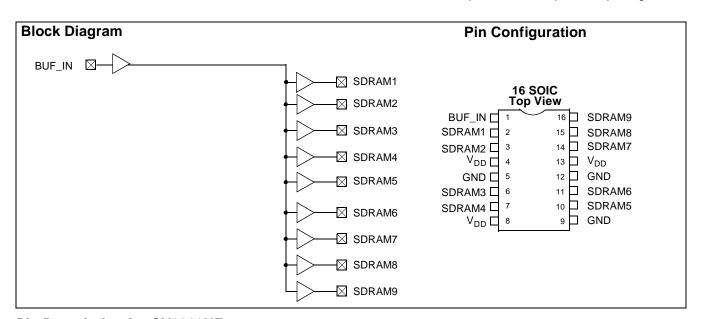


Nine Output, 3.3V SDRAM Buffer for 2 DIMMs or 4 SO-DIMMs


Features

- · One input to nine output buffer/driver
- Supports two SDRAM DIMMs or four SO-DIMMs with one additional output for feedback to an external or chipset PLL
- Low power consumption for mobile applications
 - Less than 25 mA at 66.6 MHz with unloaded outputs
- 8.7-ns Input-Output delay
- Buffers all frequencies from DC to 100 MHz
- · Output-output skew less than 250 ps
- Multiple V_{DD} and V_{SS} pins for noise and EMI reduction
- Space-saving 16-pin 150-mil SOIC package
- 3.3V operation

Functional Description

The CY2309NZ is a low-cost SDRAM buffer designed to distribute high-speed clocks in mobile PC systems and desktop PC systems with SDRAM support. The part has nine outputs, eight of which can be used to drive 2 DIMMs or 4 SO-DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, making it compatible with Pentium II® processors and 100-MHz chipsets. The CY2309NZ can be used in conjunction with the CY2281, CY2282, CY2283, CY2284 or similar clock synthesizers for a full Pentium II motherboard solution.

The CY2309NZ is designed for low EMI and power optimization. It has multiple V_{SS} and V_{DD} pins for noise optimization and consumes less than 25 mA at 66.6 MHz, making it ideal for the low power requirements of mobile systems. It is available in an ultra-compact 150-mil 16-pin SOIC package.

Pin Description for CY2309NZ

Signal	Pin	Description
V_{DD}	4, 8, 13	3.3V Digital Voltage Supply
GND	5, 9, 12	Ground
BUF_IN	1	Input Clock
SDRAM [1:9]	2, 3, 6, 7, 10, 11, 14, 15, 16	SDRAM Clock Outputs

Intel and Pentium are registered trademarks of Intel Corporation.

Maximum Ratings

Supply Voltage to Ground Potential -0.5V to +7.0V DC Input Voltage (Except REF)-0.5V to V_{DD} + 0.5V DC Input Voltage REF.....-0.5V to 7V

Storage Temperature	–65°C to +150°C
Max. Soldering Temperature (10 sec.)	260°C
Junction Temperature	150°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2,000V

Operating Conditions

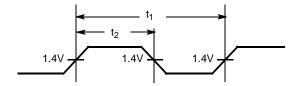
Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
C _L	Load Capacitance		30	pF
C _{IN}	Input Capacitance		7	pF
BUF_IN, SDRAM [1:9]	Operating Frequency	DC	100	MHz

Electrical Characteristics

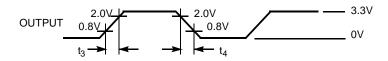
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[1]			0.8	V
V _{IH}	Input HIGH Voltage ^[1]		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		50.0	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		100.0	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = -8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs at 66.66 MHz, SEL inputs at V _{DD} or GND		35	mA

Switching Characteristics [3] Over the Operating Range

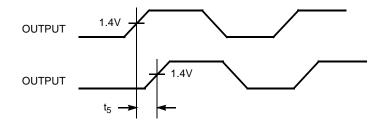
Parameter	Name	Description	Min.	Тур.	Max.	Unit
	Duty Cycle ^[2] = $t_2 \div t_1$	Measured at 1.4V	40.0	50.0	60.0	%
t ₃	Rise Time ^[2]	Measured between 0.8V and 2.0V			1.50	ns
t ₄	Fall Time ^[2]	Measured between 0.8V and 2.0V			1.50	ns
t ₅	Output to Output Skew ^[2]	All outputs equally loaded			250	ps
t ₆	Propagation Delay, BUF_IN Rising Edge to SDRAM Rising Edge ^[2]	Measured at V _{DD} /2	1	5	8.7	ns

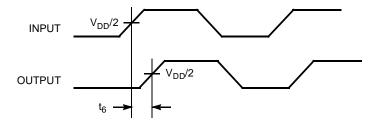

Notes:

- 1. BUF_IN input has a threshold voltage of $V_{DD}/2$.
- Parameter is guaranteed by design and characterization. Not 100% tested in production.
 All parameters specified with loaded outputs.

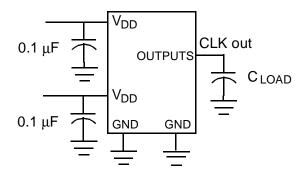


Switching Waveforms


Duty Cycle Timing

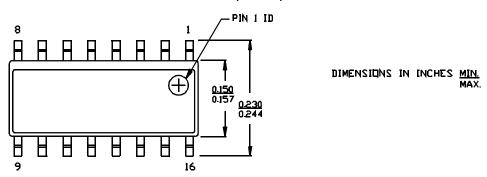

All Outputs Rise/Fall Time

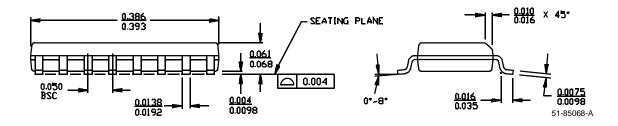
Output-Output Skew



Input-Output Propagation Delay

Test Circuits


Ordering Information


	Ordering Code	Package Name	Package Type	Operating Range
Γ	CY2309NZSC-1H	S16	16-pin 150-mil SOIC	Commercial

Document #: 38-00709-C

Package Diagram

16-Lead (150-Mil) Molded SOIC S16

[©] Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.