

CMM5104

Radiation Hardened, High Reliability, CMOS/SOS 4096 Word by 1-Bit LSI Static RAM

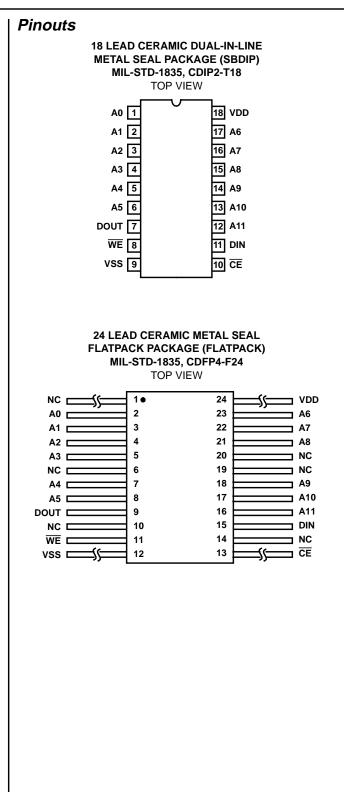
November 1995

Features

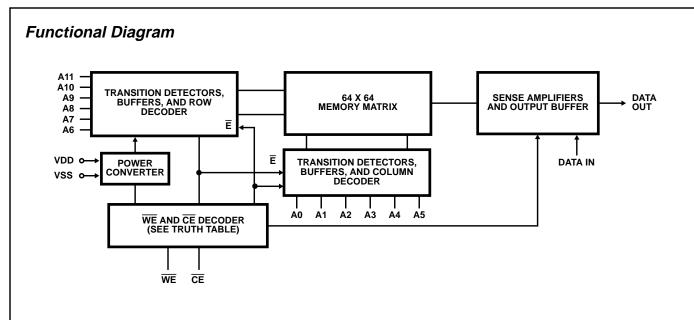
- Radiation Hardened to 10K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Fully Static Operation
- Single Power Supply 4.5V to 6.5V
- All Inputs and Outputs TTL Compatible
- Three-State Outputs
- Industry Standard 18 Pin Configuration
- Fast Access Time tAVQV = 200ns
- Low Standby and Operating Power

Description

The CMM5104 is a high reliability 4096 word by 1-bit static random access memory using CMOS/SOS technology. It is designed for use in memory systems where low power and simplicity in use are desirable.


CMOS/SOS technology permits operation in radiation environments. It is insensitive to neutrons, cannot latch up at any dose rate and is resistant to single event upset caused by cosmic rays or heavy ions.

TTL compatibility on all input and output terminals permits easy system integration. The data out signal has the same polarity as the input data. A separate data input and a separate Three-state output are used.


The CMM5104 is supplied in 18 lead dual-in-line sidebrazed ceramic package (D suffix). The part is also available in a 24 lead flatpack ceramic package (K suffix).

Ordering Information

PART NUMBER	TEMP RANGE	PACKAGE
CMM5104K3	-55°C to +125°C	Class B, 24 Lead Ceramic Flatpack (Not Rad Verified)
CMM5104D3	-55°C to +125°C	Class B, 18 Lead SBDIP (Not Rad Verified)
CMM5104K1DZ	-55°C to +125°C	Class S, 24 Lead Ceramic Flatpack (Rad Verified)
CMM5104D1DZ	-55°C to +125°C	Class S, 18 Lead SBDIP (Rad Verified)
CMM5104D/Sample	25°C	18 Lead SBDIP
CMM5104K/Proto	-55°C to +125°C	24 Lead Ceramic Flatpack

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

		INUINIABLE	
CE	WE	MODE	OUTPUT
Н	Х	Not Selected	High Z
L	L	Write	High Z
L	Н	Read	Data Out

TRUTH TABLE

Absolute Maximum Ratings

Supply Voltage (VDD),

All voltage values referenced to VSS terminal0.5V to +7.0V
Input Voltage Range, All Inputs0.5 to VDD +0.5V
Input Current, Any One Input±10mA
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering 10s)+265°C
Typical Derating Factor
ESD Classification Class 1

Reliability Information

	Thermal Resistance	θ_{JA}	$\theta_{\rm JC}$	
V	SBDIP Package	78°C/W	18°C/W	
5V	Ceramic Flatpack Package	80°C/W	20 ^o C/W	
۱A	Maximum Package Power Dissipation at +125	5°C Ambien	t	
°C	SBDIP Package		0.64W	
°C	Ceramic Flatpack Package		0.63W	
P	If device power exceeds package dissipation of	capability, pr	ovide heat	
1	sinking or derate linearly at the following rate:			
	SBDIP Package	1	2.8mW/ ^o C	
	Ceramic Flatpack Package	1	2.5mW/ºC	
	Gate Count	5	400 Gates	
v cai	use permanent damage to the device. This is a stress	only rating a	nd operation	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	+4.5V to +6.5V
Operating Temperature Range	-55°C to +125°C
Input Low Voltage	0V to +0.8V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			LIMITS				
		(NOTE 1)	-55°C,	+25°C	+12	5°C	1
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	
Quiescent Device Current	IDD	VIN = 0V or VDD, VDD = 5.25V	-	0.1	-	1.0	mA
Operating Device Current (Note 2)	IOPER	Cycle Time = 1 μ s, VDD = 5.25V	-	4.5	-	4.5	mA
Operating Device Current (Deselected)	IOPRD	Cycle Time = 1 μ s, VDD = 5.25V	-	0.1	-	1.0	mA
Output Low Drive (Sink) Current	IOL	VOUT = 0.4V, VDD = 4.75V	4.0	-	2.5	-	mA
Output High Drive (Source) Current	IOH	VOUT = VDD - 0.4V, VDD = 4.75V	-3	-	-2	-	mA
Input Low Voltage (Note 3)	VIL	VDD = 4.75V	-	0.8	-	0.8	V
Input High Voltage (Note 3)	VIH	VDD = 4.75V	VDD/2	-	VDD/2	-	V
Input Leakage Current	IIN	VIN = 0V or VDD, VDD = 5.25V	-	±2	-	±10	μΑ
Three-State Output Leakage Current	IOZ	Applied Voltage = 0V or VDD, VDD = 5.25V	-	±5	-	±30	μA
Minimum Data Retention Voltage	VDR		-	2	-	2.5	V
Data Retention Quiescent Current	IDDDR	VDD = VDR	-	40	-	400	μΑ

NOTES:

1. VDD = 5V \pm 5%, VIN = 0V or VDD, Unless Otherwise Specified.

2. Operating current measured using 1MHz cycle and CL = 50pF.

3. Measured using 1MHz cycle.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)

		LIMITS				
		-55°C,	+25°C	+12	5°C	1
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS
READ CYCLE TIMES						
Read Cycle	tAVAV	200	-	250	-	ns
Access from Address	tAVQV	-	200	-	250	ns
Access from CE	tELQV	-	220	-	280	ns
WRITE CYCLE TIMES		-		-		_
Write Cycle	tAVAV	200	-	250	-	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)	(Continued)
	(

		LIMITS					
		-55°C	, +25°C	+12	5°C		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX		
Write Pulse Width (Note 2)	tWLWH	125	-	145	-	ns	
Address Set Up to Beginning of Write	tAVWL	0	-	0	-	ns	
Address Set Up to End of Write	tAVWH	160	-	205	-	ns	
Address Hold Time	tWHAV	40	-	45	-	ns	
CE to Write Set Up Time	tELWH	160	-	205	-	ns	
CE Pulse Width (Note 1)	tELEH	180	-	220	-	ns	
Data to Write Set Up Time	tDVWH	100	-	120	-	ns	
Data Hold From Write	tWHDX	5	-	10	-	ns	

NOTES:

1. VDD = 4.75V.

2. CE and WE must overlap at least tWLWH minimum value, tDVWH minimum value must occur during this overlap.

		LIMITS						
		-55°C,			-55°C, +25°C +125°		5°C	1
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS		
Output Voltage Low Level	VOL	-	0.1	-	0.1	V		
Output Voltage High Level	VOH	VDD - 0.1	-	VDD - 0.1	-	V		
Input Capacitance (Note 2)	CIN	-	5	-	5	pF		
Output Capacitance (Note 2)	COUT	-	7	-	7	pF		
Output Hold From Address	tAVQZ	-	80	-	100	ns		
Output Hold From CE	tEHQZ	-	80	-	100	ns		

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (NOTE 1)

NOTE:

1. Parameters in this table are not directly 100% tested, but are characterized at initial design and after design or processing changes affecting these parameters.

2. Capacitance measurements are made with no bias applied.

TABLE 4. POST 10K RAD ELECTRICAL PERFORMANCE CHARACTERISTICS

			POST RA	IITS ADIATION 5°C	-
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Quiescent Device Current	IDD	VIN = 0V or VDD, VDD = 5.25V	-	1.0	mA
Operating Device Current (Note 1)	IOPER	Cycle Time = 1 μ s, VDD = 5.25V	-	4.5	mA
Operating Device Current (Deselected)	IOPRD	Cycle Time = 1 μ s, VDD = 5.25V	-	1.0	mA
Output Low Drive Current (Sink)	IOL	VOUT = 0.4V, VDD = 4.75V	2.5	-	mA
Output High Drive Current (Source)	IOH	VOUT = VDD - 0.4V, VDD = 4.75V	2.0	-	mA
Input Low Voltage (Note 2)	VIL	VDD = 4.75V	-	0.8	V
Input High Voltage (Note 2)	VIH	VDD = 4.75V	VDD/2	-	V
Input Leakage Current	IIN	VIN = 0V or VDD, VDD = 5.25V	-	±10	μΑ
Three-State Output Leakage Current	IOZ	Applied Voltages = 0V or VDD, VDD = 5.25V	-	±30	μΑ
Minimum Data Retention Voltage	VDR		-	2.5	V
Data Retention Quiescent Current	IDDDR	VDD = VDR	-	400	μA

TABLE 4. POST 10K RAD ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

			LIN	LIMITS		
			POST RADIATION +25°C		1	
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX		
Read Cycle	tAVAV	VDD = 4.75V	250	-	ns	
Access from Address	tAVQV	VDD = 4.75V	-	250	ns	
Access from CE	tELQV	VDD = 4.75V	-	280	ns	
Write Cycle	tAVAV	VDD = 4.75V	250	-	ns	
Write Pulse Width (Note 3)	tWLWH	VDD = 4.75V	145	-	ns	
Address Set Up to Beginning of Write	tAVWL	VDD = 4.75V	0	-	ns	
Address Set Up to End of Write	tAVWH	VDD = 4.75V	205	-	ns	
Address Hold Time	tWHAV	VDD = 4.75V	45	-	ns	
CE to Write Set Up Time	tELWH	VDD = 4.75V	205	-	ns	
CE Pulse Width (Note 3)	tELEH	VDD = 4.75V	220		ns	
Data to Write Set Up Time	tDVWH	VDD = 4.75V	120	-	ns	
Data Hold From Write	tWHDX	VDD = 4.75V	10	-	ns	

NOTES:

1. CE and WE must overlap for at least tWLWH minimum value, tDVWH minimum value must occur during this overlap.

2. Measured using 1MHz cycle.

3. Operating current measured using 1MHz cycle and CL = 50 pF.

TABLE 5. BURN-IN DELTA PARAMETERS (+25°C)

PARAMETER	SYMBOL	DELTA LIMITS
Quiescent Device Current	IDD	+30μΑ
Output Low Drive Current (Sink)	IOL	-15% of 0 hr. value
Output High Drive Current (Source)	IOH	-15% of 0 hr. value
Three-State Output Leakage Current	IOZ	+500nA

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	-IRZ SUBGROUPS	3 SUBGROUPS
Initial Test		100%/5004	1, 7, 9	1, 7, 9
Interim Test		100%/5004	1, 7, 9	N/A
PDA		100%/5004	1, 7, Δ	1, 7
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	2, 3, 8A, 8B, 10, 11
Group A		Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	1, 2, 3, 7, 8A, 8B, 9, 10, 11
Group B (Optional)	B5	Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	N/A
	Others	Samples/5005	1, 7	N/A
Group C (Optional)		Samples/5005	N/A	1, 2, 3, 7, 8A, 8B, 9, 10, 11
Group D (Optional)		Samples/5005	1, 7, 9	1, 7, 9
Group E, Subgroup 2		Samples/5005	1, 7, 9	N/A

Intersil - 3Z Product Flow

Radiation Verification (Each Wafer) Method 1019, 10K RADS (Si) Total Dose 2 Samples/Wafer, 0 Reject (3Z Product Flow continues below)

Intersil Space Level Product Flow -3 (Without Radiation Verification)

- 100% Internal Visual Inspection, Method 2010, Condition B or Alternate Condition B
- 100% Internal Visual Inspection, Method 2010, Condition B or Alternate Condition B
- 100% Temperature Cycle, Method 1010, Condition C
- 100% Constant Acceleration, Method 2001, Condition per Method 5004
- 100% Fine/Gross Leak, Method 1014
- 100% Initial Electrical Test, +25°C
- Optional High Temperature Stress, 48 Hours at +125°C (This is a Intersil option)

- Optional Interim Electrical Test. (Only if the high temperature Stress was performed at Intersil' option.) 10% PDA
- 100% Static Burn-In, Method 1015, Condition A or B, 160 hours minimum, +125°C minimum (or equivalent time/ temperature per Method 1015)
- 100% Interim Electrical Test, 5% PDA, 3% PDA functional (Note 1)
- 100% Final Electrical Tests
- 100% External Visual, Method 2009
- Sample Group A, Method 5005 (Note 2)
- Data Package Generation (Note 3)

NOTES:

- 1. Failures from subgroups 1 and 7 are used for calculating PDA. The maximum allowable PDA is 5%.
- 2. Alternate Group A testing as allowed by MIL-STD-883, Method 5005 may be performed.
- 3. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

Intersil Space Level Product Flow -IDZ

Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)

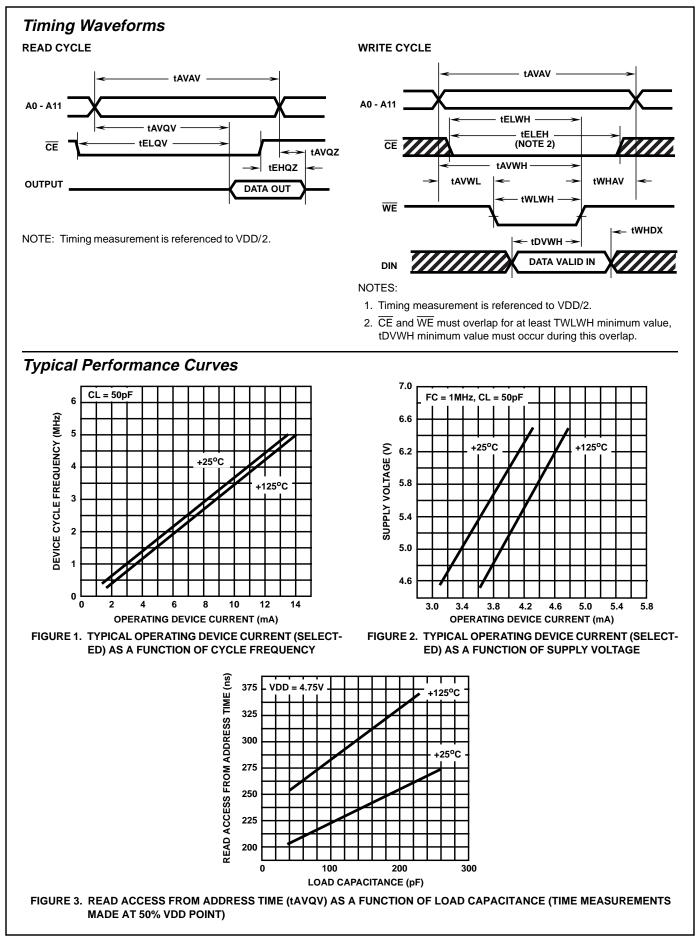
GAMMA Radiation Verification (Each Wafer), 2 Samples/Wafer, 0 Rejects

Sample - Die Shear Monitor, Method 2019 or 2027

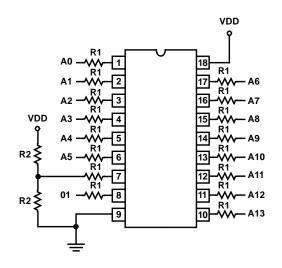
- Sample Wire Bond Monitor, Method 2011
- 100% Nondestructive Bond Pull, Method 2023
- 100% Internal Visual Inspection, Method 2010, Condition A
- 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles
- 100% Constant Acceleration, Method 2001, Condition per Method 5004
- 100% PIND, Method 2020, Condition A

100% Serialization

100% Initial Test

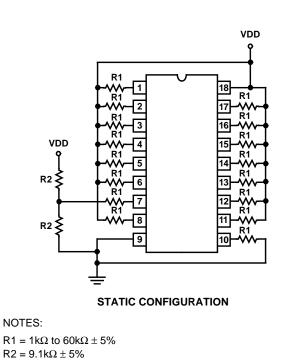

Optional High Temperature Stress Test, 48 Hours at +125°C (This is a Intersil option)

Optional Interim Electrical Test (T0) (Only if the high temperature stress test was performed.) 10% PDA (Note 1)


- 100% Static Burn-In 1, Condition A or B, 24 hours minimum, +125°C minimum (or equivalent time/temperature), Method 1015
- 100% Interim Electrical Test (T1) and Deltas (T0-T1)
- 100% Static Burn-In 2, Condition A or B, 24 Hours Minimum, +125°C minimum, (or equivalent time/temperature), Method 1015
- 100% Interim Electrical Test (T2) and Delta (T0-T2) (Note 2 and 3)
- 100% Dynamic Burn-In, Condition D, 240 hours at 125°C (or equivalent time/temperature), Method 1015
- 100% Interim Electrical Test (T3). 5% PDA All failures, Deltas (T0-T3) (Note 3)
- 100% Final Test, Method 5004
- 100% Fine/Gross Leak, Method 1014
- 100% Radiographic (X-Ray), Method 2012 (Note 4)
- 100% External Inspection, Method 2009
- Sample Group A, Method 5005 (Note 5)
- 100% Data Package Generation (Note 6)

NOTES:

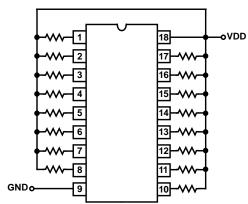
- 1. If the optional 48-hour Stress Test is not utilized, then the initial test is used for T0 reference when calculating deltas.
- 2. Failures from Interim Electrical Tests T1 and T2 are combined for determining PDA.
- 3. Failures from subgroups 1, 7, and deltas are used for calculating PDA. The maximum allowable PDA is 5% with no more than 3% from subgroup 7.
- 4. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004. Per Method 5004.
- 5. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 6. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, RAD Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.



DYNAMIC CONFIGURATION

NOTES:

 $\begin{array}{l} {\sf R1} = 1 k\Omega \ to \ 60 k\Omega \pm 5\% \\ {\sf R2} = 9.1 kW \pm 5\% \\ {\sf VDD} = 5.5 {\sf V} \ ({\sf Min}) \\ {\sf VIN} = 0{\sf V}, \ {\sf VDD} \\ {\sf Frequency:} \qquad {\sf A0} = 100 kHz \pm 5\%; \ {\sf A1} = {\sf A0}/2 \ \ldots \ {\sf A13} = {\sf A12}/2 \\ 01 = 200 kHz \pm 5\%, \ 0.6 \mu s \ {\sf Low}, \ 4.4 \mu s \ {\sf High} \\ {\sf Ceramic \ DIP \ biasing \ shown.} \end{array}$


Irradiation Circuit

VDD = 5.5V (Min)

Static Burn-In 1 memory array pre-initialized with all Highs at VDD, VIN = VDD Static Burn-In 2 memory array pre-initialized with all Lows at VSS, VIN = VSS

Ceramic DIP biasing shown.

NOTES:

 $\label{eq:VDD} \begin{array}{l} \text{VDD} = +5\text{V}, \ +5\%\\ \text{GND} = 0\text{V}\\ \text{All Resistors are } 47\text{k}\Omega\pm5\% \end{array}$

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029