8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89910 Series

MB89913/915/P915/PV910

■ DESCRIPTION

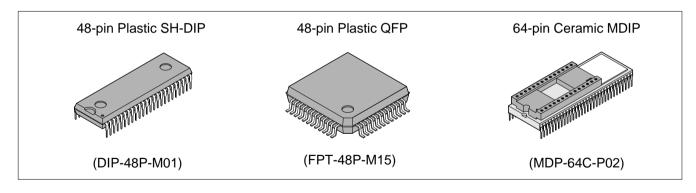
The MB89910 series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, an A/D converter, a buzzer output, a low-voltage detection reset, high-voltage driver, a watch prescaler, and external interrupts. The MB89910 series is applicable to a wide range of applications from consumer products to industrial equipments.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: 0.50 μs/8.0 MHz oscillation
- Interrupt processing time: 4.50 μs/8.0 MHz oscillation
- F2MC-8L family CPU core


Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

Dual-clock control system

(Continued)

■ PACKAGE

(Continued)

High-voltage ports (built-in a pull-down resistor capable)
 8 ports for large current
 10 ports for small current

8-bit PWM timer: 1 channel16-bit timer/counter: 1 channel

21-bit timebase timer
8-bit serial I/O: 1 channel
8-bit A/D converter: 8 channels

External interrupt
 Edge detection function

Two channels, including one of which voltage can be applied from -0.3 to +7.0 V

- Low-voltage detection reset (excluding the MB89PV910)
- Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
- · Reset output and power-on reset function
- · Watch prescaler

■ PRODUCT LINEUP

Part number Parameter	MB89913	MB89915	MB89P915	MB89PV910	
Classification		ction product M product)	One-time PROM product	Piggyback/ evaluation product (for evaluation and development)	
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM, programmable with general-purpose EPROM programmer)	32K × 8 bits (Piggyback) (External ROM)	
RAM size	256 × 8 bits	512 ×	8 bits	1 K × 8 bits	
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: Number of instructions: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.50 μs/8.0 MHz to 8.00 μs/8.0 MHz, or 61 μs/32.768 kHz 4.5 μs/8.0 MHz to 72.0 μs/8.0 MHz, or 549.3 μs/32.768 kHz Note: The above times depend on the gear function.				
Ports	High-voltage output ports (P-ch open-drain): 8 (P10 to P17 for large current) 10 (P20 to P27 and P50 to P51 for small current) 1/O ports (CMOS): 13 (P00 to P07, P34 to P37, and P40) 1/O ports (N-ch open-drain): 6 (P30 to P33, P41, P42) 1nput ports (CMOS): 2 (P60 and P61 also serve as a subclock pin) Total: 39				
Timebase timer (Timer 1)	Capable of generating four different intervals at 8.0-MHz oscillation: 0.26, 0.51, 1.02, and 524.0 ms				
8-bit PWM timer (Timer 2)	8-bit timer operation (square wave output capable. Operation clock: 1, 2, 8, or 16 instruction cycles) 8-bit resolution PWM operation (Conversion cycle: 128 µs to 2.0 ms at 8.0 MHz)				
16-bit timer/counter (Timer 3)	16-bit timer operation (operating clock: 1 instruction cycle) 16-bit event counter operation (Rising/falling/both edges selectable)				
8-bit serial I/O	8 bits LSB first/MSB first selectable Transfer clock (external, 4/8/16 instruction cycles)				
8-bit A/D converter	8-bit resolution × 8 channels A/D conversion mode (conversion time of 22.0 μs/8.0 MHz) Sense mode (conversion time of 6.0 μs/8.0 MHz) Continuous activation enabled by external clock or internal clock Reference voltage input (AVR) is provided.				

(Continued)

Part number Parameter	MB89913	MB89915	MB89P915	MB89PPV910	
External interrupt	2 independent channels (edge selection, interrupt vector, factor flag) Rising/ falling/both edges selectable Built-in analog noise canceller Used also for wake-up stop/sleep modes. (Edge detection is also permitted in stop mode.)				
Low-voltage detection reset	Continuous operation (de 3.d Intermittent operation (Ac du	Not available			
Low-power consumption (Standby mode)	Sleep mode, stop mode, and watch mode				
Process	CMOS				
Operating voltage*					
EPROM for use	MBM27				

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV910, the voltage varies with the ICE or the EPROM to be connected.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89913 MB89915 MB89P915	MB89PV910
DIP-48P-M01	0	×
FPT-48P-M15	○*1	×
MDP-64C-P02	×	○*2

○ : Available ×: Not available

*1: Under examination for development

*2: Available by conversion from MDIP-64 to SH-DIP-48 64SD-48SD-8L2: For conversion (MDP-64C-P02) → DIP-48P-M01 Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Note: For more information about each package, see section "■ Package Dimensions."

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

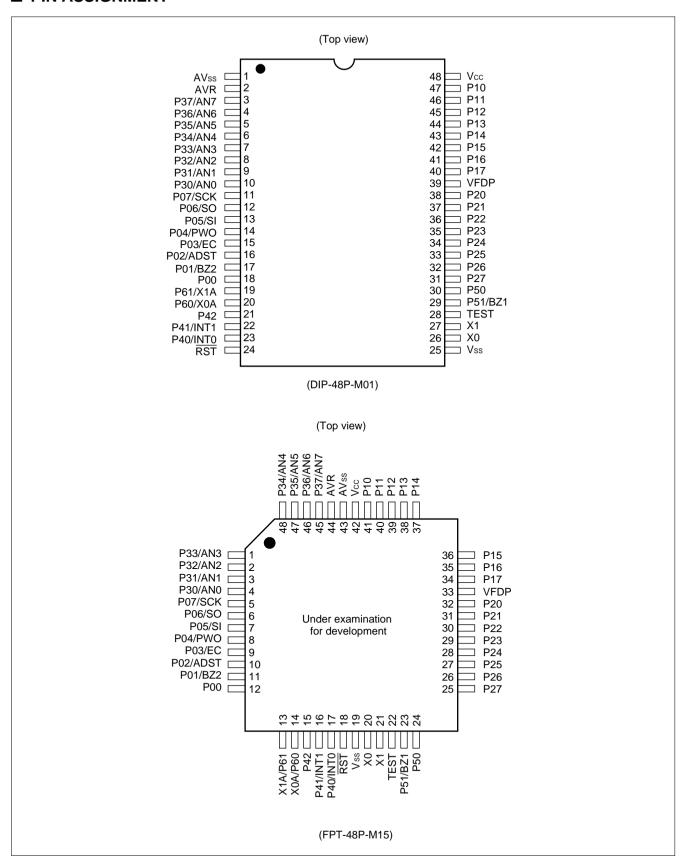
• The stack area, etc., is set at the upper limit of the RAM.

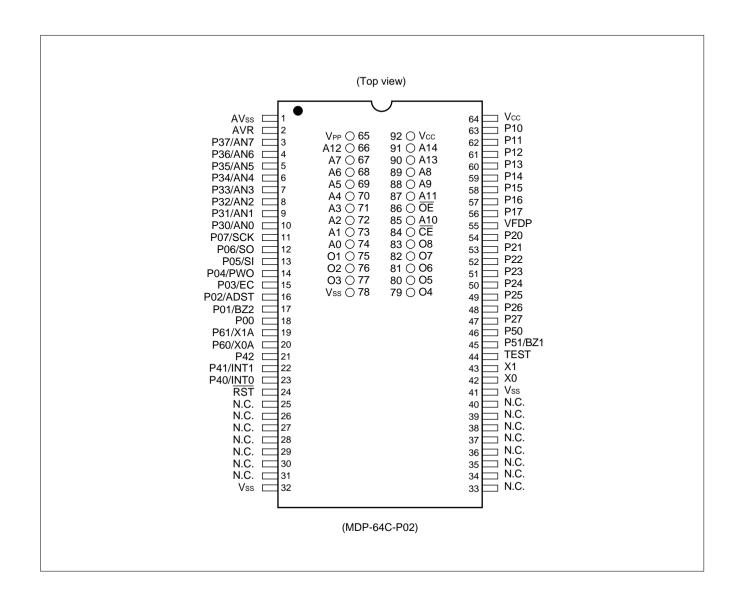
2. Current Consumption

- In the case of the MB89PV910, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options


Functions that can be selected as options and how to designate these options vary by the product.


Before using options check section "■ Mask Options."

Take particular care on the following points:

- A pull-down resistor for P10 to P17, P20 to P27, and for P50 to P51 cannot be set for the MB89P915 and MB89PV910. The MB89915 and MB89913 allow a pull-down resistor to be set for individual pins. Such pins on the MB89P915 and MB89PV910 are fixed to have no pull-down resistor.
- The low-voltage detection reset cannot be used on the MB89PV910. The voltage to be detected by the low-voltage detection reset is set by using a register for the MB89P915 and by using a mask option for the MB89915 and MB89913. If the detection voltage has been set to a lower value than the operating voltage, however, use the gear function to operate the device with the faster clock at a lower speed, or operate the device with the slower clock. Note that the results of operation are unpredictable if the device is attempted to operate at a lower voltage than the operating voltage with the faster clock put in top gear.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

	Pin no.			Circuit	
SH-DIP*1	QFP*2	MDIP*3	Pin name	type	Function
26	20	42	X0	Α	Main clock crystal oscillator pins
27	21	43	X1		
20	14	20	X0A/P60	I	These pins can select either general-purpose CMOS inputs or subclock oscillator pins by the mask options. When these pins are used as a general-purpose input
19	13	19	X1A/P61		pin, the pin is a hysteresis input with a built-in noise canceller.
24	18	24	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal source. The internal circuit is initialized by the input of "L". This pin is with a noise canceller.
18	12	18	P00	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller.
17	11	17	P01/BZ2	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as a buzzer output.
16	10	16	P02/ADST	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the external activation pin for the A/D converter.
15	9	15	P03/EC	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the external clock input for the 16-bit timer/counter.
14	8	14	P04/PWO	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the PWM output for the 8-bit PWM timer.
13, 12	7, 6	13, 12	P05/SI, P06/SO	D	General-purpose CMOS I/O ports These port inputs are a hysteresis input, with a built-in noise canceller. Also serve as serial data outputs for the 8-bit serial interface.
11	5	11	P07/SCK	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the serial transfer clock output for the 8-bit serial interface.
47 to 40	41 to 34	63 to 56	P10 to P17	G	P-ch high-voltage open-drain output ports for large current

*1: DIP-48P-M01

*2: FPT-48P-M15

*3: MDP-64C-P02

(Continued)

Pin no.		Din name	Circuit	Franction	
SH-DIP*1	QFP*2	MDIP*3	Pin name	type	Function
38 to 31	32 to 25	54 to 47	P20 to P27	G	P-ch high-voltage open-drain output ports for small current
10 to 7	4 to 1	10 to 7	P30/AN0 to P33/AN3	Н	General-purpose N-ch open-drain I/O ports These port inputs are a hysteresis input, each with a built-in noise canceller. Although the pins are also serve as an analog inputs, an analog input does not pass through their noise cancellers.
6 to 3	48 to 45	6 to 3	P34/AN4 to P37/AN7	F	General-purpose CMOS I/O ports These port inputs are a hysteresis input, each with a built-in noise canceller. Although the pins are also serve as an analog inputs, an analog input does not pass through their noise cancellers.
23	17	23	P40/INT0	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as an external interrupt. External interrupt input passes through the noise canceller.
22	16	22	P41/INT1	Е	General-purpose N-ch open-drain I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as an external interrupt. External interrupt input passes through the noise canceller.
21	15	21	P42	E	General-purpose N-ch open-drain I/O port This port input is a hysteresis input, with a built-in noise canceller.
30	24	46	P50	G	P-ch high-voltage open-drain output ports for small current
29	23	45	P51/BZ1	G	P-ch high-voltage open-drain output port for small current Also serves as a buzzer output.
28	22	44	TEST	В	Operating mode selection pin Usually, connect to Vss directly. On the product with an EPROM, the pin is the VPP pin.
39	33	55	VFDP	_	Voltage supply pin connected to a pull-down resistor for ports 1, 2, and 5 In products without a pull-down resistor, in the MB89P915, and in the MB89PV910, this pin should be left open.

*1: DIP-48P-M01

*2: FPT-48P-M15

*3: MDP-64C-P02

(Continued)

	Pin no.		Pin name Circuit Func		Function
SH-DIP*1	QFP*2	MDIP*3	Fili liailie	type	Tunction
48	42	64	Vcc	_	Power supply pin
25	19	32, 41	Vss	_	Power supply (GND) pin
1	43	1	AVss	_	A/D converter power supply pin Use this pin at the same voltage as Vss.
2	44	2	AVR	_	A/D converter reference voltage input pin

*1: DIP-48P-M01 *2: FPT-48P-M15 *3: MDP-64C-P02

• External EPROM pins (MDIP only)

Pin no.	Din nama	I/O	Function
MDIP*	Pin name	1/0	Function
65	V _{PP}	0	"H" level output pin
66 67 68 69 70 71 72 73 74	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
75 76 77	O1 O2 O3	I	Data input pins
78	Vss	0	Power supply (GND) pin
79 80 81 82 83	O4 O5 O6 O7 O8	I	Data input pins
84	CE	0	ROM chip enable pin Outputs "H" during standby.
85	A10	0	Address output pin
86	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
87 88 89	A11 A9 A8	0	Address output pin
90	A13	0	
91	A14	0	
92	Vcc	0	EPROM power supply pin

^{* :} MDP-64C-P02

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	N-ch P-ch X0 Main clock control signal	Main clock At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
В		
С	Hysteresis input (with a noise canceller)	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V CMOS hysteresis input (with a noise canceller)
D	Hysteresis input (with a noise canceller)	CMOS I/O CMOS hysteresis input (with a noise canceller)
Е	Hysteresis input (with a noise canceller)	N-ch open-drain I/O CMOS hysteresis input (with a noise canceller)

Туре	Circuit	Remarks
F	P-ch N-ch Port Hysteresis input (with a noise canceller) Analog input	CMOS output CMOS hysteresis input (with a noise canceller excluding analog inputs)
G	VFDP	 P-ch high-voltage open-drain output At an output pull-down resistor of approximately 100 kΩ/5.0 V
Н	N-ch N-ch Hysteresis input (with a noise canceller) Analog input	N-ch open-drain output CMOS hysteresis input (with a noise canceller excluding analog inputs)
I	Hysteresis input (with a noise canceller) N-ch P-ch X0A Subclock control signal Port Hysteresis input (with a noise canceller)	 Subclock The oscillation feedback resistor is built only in the MB89PV910. CMOS hysteresis input (with a noise canceller) when no subclock is being used

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

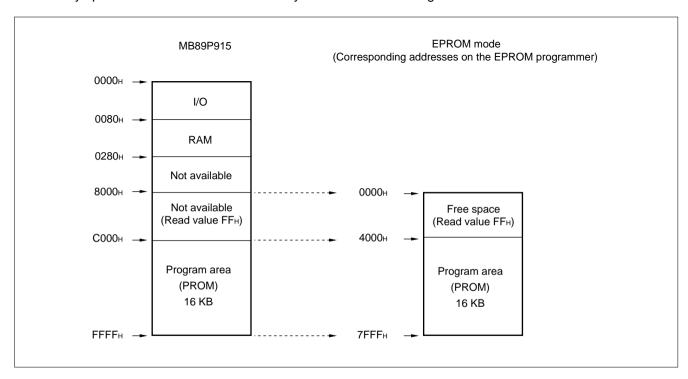
5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO EPROM ON THE MB89P915


The MB89P915 is an OTPROM version of the MP89910 series.

1. Features

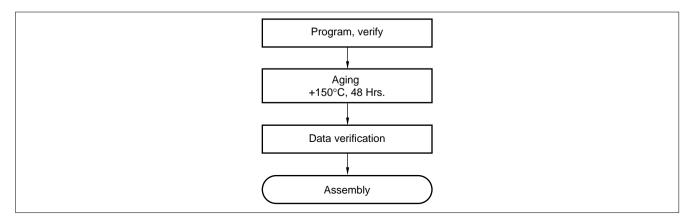
• 16-Kbyte PROM on chip

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM mode is diagrammed below.

3. Programming to the EPROM

Since the MB89P915 requires a special method for programming to its PROM, the types of general-purpose EPROM programmers applicable to the MB89P915 are limited. Programming to the PROM on the MB89P915 requires an EPROM programmer applicable to the MB89P915 and a dedicated adapter.


When the operating ROM area for a single chip is 16 Kbytes (C000_H to FFFF_H) the PROM can be programmed as follows:

Programming procedure

- (1) Set the EPROM programmer to the MB89P195.
- (2) Load program data into the EPROM programmer at 4000_H to 7FFF_H. (note that addresses 0C000_H to 0FFFF_H in the operation mode correspond to 4000_H to 7FFF_H in EPROM mode.)
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

		Compatible socket adapter Sun Hayato Co., Ltd.		led programmer n d programmer na	
Part no.	Package		Data I/O Co., Ltd.		
		-	UNISITE (ver.5.0 or later)	3900 (ver.2.8 or later)	2900 (ver.3.8 or later)
MB89P915P-SH	SH-DIP-48	ROM-48QF2-28DP-8L		Recommended	

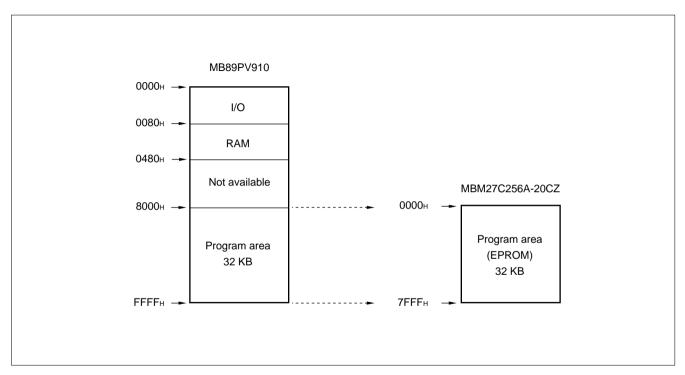
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444 EUROPE (49)-8-985-8580

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

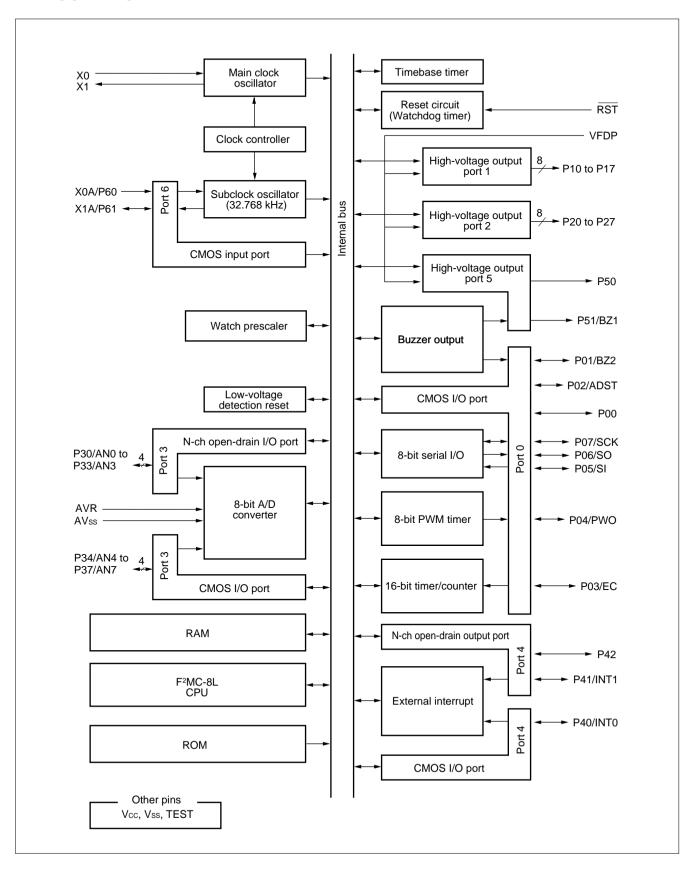
1. EPROM for Use


MBM27C256A-20CZ

2. Programming Socket Adapter

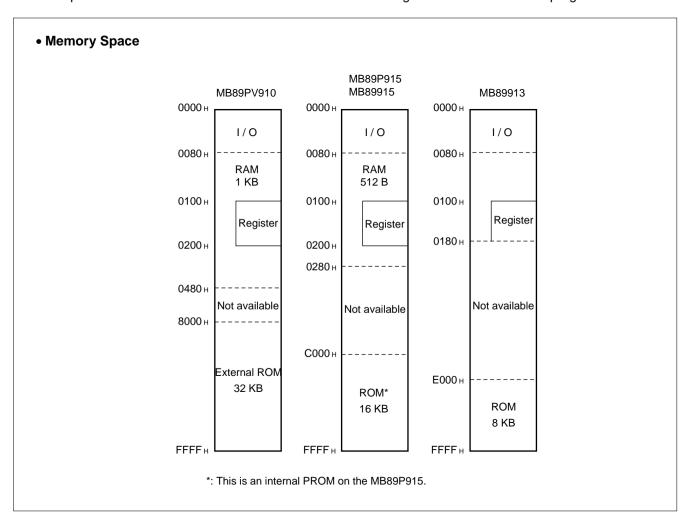
Any special programming adapter is not required since the package for the EPROM to be used is DIP-28.

3. Memory Space


EPROM memory space and the memory space on the MB89PV910 are diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A-20CZ.
- (2) Load program data into the EPROM programmer at 0000H to 7FFFH. (note that addresses 08000H to 0FFFFH in the operation mode correspond to 0000H to 7FFFH in the EPROM mode.)
- (3) Program with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89910 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area.

2. Registers

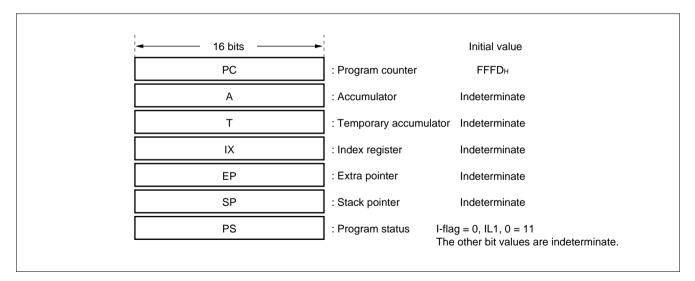
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

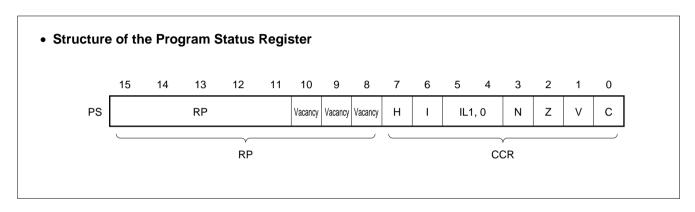
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

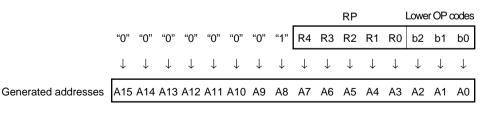

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

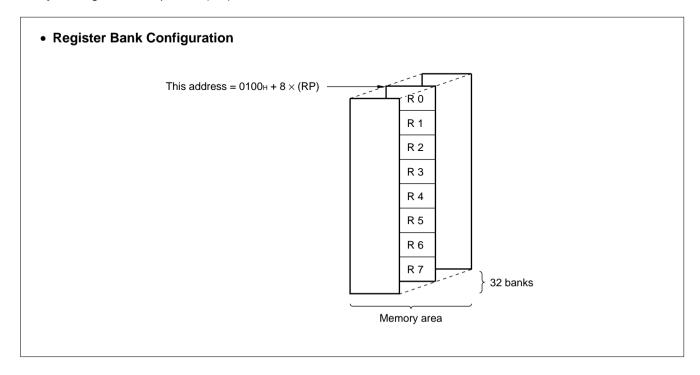
I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the MSB becomes to '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.


V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit resister for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89915. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н			Vacancy
03н			Vacancy
04н			Vacancy
05н			Vacancy
06н			Vacancy
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
0Ан	(R/W)	TBCR	Time-base timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	PDR3	Port 3 data register
0Dн	(W)	DDR3	Port 3 direction register
0Ен	(R/W)	BUZR	Buzzer register
0Fн	(R/W)	EIC	External interrupt control register
10н	(R/W)	PDR1	Port 1 data register
11н	(R/W)	PDR2	Port 2 data register
12н	(R/W)	PDR5	Port 5 data register
13н	(R)	PDR6	Port 6 data register
14н	(R/W)	PDR4	Port 4 data register
15н	(W)	DDR4	Port 4 direction register
16н	(W)	COMR	PWM compare register
17н	(R/W)	CNTR	PWM control register
18н	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer control register (H)
1Ан	(R/W)	TCLR	16-bit timer control register (L)
1Вн		Vacancy	
1Сн	(R/W)	SMR	Serial mode register
1Dн	(R/W)	SDR	Serial data register
1Ен	(R/W)	ADC1	A/D converter control register 1
1 Fн	(R/W)	ADC2	A/D converter control register 2

(Continued)

Address	Read/write	Register name	Register description			
20н	(R/W)	ADCD	A/D converter data register			
21н			Vacancy			
22н	(W)	PCR	Port input control register			
23н	(R/W)	LVRC	Low-voltage detection reset control registe			
24н to 7Вн			Vacancy			
7Сн	(W)	ILR1	Interrupt level setting register 1			
7Dн	(W)	ILR2	Interrupt level setting register 2			
7Е н	(W)	ILR3	Interrupt level setting register 3			
7F н		1	Vacancy			

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Danamatan	Or seed to a l	Val	lue	11	Domonlo
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc AVR	Vss - 0.3	Vss + 7.0	V	AVR ≤ Vcc + 0.3*1
Power supply voltage	V _{PP}	- 0.6	13.0	V	
	VFDP	Vcc - 40	Vcc + 0.3	V	
Input voltage	VII	Vss - 0.3	Vcc + 0.3	V	Except P41*2
Imput voltage	V _{I2}	Vss-0.3	7.0	V	P41
Output voltage	V ₀₁	Vss - 0.3	Vcc + 0.3	V	Except P10 to P17, P20 to P27, P50, P51*2
Output voltage	Vo2	Vcc - 40.0	Vcc + 0.3	V	P10 to P17, P20 to P27 P50, P51
"H" level total maximum output current	ΣІон	_	-120	mA	
"H" level total average output current	Σ lohav	_	-90	mA	Average value (operating current × operating rate)
			-12	mA	P00 to P07, P34 to P37, P40
"H" level maximum output current	Іон		-20	mA	P20 to P27, P50, P51
		_	-36	mA	P10 to P17
		_	-6	mA	P00 to P07, P34 to P37, P40 Average value (operating current × operating rate)
"H" level average output current	Іонач	_	-10	mA	P20 to P27, P50, P51 Average value (operating current × operating rate)
		_	-20	mA	P10 to P17 Average value (operating current × operating rate)
"L" level total maximum output current	ΣloL	_	36	mA	
"L" level total average output current	Σ lolav		20	mA	Average value (operating current × operating rate)
"L" level maximum output current	Іоь		10	mA	P00 to P07, P30 to P37,
"L" level average output current	lolav		4	mA	P40 to P47

(Continued)

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Onn	Kemarks
Power consumption	Po	_	440	mW	SH-DIP: DIP-48-M01
Power consumption	FD	_	360	mW	QFP: FPT-48-M15
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1:} Take care so that AVR does not exceed Vcc+0.3 V and Vcc does not exceed Vcc, such as when power is turned on.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
rarameter	Symbol	Min.	Max.	Onic	Remarks
		4.5*	5.5*	V	Normal operation assurance range* (MB89PV910)
Power supply voltage	Vcc	3.8*	5.5*	V	Normal operation assurance range* (MB89P915/915/913)
		2.7	5.5	V	Watch mode, sub-RUN mode
		1.5	5.5	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	Vcc	V	
High-voltage pull-down resistor supply voltage	VFDP	Vcc - 35.0	Vcc + 0.3	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

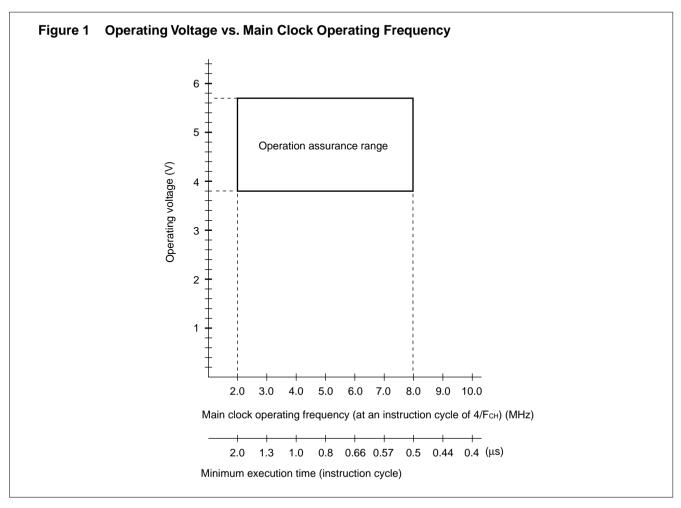


Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fch.

Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

. .		p.	,	X = VCC = +3	Value	s = Vss = 0.		$x = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input voltage	Vihs	P00 to P07, P30 to P37, P40 to P42, P60, P61 X0, RST X1, TEST	_	0.8 Vcc	_	Vcc + 0.3	V	
"L" level input voltage	VILS	P00 to P07, P30 to P37, P40 to P42, P60, P61 X0, RST X1, TEST	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin	V _{D1}	P30 to P33, P42	_	Vss - 0.3	_	Vcc + 0.3	V	
application voltage	V _{D2}	P41	_	Vss - 0.3	_	7.0	V	
"H" level output voltage	Vон1	P00 to P07, P30 to P37, P40 to P42, P60, P61	Iон = −2.0 mA	2.4	_	_	V	Excluding P30 to P33 and P41, P42
	V _{OH2}	P20 to P27, P50, P51	Iон = −10 mA	3.0	_	_	V	
	Vонз	P10 to P17	Iон = −20 mA	3.0	_	_	V	
"L" level output voltage	Vol1	P00 to P07, P30 to P37, P40 to P42, P60, P61	IoL = 1.8 mA	_	_	0.4	V	
	V _{OL2}	RST,	IoL = 4.0 mA	_	_	0.6	V	
Input leakage current	ILI1	P00 to P07, P30 to P37, P40 to P42, P60, P61	0 < Vı < Vcc	_	_	±5	μА	
Output leakage	ILO1	P20 to P27, P50, P51	Vı = VFDP	_	_	-10	μА	VFDP = Vcc - 35.0 V
current	I _{LO2}	P10 to P17	Vı = VFDP		_	-20	μΑ	VFDP = Vcc - 35.0 V
Pull-up resistance	RPULL	RST,	V _{IN} = 0.0 V	25	50	100	kΩ	
Pull-down resistance	R _{PD}	P10 to P17, P20 to P27, P50, P51	V _{IN} = 5.0 V	50	100	150	kΩ	Assuming the pull- down resistor option selected

(Continued)

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Donomoton.	Cb. a.l	D:				Value			
Parameter	Symbol	Pin name		Condition	Min.	Тур.	Max.	Unit	Remarks
	laa.		Vc	H = 8 MHz C = 5.0 V ^{*2} = 0.5 μs	_	10.0	18.0	mA	MB89P915
	Icc1		when A/D conversion is stopped		_	9	15	mA	MB89913/ 915/PV910
	Icc2		Vc	H = 8 MHz C = 3.8 V T ² = 8.0 μs	_	3.0	6.0	mA	MB89P915
	ICC2		wh	en A/D conversion stopped	_	1.8	2.4	mA	MB89913/ 915/PV910
	Ics ₁	Sleep mode	FCH = 8 MHz Vcc = 5.0 V t_{inst}^{*2} = 0.5 μ s when A/D conversion is stopped	_	3	7	mA		
Power supply current*1 When low-voltage detection reset operation is	Ics2	Vcc	Sleep	$ \begin{array}{c c} \hline \bigcirc \\ \hline \bigcirc \\ \hline O \\ \hline \\$	_	1.2	1.8	mA	
enabled, ILVD is added to each			Fcl = 32 kHz Vcc = 3.0 V Subclock mode		_	1.2	3.6	mA	MB89P915
power supply current.	Ісѕв				_	60	180	μА	MB89913/ 915/PV910
	Ics3		Vc Su	= 32 kHz c = 3.0 V bclock sleep ode	_	32	64	μΑ	
	Ісст		• Vo	= 32 kHz c = 3.0 V Vatch mode Main clock stop node at dual- clock system	_	4	20	μА	
	Icca		T _A V _C t _{inst} wh	H = 8 MHz = +25°C c = 5.0 V *2 = 0.5 μs en A/D conversion activated	_	12.5	22.5	mA	

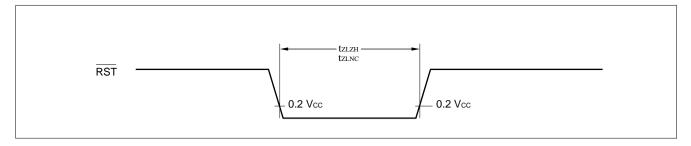
(Continued)

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Dorometer	Cumbal	Pin name	Condition	22 /0.	Value		Unit	= -40°C to +85°C)
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Power supply current*1 (When low-voltage) detection reset	Іссн	Vcc	FcL = 32.678 kHz, Vcc = 3.0 V TA = +25°C, • Subclock stop mode • Main clock stop mode at single clock system	ı	ı	10	μА	
	ILVD		Vcc = 5.0 V T _A = +25°C, • Subclock stop mode • Main clock stop mode at single clock system	_	60	120	μА	Power consumption of low-voltage detection reset
power supply current.	I R	AVR	FcH = 8 MHz, TA = +25°C, when A/D conversion is activated	_	200	_	μА	
	I RH	AVR	FcH = 8 MHz, TA = +25°C, when A/D conversion is stopped	_	_	10	μА	
Input capacitance	Cin	Other than AVss, AVR, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} The power supply current is measured at external clock.

^{*2:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

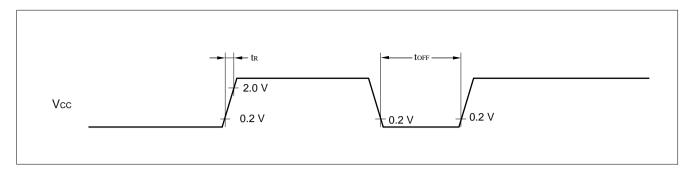

4. AC Characteristics

(1) Reset Timing

 $(AVR = Vcc = +5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol Condition			Value	Unit	Remarks	
raianietei			Min. Typ. Max.		Max.	Ullit	Remarks
RST "L" pulse width	t zlzh	_	48 txcyl	_	_	ns	
RST noise limit width	tzlnc	_	30	50	80	ns	

Note: txcyL is the oscillation period (1/FcH) to input to the X0.

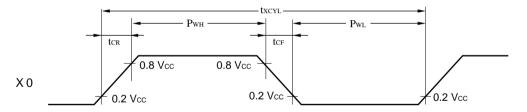

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

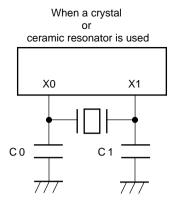
Parameter	Symbol	Condition	Val	lue	Unit	Remarks
raiailletei	Syllibol	Condition	Min.	Max.	Oilit	ivellial k3
Power supply rising time	t R	_	_	50	ms	Power-on reset function only
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations

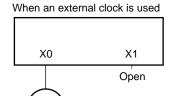
Note: Make sure that power supply rises within the selected oscillation stabilization time.

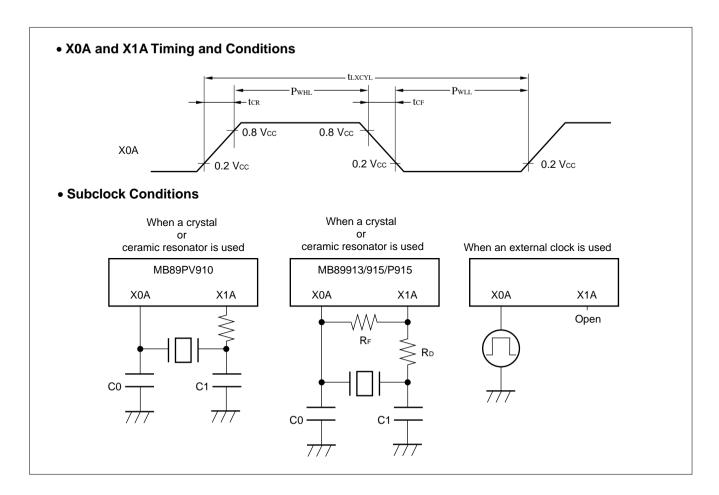
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



(3) Clock Timing

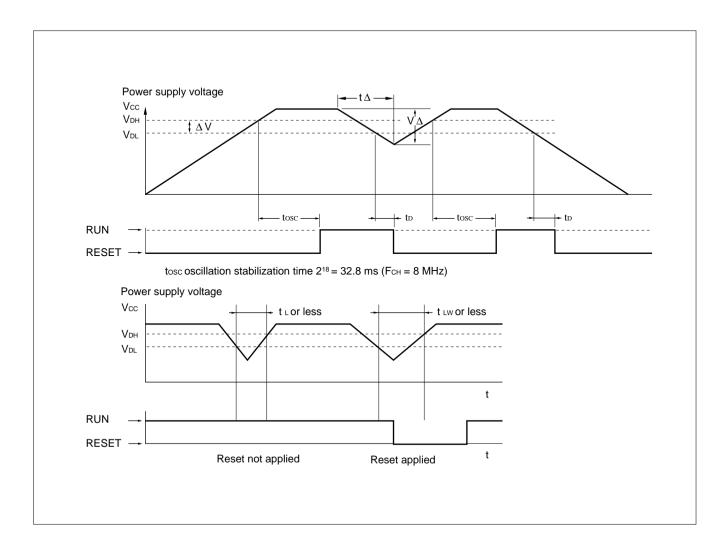

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	i iii iiaiiie	Condition	Min.	Тур.	Max.	Ullit	
Clock frequency	Fсн	X0, X1	_	2		8	MHz	
	FcL	X0A, X1A	_	_	32.768	_	kHz	
Clock cycle time	txcyL	X0, X1	_	125		500	ns	
	tLXCYL	X0A, X1A	_	_	30.5	_	μs	
Input clock pulse width	P _{WH} P _{WL}	X0	_	30	_	_	ns	External clock
Input clock pulse wiath	P _{WHL} P _{WLL}	X0A	_	_	15.2	_	μs	LAGITIAI CIOCK
Input clock rising/falling time	tcr tcr	X0, X0A	_	_	_	10	ns	External clock



• Main Clock Conditions

(4) Instruction Cycle

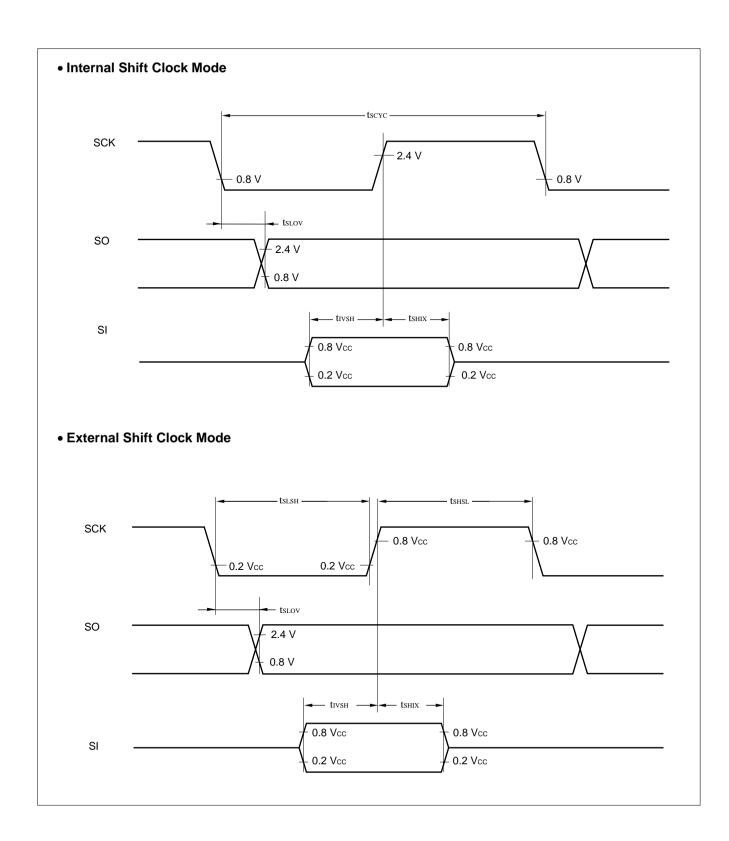

Parameter	Parameter Symbol		Unit	Remarks	
Instruction cycle	tinst	4/Fсн, 8/Fсн, 16/Fсн, 32/Fсн	μs	Operation at FcH = 8 MHz; $(4/FcH)t_{inst} = 0.5 \mu s$	
(minimum execution time)	unst	2/FcL	μs	Operation at F _{CL} = 32.768 kHz; (4/F _{CH})t _{inst} = 61.036 μs	

Note: When operating at 8 MHz, the cycle varies with the execution time.

(5) Low-voltage Detection Reset

 $(AVss = Vss \ 0.0 \ V, T_A = -40^{\circ}C \ to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ıe	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Onit	Remarks
	V _{DL1}	_	3.00	3.60	V	
Detection voltage at power supply voltage fall	V _{DL2}	_	3.30	3.90	V	Vрн and Vрь are set for
	V _{DL3}	_	3.70	4.40	V	the MB89913/915 by mask options and for
	V _{DH1}	_	3.10	3.80	V	the MB89P915 by a
Detection voltage at power supply voltage rise	V _{DH2}	_	3.40	4.10	V	register.
cappy consignated	V _{DH3}	_	3.80	4.60	V	
Hysteresis width	ΔV	_	0.10	_	V	
Reset insensitive time	t∟	_	0.3	_	μs	
Reset sensitive width	t LW	_	16 txcyL	_	ns	
Reset detection delay time	t□	_	_	2.0	μs	
Voltage regulation (VΔ/tΔ)	VCR	_	_	0.10	V/μs	

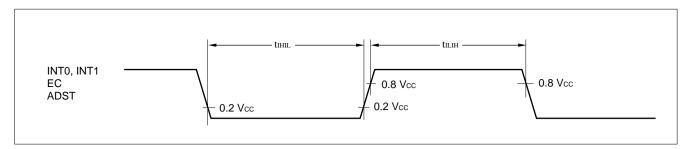


(6) Serial I/O Timing

 $(AVR = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.	Offic	Remarks
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO		-200	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK		1/2 tinst*	_	μs	
$SCK \uparrow \to valid \; SI \; hold \; time$	tshix	SCK, SI		1/2 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK	External shift clock mode	1 tinst*	_	μs	
Serial clock "L" pulse width	tslsh	SCK		1 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO		0	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK		1/2 tinst*	_	μs	
$SCK \uparrow \to valid \; SI \; hold \; time$	tshix	SCK, SI		1/2 tinst*	_	μs	

 $[\]mbox{\scriptsize *}$: For information on $t_{\mbox{\scriptsize inst}},$ see "(4) Instruction Cycle."

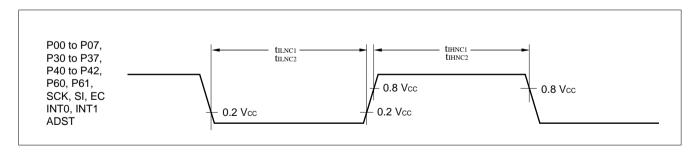


(7) Peripheral Input Timing

 $(AVR = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Pin name Condition			Val	ue	Unit	Remarks
Farameter	Syllibol	Finitianie	Condition	Min.	Max.	Oilit	iveillai ks
Peripheral input "H" level pulse width	tılıн	EC, ADST INT0, INT1		2 tinst*	_	μs	
Peripheral input "L" level pulse width	tıнıL	EC, ADST INT0, INT1	_	2 tinst*	_	μs	

*: For information on tinst, see "(4) Instruction Cycle."



(8) Peripheral input noise limit width

 $(AVR = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

	·	(AVI = VCC = +	3.0 V±10		V 55 = 0.0	, , , , , , , , , , , , , , , , , , ,	-40°C 10 +65°C
Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Symbol	Fili liallie	Min.	Тур.	Max.	Oilit	Nemarks
Peripheral input "H" level	tihnc1	All inputs excluding	7	15	30	ns	MB89PV910 MB89P915
noise limit width 1	LIHNC1	INT1 and INT0	15	30	60	ns	MB89913/ 915
Peripheral input "L" level	tilnc1	All inputs excluding	7	7 15 30		ns	MB89PV910 MB89P915
noise limit width 1	tiling i	INT1 and INT0	15	30	60	ns	MB89913/ 915
Peripheral input "H" level	tihnc2	INT1, INT0	30	50	50 100 ns	ns	MB89PV910 MB89P915
noise limit width 2	LIHNC2	INTT, INTO	50	100	250	ns	MB89913/ 915
Peripheral input "L" level	tilnc2	INT1, INT0	30	50	100	ns	MB89PV910 MB89P915
noise limit width 2	LILNG2	11411, 11410	50	100	250	ns	MB89913/ 915

Note: The minimum rating is always cancelled, while values equal to or greater than maximum ratings are not cancelled.

5. A/D Converter Electrical Characteristics

 $(V_{CC} = +3.8 \text{ V to } +5.5 \text{ V}, F = 8 \text{ MHz}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value	•	Unit	Remarks
Parameter	Зунион	Pili liaille	Condition	Min.	Тур.	Max.	Ullit	Remarks
Resolution				_	_	8	bit	
Total error				_	_	±3.0	LSB	
Linearity error	_	_		_	_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот	AN0 to AN7		AVss – 1.5 LSB	AVss +0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	V _{FST}	AN0 to AN7	_	AVR-3.5 LSB	AVR-1.5 LSB	AVR+0.5 LSB	mV	
Interchannel disparity				_	_	1.0	LSB	
A/D mode conversion time	_	_		_	44 t _{inst} *	_	μs	
Sense mode conversion time				_	12 tinst*	_	μs	
Analog port input current	Iain	AN0 to AN7	AVR = Vcc = 5.0 V	_	_	10	μΑ	
Analog input voltage		AN0 to AN7		0.0	_	AVR	V	
Reference voltage	_	AVR	_	3.4	_	AVcc	V	
Reference voltage supply current	lR	AVR	AVR = 5.0 V	_	200	_	μА	

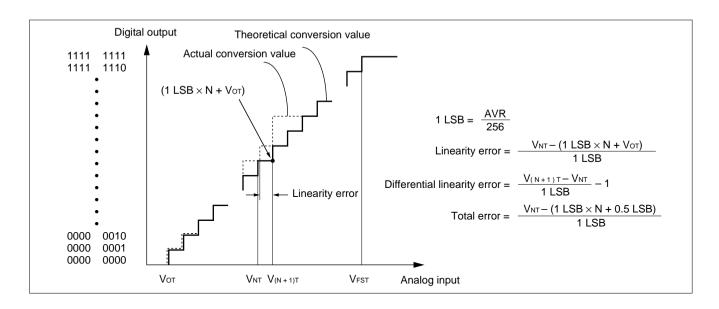
^{*:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

6. A/D Converter Glossary

Resolution

Analog changes that are identifiable with the A/D converter When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.

• Linearity error (unit: LSB)

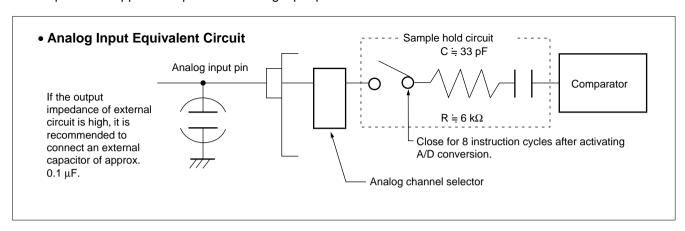

The deviation of the straight line drawn connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics

• Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

• Total error (unit: LSB)

The difference between theoretical and actual conversion values

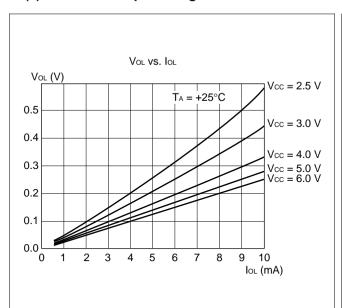

7. Notes on Using A/D Converter

· Input impedance of the analog input pins

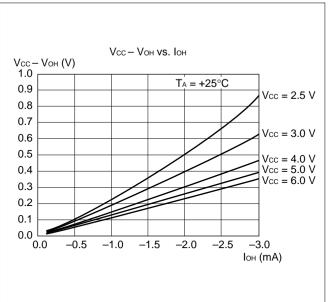
The A/D converter used for the MB89910 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series to $2 \text{ k}\Omega$ or less.

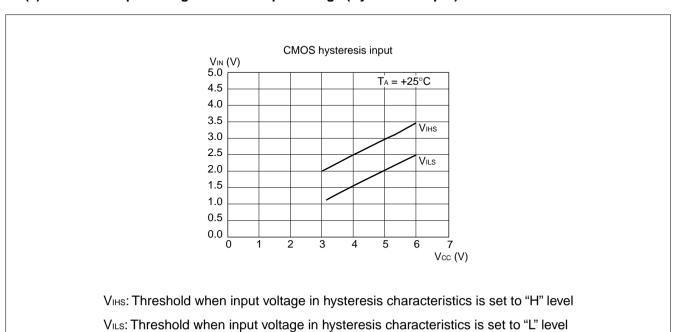
Note that if the impedance cannot be kept low output impedance, it is recommended either to use the software to continuously activate the A/D converter for simulating longer sampling time or to connect an external capacitor of approx. $0.1~\mu F$ to the analog input pin.



• Error


The smaller the | AVR – AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage

(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(4) Power Supply Current (External Clock)

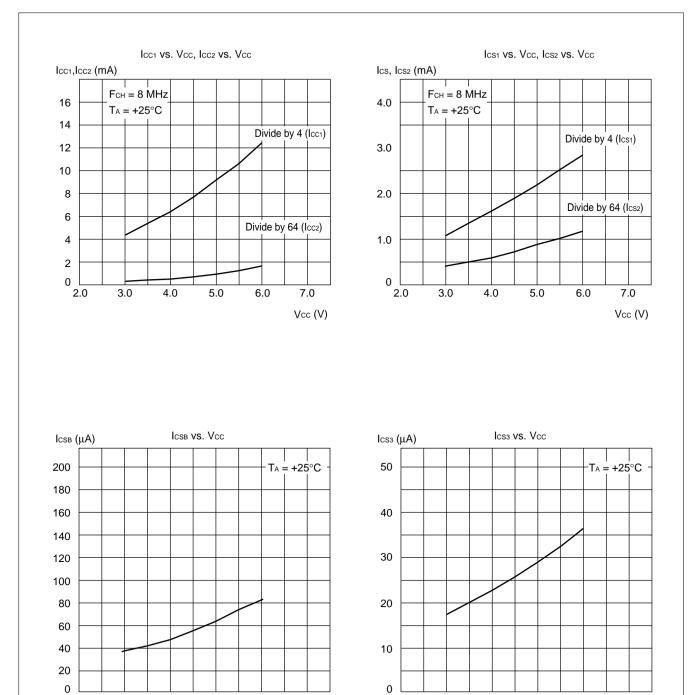
2.0

3.0

4.0

5.0

6.0


7.0

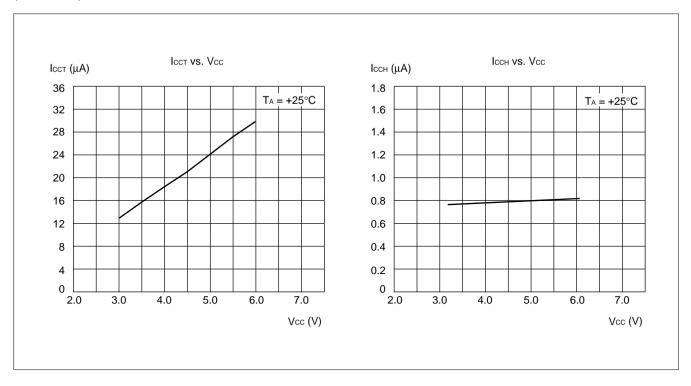
Vcc (V)

2.0

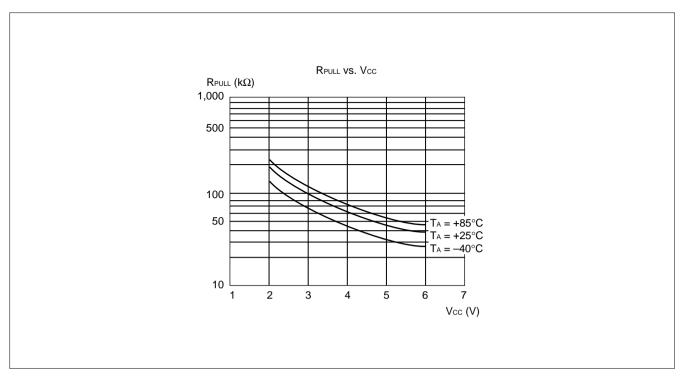
3.0

4.0

(Continued)


7.0

Vcc (V)


6.0

5.0

(Continued)

(5) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F ← This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

MOV @IX +off,A 3 2 (dir) ← (A)	Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV ext.A 4 3 (ext) ← (A) 61	MOV dir,A	3		$(dir) \leftarrow (A)$	_	_	_		45
MOV @EPA		4		$((IX) + off) \leftarrow (A)$	_	_	_		
MOV R, iA 3	MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	-		61
MOV A, dir	MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		
MOV A, Gir 3 2 (A) ← (dir) AL	MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	-		48 to 4F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2		(A) ← d8	AL	_	-	++	04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV A,dir	3		$(A) \leftarrow (dir)$	AL	_	-	++	05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	–	++	06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV A,@A	3	1		AL	_	_	++	92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1		AL	_	_	++	07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		AL	_	_	++	08 to 0F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			_	_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			_	_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2		_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INOVV GIX TOIL,A	"	_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV/M ext A	5	2		_	_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		1			_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							AL		
$\begin{array}{ c c c c c c c c }\hline \text{MOVW A,@IX +off} & 5 & 2 & (AH) \leftarrow ((IX) + off), \\ \hline \text{MOVW A,ext} & 5 & 3 & (AH) \leftarrow (ext), (AL) \leftarrow (ext + 1) & AL & AH & dH & + + - & C4 \\ \hline \text{MOVW A,@A} & 4 & 1 & (AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1) & AL & AH & dH & + + - & G7 \\ \hline \text{MOVW A,@EP} & 4 & 1 & (AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1) & AL & AH & dH & + + - & G7 \\ \hline \text{MOVW A,EP} & 2 & 1 & (A) \leftarrow (EP) & - & - & dH & & F3 \\ \hline \text{MOVW EP,#d16} & 3 & 3 & (EP) \leftarrow d16 & - & - & - & - & - & - & E7 \\ \hline \text{MOVW IX,A} & 2 & 1 & (IX) \leftarrow (A) & - & - & - & - & - & E7 \\ \hline \text{MOVW SP,A} & 2 & 1 & (SP) \leftarrow (A) & - & - & - & - & - & E1 \\ \hline \text{MOVW A,SP} & 2 & 1 & (A) \leftarrow (SP) & - & - & dH & & E1 \\ \hline \text{MOVW QA,T} & 3 & 1 & ((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL) & - & - & - & - & - & E6 \\ \hline \text{MOVW IX,#d16} & 3 & 3 & (SP) \leftarrow d16 & - & - & - & - & - & - & E6 \\ \hline \text{MOVW A,PS} & 2 & 1 & (A) \leftarrow (SP) & - & - & dH & & B2 \\ \hline \text{MOVW BP,A} & 2 & 1 & (A) \leftarrow (SP) & - & - & dH & & B2 \\ \hline \text{MOVW BA,T} & 3 & 1 & ((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL) & - & - & - & - & - & - & E6 \\ \hline \text{MOVW A,PS} & 2 & 1 & (A) \leftarrow (PS) & - & - & dH & & B6 \\ \hline \text{MOVW A,PS} & 2 & 1 & (A) \leftarrow (PS) & - & - & dH & & B6 \\ \hline \text{MOVW SP,Ad16} & 3 & 3 & (SP) \leftarrow d16 & - & - & - & - & + + + + & 71 \\ \hline \text{MOVW SP,#d16} & 3 & 3 & (SP) \leftarrow d16 & - & - & - & - & - & - & - & - \\ \hline \text{SWAP} & 2 & 1 & (AH) \leftrightarrow (AL) & - & - & AL & - & - & - & - & - \\ \hline \text{SETB dir: b} & 4 & 2 & (dir) : b \leftarrow 1 & - & - & - & - & - & - & A8 \text{ to AF} \\ \hline \text{CLRB dir: b} & 4 & 2 & (dir) : b \leftarrow 0 & - & - & - & - & - & - & - & - & A0 \text{ to A7} \\ \hline \text{XCHW A,T} & 3 & 1 & (A) \leftrightarrow (TL) & AL & AH & dH & & F7 \\ \hline \text{XCHW A,IX} & 3 & 1 & (A) \leftrightarrow (TL) & - & - & - & - & - & - & - & - & - & $		1						++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	INOVW A, WIX +OII	ာ	2		AL	АП	uп	++	C6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOVANA SIST	_	_		Λ.Ι	A 1 1	اللم		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1				1	++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	1					++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	` '	_	_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					_				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			I		_				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·		1		_	_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	1		_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1				_	_	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2			_	_	dH		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	-	++++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1		_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			_	_	AL		
		4			_	_	-		I I
			2	(dir): b ← 0	_	_	-		A0 to A7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			I	$(AL) \leftrightarrow (TL)$		_	-		
$ XCHW A, IX $ $ 3 1 (A) \leftrightarrow (IX)'$ $ - - dH F6$				$(A) \leftrightarrow (T)$	AL	AH			
$ XCHW A,IX $ $ 3 1 (A) \leftrightarrow (IX) $ $ - - dH F6$			1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
	XCHW A,IX		1		_	_	dH		F6
$ XCHW A,SP $ $ 3 1 (A) \leftrightarrow (SP) $ $ - - dH F5$	XCHW A,SP	3	1		_	_	dH		F5
MOVW A,PC $\begin{vmatrix} 2 & 1 & (A) \leftarrow (PC) \end{vmatrix}$ $\begin{vmatrix} - & - & dH & \end{vmatrix}$ F0	MOVW A,PC	2	1	(A) ← (PC)	_	_	dH		F0

Notes: \bullet During byte transfer to A, $T \leftarrow A$ is restricted to low bytes.

• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$			_	++++	28 to 2F
ADDC A,RI ADDC A,#d8	2	2	$(A) \leftarrow (A) + (R) + C$ $(A) \leftarrow (A) + d8 + C$	_		_	++++	20 10 25
ADDC A,#do	3	2	$(A) \leftarrow (A) + (B) + (C)$ $(A) \leftarrow (A) + (C) + (C)$			_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + (A) $	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	_	++++	27
ADDCW A	3	i	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	i	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	i	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	i	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	(AL) ← (TL) – (AL) – C	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dΗ		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \wedge (T)$	_	_	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	_	_	dH	++R-	53
CMP A	2	1	(TĹ) – (ÁL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	\rightarrow C \rightarrow A \rightarrow	_	_	_	++-+	03
ROLC A	2	1		_	_	_	++-+	02
OMP A WIO			(A) – d8					4.4
CMP A,#d8	2	2	(A) – do (A) – (dir)	_	_	_	++++	14
CMP A,dir	3	2		_	_	-	++++	15
CMP A,@EP	3	1	(A) - ((EP))	_	_	-	++++	17
CMP A,@IX +off	4	2	(A) – ((IX) +off) (A) – (Ri)	_	_	-	++++	16
CMP A,Ri	3	1	Decimal adjust for addition	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for subtraction	_	_	-	++++	84
DAS	2	1	$(A) \leftarrow (AL) \forall (TL)$	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \lor (TL)$ $(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	52
XOR A,#d8	2	2		_	_	-	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$ $(A) \leftarrow (AL) \ \forall \ (\ (EP) \)$	-	-	-	++R-	55
XOR A,@EP	3	1		-	-	-	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \forall ((IX) + off)$	_	_	-	++R-	56
XOR A,Ri	3	1	(A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL)	-	-	-	++R-	58 to 5F
AND A #40	2	1	$(A) \leftarrow (AL) \land (TL)$ $(A) \leftarrow (AL) \land d8$	-	-	-	++R-	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$ $(A) \leftarrow (AL) \land (dir)$	-	-	-	++R-	64
AND A,dir	3	2	(A) ← (AL) ∧ (uii)	_	_	_	+ + R –	65

To Top / Lineup / Index MB89910 Series

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	++R-	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	++R-	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	++R-	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R-	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	++R-	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((ÉP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If $(dir: b) = 1$ then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A),(A) \leftarrow (PC) + 1$	_	_	dH		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

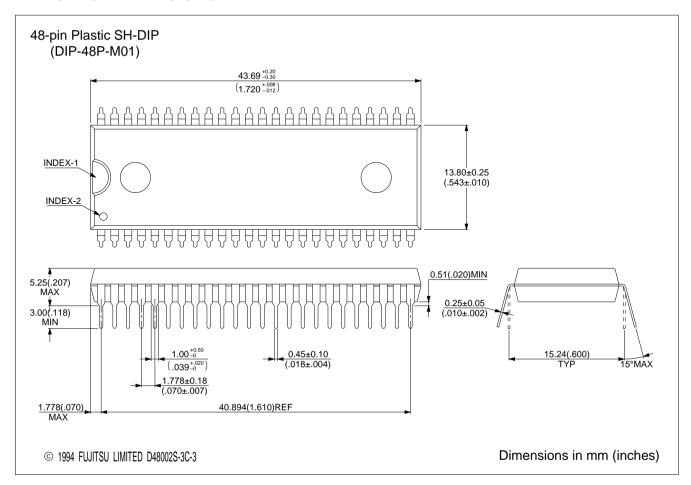
Table 5 Other Instructions (9 instructions)

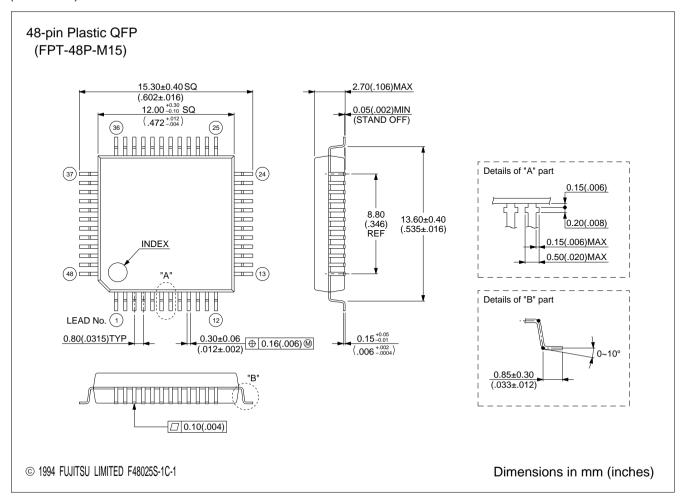
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dH		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

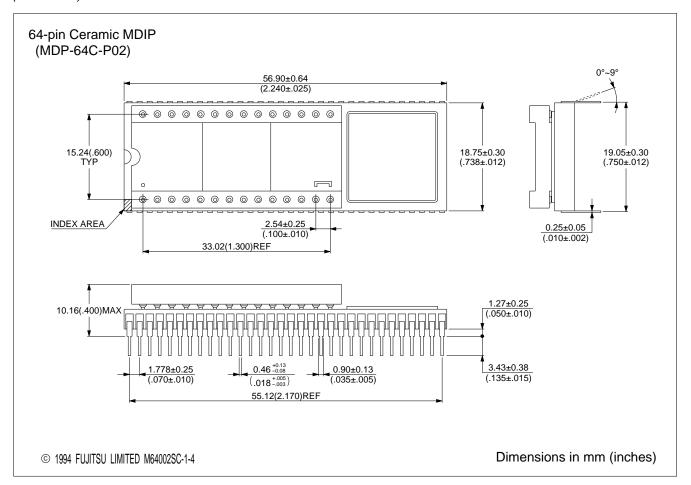
ш	/W A,PC	W A,SP	W A,IX	W A,EP	IW A,PC	IW A,SP	W A,IX	W A,EP	<u>a</u>	lel	re	re	re	re	<u>a</u>	<u>e</u>
	MOV	MOV	MOVW A,	MOVW A,E	XCH	XCH	XCHW	XCH	BNC	BC	8	BN	BNZ	BZ	BGE	BLT
Ш	JMP @A	MOWW SP,A	MOWW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOWW @IX +d,A	MOWW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
C	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir:0,rel	BBC dir:1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir:6,rel	BBC dir:7,rel	BBS dir:0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
Α	CLRB dir:0	CLRB dir:1	CLRB dir: 2	CLRB dir:3	CLRB dir: 4	CLRB dir:5	CLRB dir:6	CLRB dir: 7	SETB dir:0	SETB dir:1	SETB dir: 2	SETB dir:3	SETB dir: 4	SETB dir:5	SETB dir: 6	SETB dlr: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX +d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR	XORW	XOR A,#d8	XOR A,dir	XOR @A,IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
ဗ	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC 9,R7
1	SWAP	DIVU	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MOP	MULU	ROLC A	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	-	2	က	4	5	9	7	8	6	∢	В	ပ	D	ш	ш

To Top / Lineup / Index MB89910 Series

■ INSTRUCTION MAP


■ MASK OPTIONS


	Part number	MB89	PV910	MB89913	MB89	P915	
No.	Part number	-101	-102	MB89915	-101	-102	
	Specifying procedure	Setting not possible	Setting not possible	Specify when ordering masking	Setting not possible	Setting not possible	
1	Selection either single or dual clock Single-clock mode Dual-clock mode	Single clock	Dual clock	Selectable	Single clock	Dual clock	
2	Pull-down resistors P17 to P10 P27 to P20 P51, P50	All pins fixed pull-down res		Can be selected per pin.	All pins fixed pull-down res		
3	Voltage to be detected for low-voltage detection reset $3.3 \pm 0.3 \text{ V}$ $3.6 \pm 0.3 \text{ V}$ $4.0 \pm 0.3 \text{ V}$	Cannot be us	sed.	Selectable	Can be set b	y register.	


■ ORDERING INFORMATION

Part number	Package	Remarks
MB89913P-SH MB89915P-SH MB89P915P-101-SH MB89P915P-102-SH	48-pin Plastic SH-DIP (DIP-48P-M01)	
MB89913PF MB89915PF MB89P915PF-101 MB89P915PF-102	48-pin Plastic QFP (FPT-48P-M15)	
MB89PV910C-101-ES-SH MB89PV910C-102-ES-SH	64-pin Ceramic MDIP (MDP-64C-P02)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281 0770 Fax: (65) 281 0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703