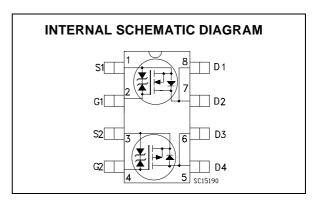


STS1C1S250

N-CHANNEL 250V - 0.9Ω - 0.75A SO-8 P-CHANNEL 250V - 2.1Ω - 0.6A SO-8 MESH OVERLAY POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STS1C1S250(N-Channel)	250 V	<1.4Ω	0.80 A
STS1C1S250(P-Channel)	250 V	<2.8Ω	0.60 A

- TYPICAL R_{DS(on)} (N-Channel) = 0.9 Ω
- TYPICAL $R_{DS(on)}$ (P-Channel) = 2.1 Ω
- GATE-SOURCE ZENER DIODE
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY



DESCRIPTION

This complementary pair uses the Company's proprietary high voltage MESH OVERLAY™ process based on advanced strip layout and efficient edge termination. Designed for high volume manufacturing capability, it is ideal in lighting converters such as CFL supplied from 120V mains.

APPLICATIONS

■ LIGHTING

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Valu	ie	Unit
		N-CHANNEL	P-CHANNEL	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	250	250	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	250	250	V
V _{GS}	Gate- source Voltage	±25	5	V
I _D	Drain Current (continuous) at T _C = 25°C	0.75 0.60		Α
I _D	Drain Current (continuous) at T _C = 100°C	0.47	0.38	Α
I _{DM} (1)	Drain Current (pulsed)	3	2.4	Α
Ртот	Total Dissipation at $T_C = 25^{\circ}C$ Single Operation Total Dissipation at $T_C = 25^{\circ}C$ Dual Operation	1.6 2		W
T _{stg}	Storage Temperature	-65 to 150		°C
Tj	Max. Operating Junction Temperature	150)	°C

(1)Pulse width limited by safe operating area

October 2003 1/10

STS1C1S250

THERMAL DATA

Rthj-amb (2	Thermal Resistance Junction-ambient Max (Single Operating)	62.5	°C/W	1
	(Dual Operating)	78	C/VV	

⁽²⁾ Mounted on 0.5 in² pad of 2oz. copper.

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	N-CHANNEL $\begin{split} I_D &= 250 \; \mu\text{A}, \; V_{GS} = 0 \\ \textbf{P-CHANNEL} \\ I_D &= 250 \; \mu\text{A}, \; V_{GS} = 0 \end{split}$	n-ch p-ch	250 250			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C	n-ch p-ch n-ch p-ch			1 1 10 10	μΑ μΑ μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ±20V	n-ch p-ch			±10 ±10	μA μA

ON (1)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	N-CHANNEL $V_{DS} = V_{GS}, \ I_D = 250 \mu A$ P-CHANNEL $V_{DS} = V_{GS}, \ I_D = 250 \mu A$	n-ch p-ch	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	$\begin{aligned} &\textbf{N-CHANNEL}\\ &\textbf{V}_{GS} = 10 \textbf{V}, \textbf{I}_{D} = 0.40 \textbf{A}\\ &\textbf{P-CHANNEL}\\ &\textbf{V}_{GS} = 10 \textbf{V}, \textbf{I}_{D} = 0.30 \textbf{A} \end{aligned}$	n-ch p-ch		0.9 2.1	1.4 2.8	Ω

DYNAMIC

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
C _{iss}	Input Capacitance	N-CHANNEL $V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$	n-ch p-ch		325 260		pF pF
C _{oss}	Output Capacitance	P-CHANNEL V _{DS} = 25V, f = 1 MHz, V _{GS} = 0	n-ch p-ch		51 52		pF pF
C _{rss}	Reverse Transfer Capacitance		n-ch p-ch		24 25.5		pF pF
Rg	Gate Input Resistance	f=1 MHz Gate DC Bias=0 Test Signal Level=20mV Open Drain	n-ch p-ch		6 6		ΩΩ

⁽³⁾ Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

ELECTRICAL CHARACTERISTICS (CONTINUED) SWITCHING ON

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	N-CHANNEL	n-ch		9		ns
		$V_{DD} = 125V, I_D = 1.5A$	p-ch		12		ns
		$R_G = 4.7\Omega V_{GS} = 10V$					
	Disc. Time	P-CHANNEL			44		
t _r	Rise Time	$V_{DD} = 125V, I_{D} = 1.5A$	n-ch		11		ns
		$R_G = 4.7\Omega V_{GS} = 10V$	p-ch		22		ns
		(Resistive, see Figure 3)					
Qg	Total Gate Charge	N-CHANNEL	n-ch		15	20	nC
		$V_{DD} = 200 V, I_{D} = 1.5 A,$	p-ch		16	21	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$	n-ch		1.9		nC
3-		P-CHANNEL	p-ch		1.4		nC
Q_{gd}	Gate-Drain Charge	$V_{DD} = 200V, I_{D} = 1.5A,$	n-ch		7		nC
9-		V _{GS} = 10V	p-ch		7.6		nC
	1	I	1	1		1	1

SWITCHING OFF

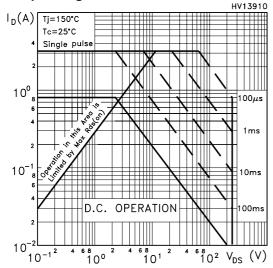
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
		N-CHANNEL					
$t_{d(off)}$	Turn-off Delay Time	$V_{DD} = 125V, I_D = 1.5A,$	n-ch		31		ns
` ,		$R_G = 4.7\Omega$, $V_{GS} = 10V$	p-ch		29.5		ns
		P-CHANNEL					
t _f	Fall Time	$V_{DD} = 200V, I_D = 1.5A,$	n-ch		11		ns
		$R_G = 4.7\Omega$, $V_{GS} = 10V$	p-ch		7		ns
		(see test circuit, Figure 5)					

SOURCE DRAIN DIODE

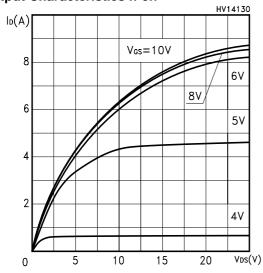
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current		n-ch			0.75	Α
			p-ch			0.6	Α
I _{SDM} (4)	Source-drain Current (pulsed)		n-ch			3	Α
			p-ch			2.4	Α
V _{SD} (5)	Forward On Voltage	I _{SD} = 3A, V _{GS} = 0	n-ch			1.5	V
		$I_{SD} = 3A$, $V_{GS} = 0$	p-ch			1.5	V
t _{rr}	Reverse Recovery Time	N-CHANNEL	n-ch		127		ns
		$I_{SD} = 0.8A$, di/dt = 100A/ μ s,	p-ch		143		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 50V, T_i = 150$ °C	n-ch		450		nC
		P-CHANNEL	p-ch		806		nC
I _{RRM}	Reverse Recovery Curren	$I_{SD} = 0.60A$, di/dt = 100A/ μ s,	n-ch		7		Α
		$V_{DD} = 40V, T_i = 150$ °C	p-ch		11		Α
		(see test circuit, Figure 5)					

GATE-SOURCE ZENER DIODE

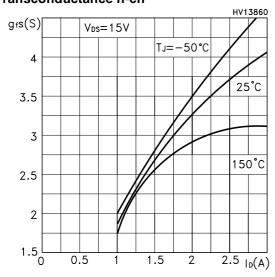
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 500 μA (Open Drain)	± 25			V

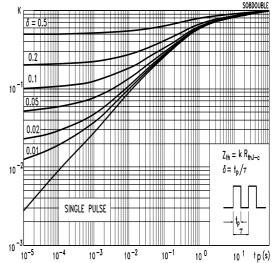

⁽⁴⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

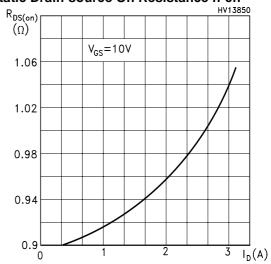

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

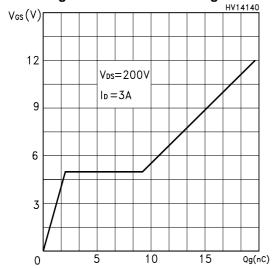
⁽⁵⁾ Pulse width limited by safe operating area

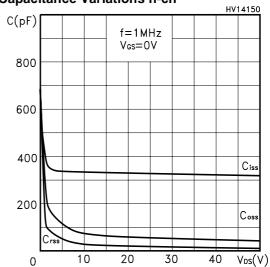

Safe Operating Area n-ch

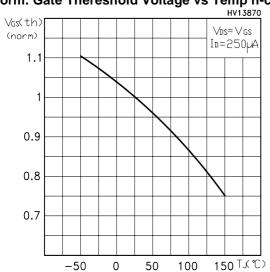

Output Characteristics n-ch

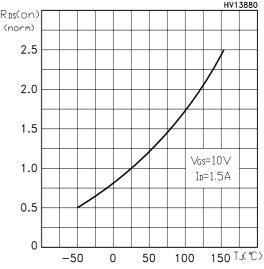

Transconductance n-ch

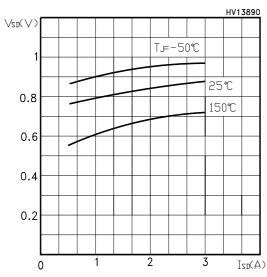

Thermal Impedance for Complementary pair

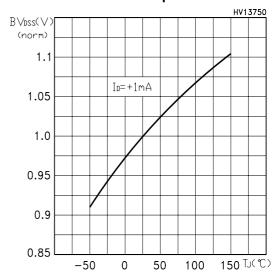

Transfer Characteristics n-ch


Static Drain-source On Resistance n-ch

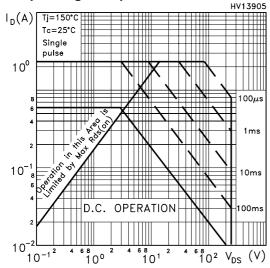

Gate Charge vs Gate-source Voltage n-ch


Capacitance Variations n-ch

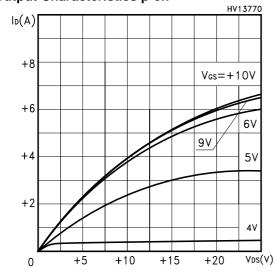

Norm. Gate Thereshold Voltage vs Temp n-ch


Norm. On Resistance vs Temperature n-ch

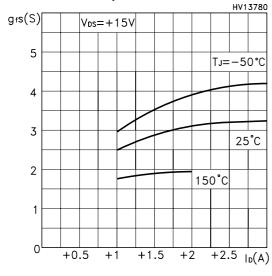
Source-drainDiodeForwardCharacteristicsn-ch

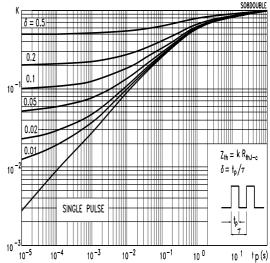


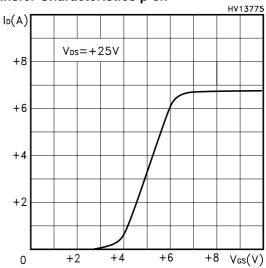
Normalized BVDSS vs Temperature n-ch

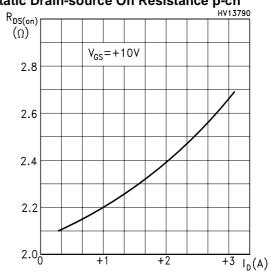


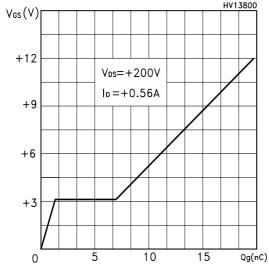
47/_°

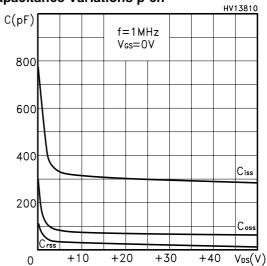

Safe Operating Area p-ch

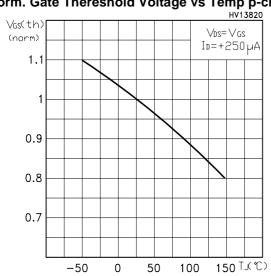

Output Characteristics p-ch


Transconductance p-ch

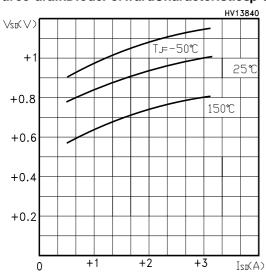

Thermal Impedance for Complementary pair

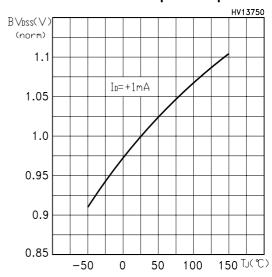

Transfer Characteristics p-ch


Static Drain-source On Resistance p-ch


Gate Charge vs Gate-source Voltage p-ch

Capacitance Variations p-ch


Norm. Gate Thereshold Voltage vs Temp p-ch


NormalizedOnResistancevsTemperaturep-ch

Source-drainDiodeForwardCharacteristicsp-ch

Normalized BVDSS vs Temperature p-ch

477.

Fig. 1: Unclamped Inductive Load Test Circuit

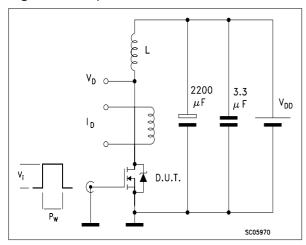


Fig. 3: Switching Times Test Circuit For Resistive Load

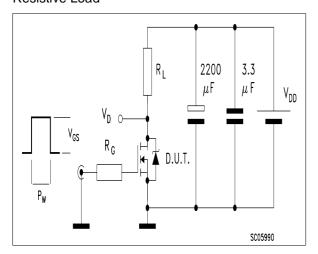


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

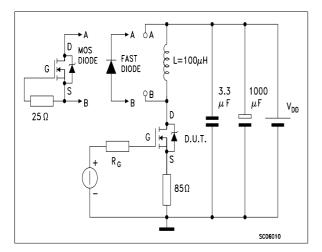


Fig. 2: Unclamped Inductive Waveform

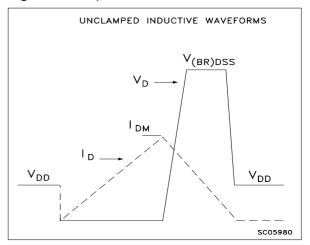
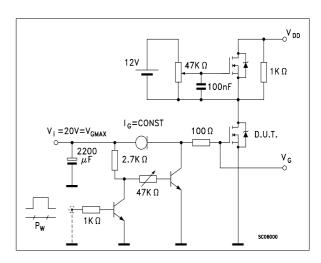



Fig. 4: Gate Charge test Circuit

SO-8 MECHANICAL DATA

DIM.		mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.25	0.003		0.009		
a2			1.65			0.064		
a3	0.65		0.85	0.025		0.033		
b	0.35		0.48	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.019		
c1			45	(typ.)				
D	4.8		5.0	0.188		0.196		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.14		0.157		
L	0.4		1.27	0.015		0.050		
М			0.6			0.023		
S								

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477.