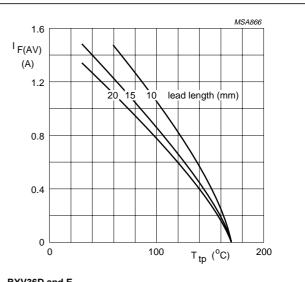



Fig.4 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

BYV36D and E $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Switched mode application.

Fig.3 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

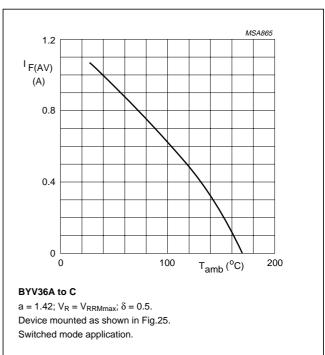
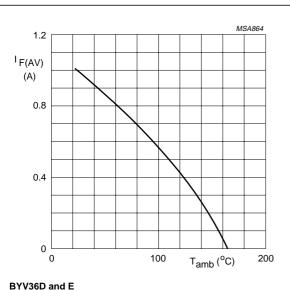
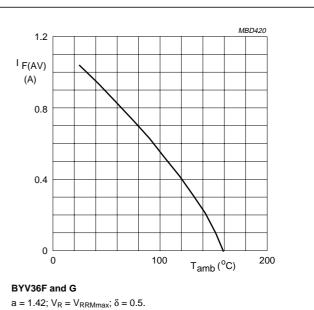



Fig.5 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).


BYV36 series

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$.

a = 1.42, v_R = v_{RRMmax}, b = 0.5. Device mounted as shown in Fig.25. Switched mode application.

Fig.6 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

 $\label{eq:a} \begin{aligned} &a=1.42; \ V_R=V_{RRMmax}; \ \delta=0.5. \\ & \text{Device mounted as shown in Fig.25.} \\ & \text{Switched mode application.} \end{aligned}$

Fig.7 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

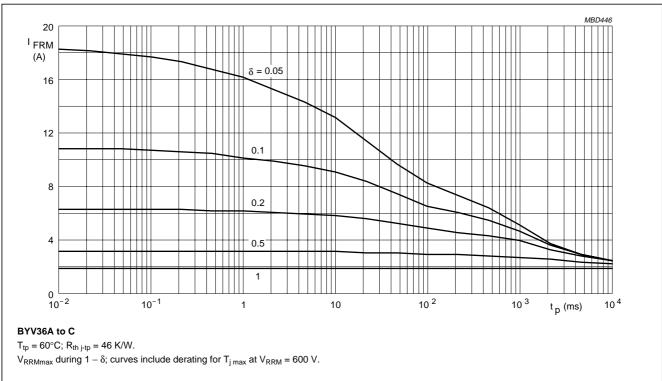


Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYV36 series

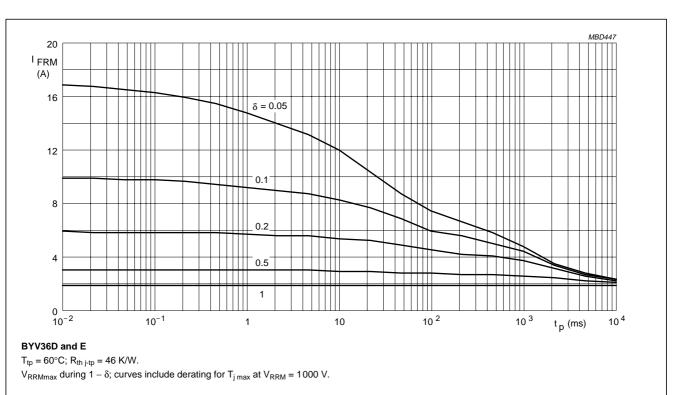


Fig.9 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

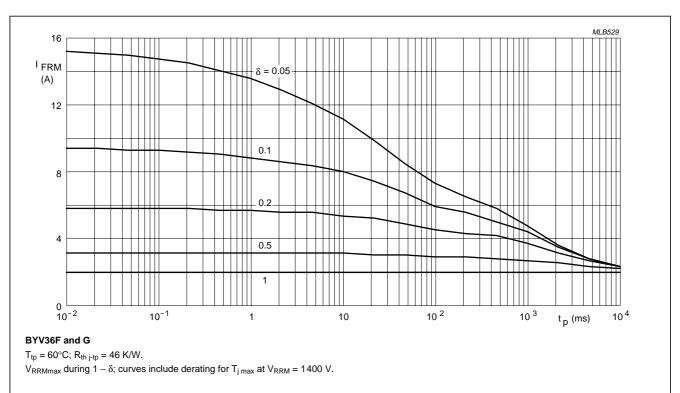


Fig.10 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYV36 series

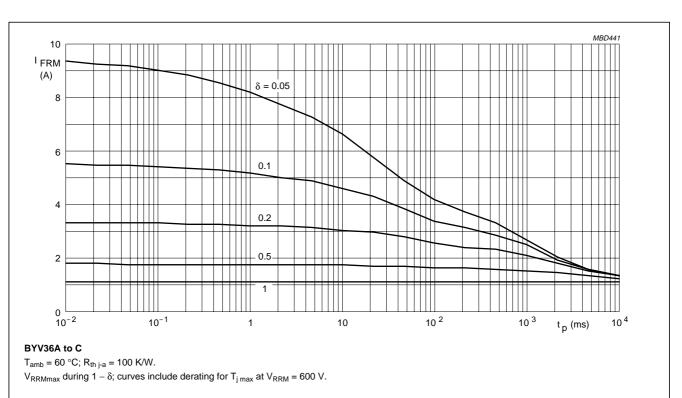


Fig.11 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

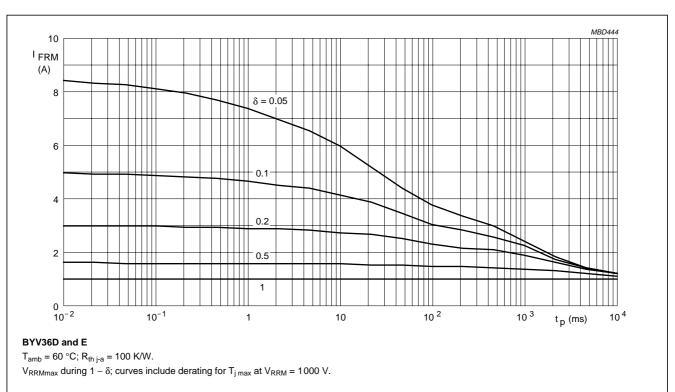


Fig.12 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYV36 series

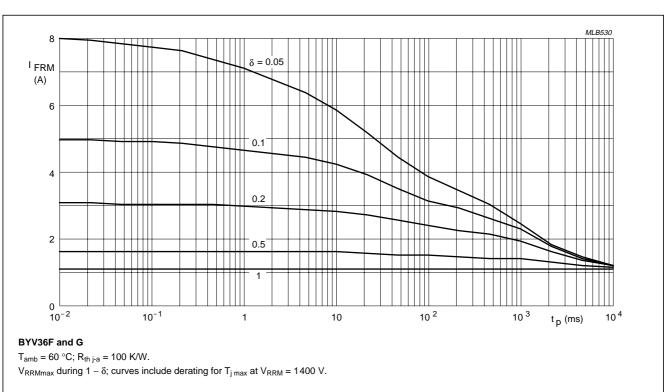
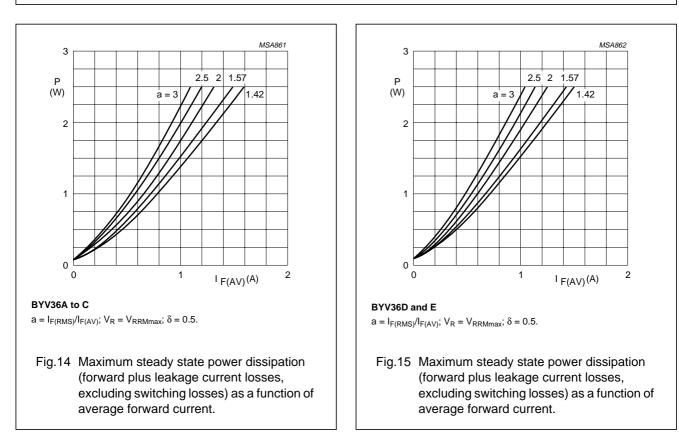
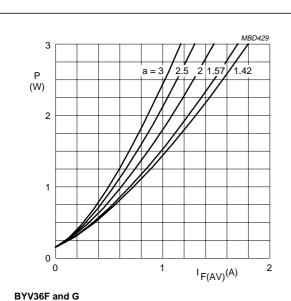
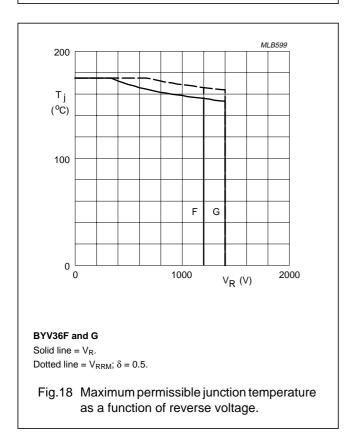
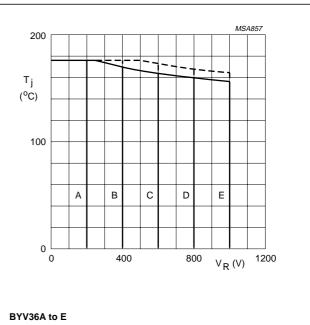
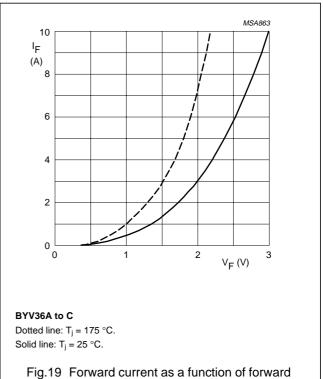




Fig.13 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.




BYV36 series

 $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RRMmax}; \ \delta = 0.5. \label{eq:rescaled}$


Fig.16 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

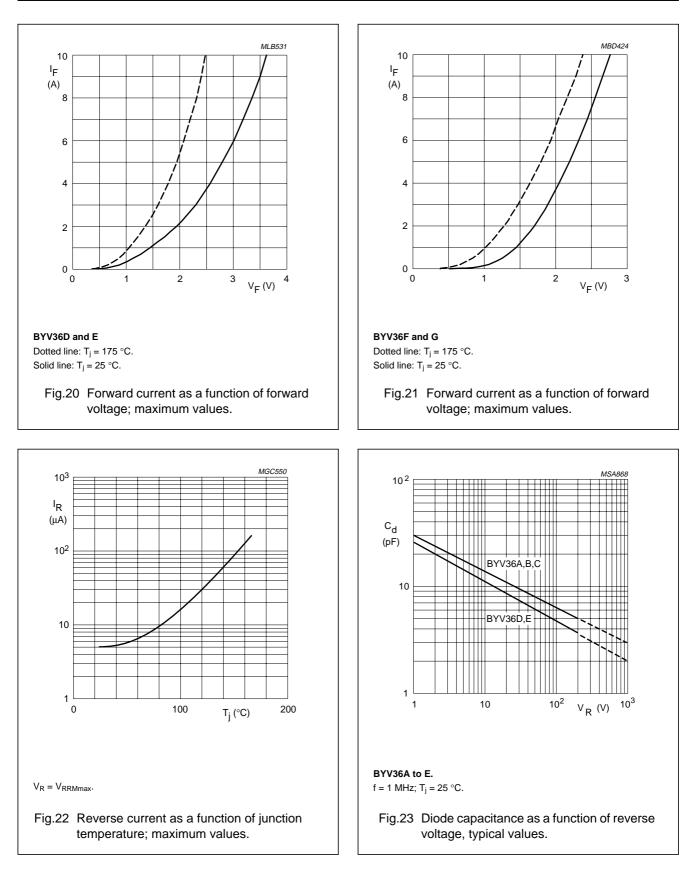
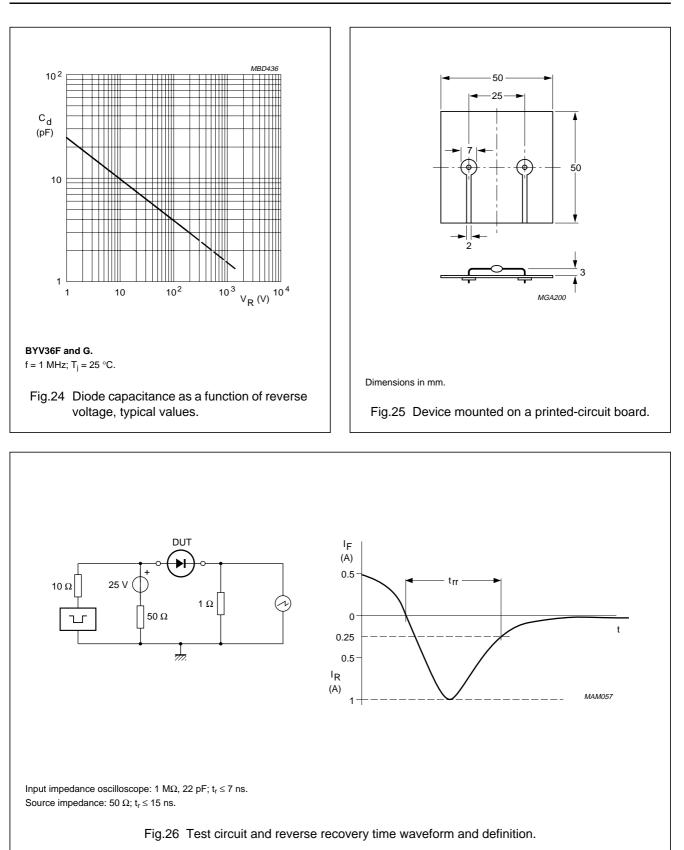
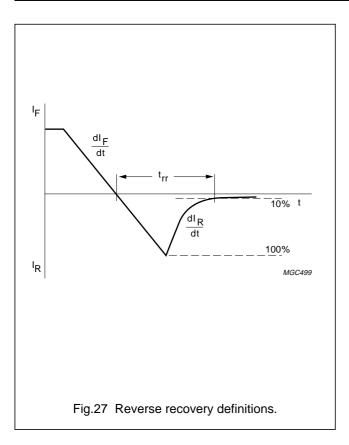

BYV36A to E Solid line = V_R . Dotted line = V_{RRM} ; δ = 0.5.

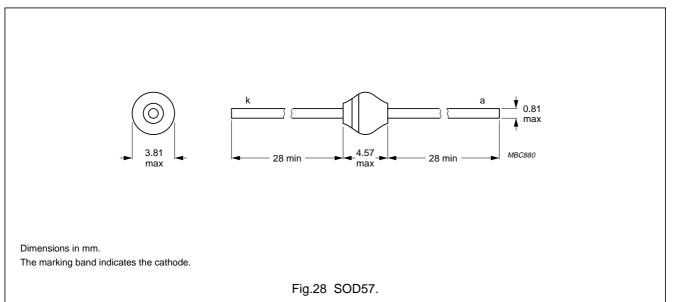
Fig.17 Maximum permissible junction temperature as a function of reverse voltage.



voltage; maximum values.


BYV36 series

BYV36 series



BYV36 series

BYV36 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status		
Objective specification	This data sheet contains target or goal specifications for product development.	
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.	
Product specification	This data sheet contains final product specifications.	
Limiting values		
more of the limiting values r of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.	
Application information		

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.