

Parallel EEPROMs Compiler

Preliminary

United To Excel

Features

- Flexible Architecture
 - 16-16K words
 - Max 64K bits
 - Support Data Bus width 4-128 bits in 4 bit increments
- Fast Read Access Time - 100ns
- Fast Self-Timed Byte Write Cycle
 - 1ms
 - Internal Address and Data Latches
 - Internal Control Timer
 - Automatic Clear Before Write
- Fast Self-Timed Write All
 - Automatic Clear Before Write
- Direct Microprocessor Control
 READY/BUSY
- General Description

The EEPROM Compiler will generate low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The device is manufactured with ICT's reliable nonvolatile CMOS technology.

Figure 1 Pin Configurations

Pin Name	Function
A0 - A13*	Addresses
CE	Chip Enable
ŌE	Output Enable
WE	Write Enable
I/O0 - I/O31*	Data Inputs/Outputs
RDY/BUSY	Ready/Busy Output
ALLEN	Write All Enable
RESET	RESET Input

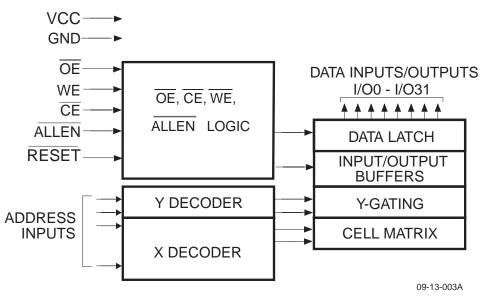
* number of addresses and I/O's are determined by user specified architecture

- 3.3V ± 10% Supply
 - Low Power - 5 mA Active Current - 10 µA CMOS Standby Current
- High Reliability
 - Endurance: 10⁵ Cycles - Data Retention: 10 Years
 - Direct Microprocessor Control
 Asynchronous clear
 - Independent output enables
- Commercial and Industrial Temperature Ranges
- Advanced Double Poly Triple Metal Embedded EEPROM Process

The EEPROM Compiler is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes a method for detecting the end of a write cycle, level detection of RDY/BUSY. Once the end of a write cycle has been detected, a new access for a read or a write can begin.

The CMOS technology offers fast access times of 100 ns at low power dissipation. When the chip is deselected the standby current is less than 10 $\mu A.$

Integrated Circuit Technology Corp. 2123 Ringwood Avenue San Jose, CA 95131 ◆ Tel:(408) 434-0678 ◆ Fax:(408) 434-0688 ◆ http://www.ictpld.com


United Microelectronics Corporation

No. 10, Innovation Rd. I, Science-Based Industrial Park, Hsin-Chu City, Taiwan, R.O.C. 🔶 Tel: 886-3578-2258 🔶 Fax: 886-3578-0472 🔶 http://www.umc.com.tw

BLOCK DIAGRAM

Device Operation

READ: The EEPROM is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the <u>outputs</u>. The outputs are put in a high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the EEPROM is similar to writing into a Static RAM. A low pulse on the WE or CE input with ALLEN and OE high and CE or WE low (respectively) initiates a byte write. The address location is latched on the last falling edge of WE (or CE); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

READY/BUSY: READY/BUSY output can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write.

WRITE PROTECTION: Inadvertent writes to the device are protected against by holding any one of \overrightarrow{CE} high, \overrightarrow{RESET} low or \overrightarrow{WE} high inhibits byte write cycles.

See the operating modes table for NORMAL, ERASE ALL, WRITE ALL operation.

Write ALL: Writing data into the EEPROM is similar to writing into a Static RAM. A low pulse on the WE or CE input with ALLEN low and OE high and CE or WE low (respectively) initiates a WRITE ALL. Internally, the device performs a selfclear before write. Once a WRITE ALL has been started, it will automatically time itself to completion.

DC and AC Operating Range

EEPROM				
Operating	Commercial	0°C - 70°C		
Temperature (Case)	Industrial	-40°C - 85°C		
Supply Voltage		3.3V ± 10%		

Operating Modes

MODE	CE	ŌĒ	WE	I/O	ALLEN	RESET
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	Х	V _{IH}
Write ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	D _{IN}	V _{IH}	V _{IH}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	High Z	Х	V _{IH}
Write Inhibit	Х	Х	V _{IH}		Х	Х
Write Inhibit	Х	Х	Х		Х	V _{IL}
Output Disable	Х	V _{IH}	Х	High Z	Х	V _{IH}
WRAL	V _{IL}	V _{IH}	V _{IL}	High Z	V _{IL}	V _{IH}

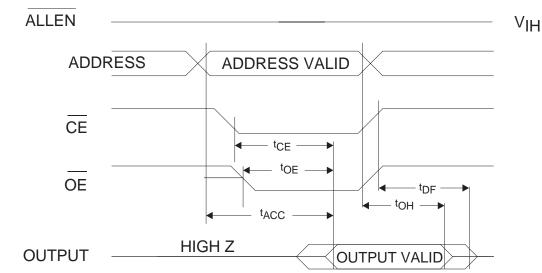
Notes:

1. X can be V_{IL} or $V_{\text{IH.}}$

2. Refer to AC Programming Waveforms.

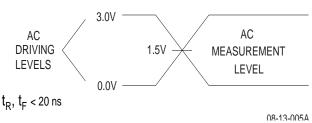
DC Characteristics

Symbol	Parameter	Condition		Min	Мах	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}}$ = V _{CC} - 0.3V to V _{CC} + 1.0V			10	μΑ
		_	Com.		2	mA
I _{SB2}	V _{CC} Standby Current TTL	$CE = 2.0V$ to $V_{CC} + 1.0V$	Ind.		3	mA
I _{CC}	V _{CC} Active Current AC	$\frac{f = 5 \text{ MH}_{Z}; \text{ I}_{OUT} = 0 \text{ mA}}{CE} = \text{V}_{IL}$	Com.		5	mA
			Ind.		5	mA
V _{IL}	Input Low Voltage				0.6	V
V _{IH}	Input High Voltage			2.0		V
V _{OL}	Output Low Voltage	I _{OL} =600μA			0.4	V
V _{OH}	Output High Voltage	I _{OH} = -600μA		2.0		V



AC Read Characteristics

		EEP	EEPROM	
Symbol	Parameter	Min	Max	Units
T _{ACC}	Address to Output Delay		100	ns
T _{CE} ⁽¹⁾	CE to Output Delay		100	ns
T _{OE} ⁽²⁾	OE to Output Delay	10	70	ns
T _{DF} ⁽³⁾⁽⁴⁾	CE or OE High to Output Float	0	50	ns
Т _{ОН}	Output Hold from OE, CE or Address, whichever occurred first	0		ns

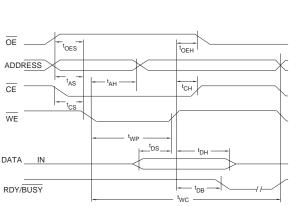

AC Read Waveforms (1)(2)(3)(4)

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - 2. \overline{OE} may be delayed up to $t_{CE} t_{OE}$ after the falling edge of \overline{CE} without impact on t_{CE} or by $t_{ACC} t_{OE}$ after an address change without impact on t_{ACC} .
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

09-13-004A

Input Test Waveforms and Measurement Level

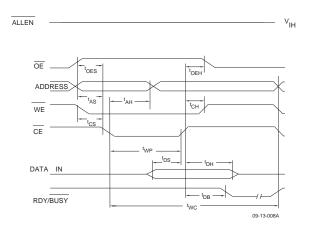
4


AC Write Characteristics

Symbol	Parameter	Min	Туре	Max	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	10			ns
t _{AH}	Address Hold Time	50			ns
t _{WP}	Write Pulse Width (WE or CE)	100		1000	ns
t _{DS}	Data Set-up Time	50			ns
t _{DH} , T _{OEH}	Data, OE Hold Time	10			ns
t _{CS} , t _{CH}	\overline{CE} to \overline{WE} and \overline{WE} to \overline{CE} Set-up and Hold Time	0			ns
t _{DB}	Time to Device Busy			50	ns
t _{WC}	Write Cycle Time		0.5	1.0	ms
T _{WCALL}	Write All Cycle Time		5	10	ms

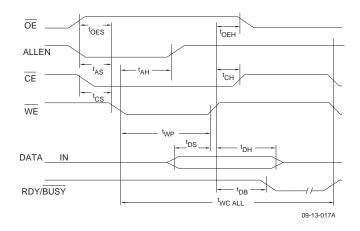
AC Write Waveforms

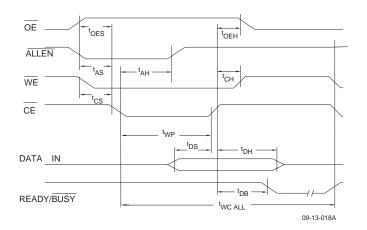
WE Controlled


ALLEN

- V_{IH}

$\overline{\text{CE}}$ Controlled





Write All Waveforms

WE Controlled

CE Controlled

Integrated Circuit Technology Corp.

2123 Ringwood Avenue San Jose, CA 95131

Tel:(408) 434-0678 Fax:(408) 434-0688 http://www.ictpld.com

United Microelectronics Corporation UMC Group

No. 10, Innovation Rd. I, Science-Based Industrial Park, Hsin-Chu City, Taiwan, R.O.C.

Tel: 886-3578-2258 Fax: 886-3578-0472 http://www.umc.com.tw

