

^{OLOGY} Single/Dual/Quad 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amp

July 2003

FEATURES

Gain-Bandwidth Product: 60MHz

Input Common Mode Range Includes Both Rails

Output Swings Rail-to-Rail

Low Quiescent Current: 1mA Max
 Input Offset Voltage: 350µV Max
 Input Bias Current: 150nA Max
 Wide Supply Range: 2.2V to 12.6V

Large Output Current: 50mA Typ
 Low Voltage Noise: 10nV√Hz Typ

Slew Rate: 20V/us Tvp

Common Mode Rejection: 102dB Typ
 Power Supply Rejection: 105dB Typ
 Open Loop Gain: 100V/mV Typ

■ Operating Temperature Range – 40°C to 85°C

 Single in the 8-Pin SO and 5-Pin Low Profile (1mm) ThinSOT Packages

Dual in the 8-Pin SO and (3mm x 3mm) DFN Packages

Quad in the 16-Pin SSOP Package

APPLICATIONS

- Low Voltage, High Frequency Signal Processing
- Driving A/D Converters
- Rail-to-Rail Buffer Amplifiers
- Active Filters
- Video Amplifiers
- Fast Current Sensing Amplifiers

DESCRIPTION

The LT®6220/LT6221/LT6222 are single/dual/quad, low power, high speed rail-to-rail input and output operational amplifiers with excellent DC performance. The LT6220/LT6221/LT6222 feature reduced supply current, lower input offset voltage, lower input bias current and higher DC gain than other devices with comparable bandwidth.

Typically, the LT6220/LT6221/LT6222 have an input off-set voltage of less than $100\mu V$, an input bias current of less than 15nA and an open-loop gain of 100V/mV. The parts have an input range that includes both supply rails and an output that swings within 10mV of either supply rail to maximize the signal dynamic range in low supply applications.

The LT6220/LT6221/LT6222 maintains performance for supplies from 2.2V to 12.6V and are specified at 3V, 5V and ±5V supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.

The LT6220 is housed in the 8-pin SO package with the standard op amp pinout as well as the 5-pin SOT-23 package. The LT6221 is available in 8-pin SO and DFN (3mm \times 3mm low profile dual fine pitch leadless) packages with the standard op amp pinout. The LT6222 features the standard quad op amp configuration and is available in the 16-Pin SSOP package. The LT6220/LT6221/LT6222 can be used as plug-in replacements for many op amps to improve input/output range and performance.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Stepped-Gain Photodiode Amplifier

Stepped-Gain Photodiode Amplifier Response

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V_S^- to V_S^+)	.6V
Input Voltage (Note 2)	-V _S
Input Current (Note 2) ±10	mĀ
Output Short Circuit Duration (Note 3) Indefin	nite
Operating Temperature Range (Note 4) – 40°C to 85	5°C
Specified Temperature Range (Note 5) – 40°C to 85	5°C

Maximum Junction Temperature	150°C
(DD Package)	125°C
Storage Temperature65°C to	150°C
(DD Package)65°C to	125°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

^{*}The temperature grades are identified by a label on the shipping container.

ELECTRICAL CHARACTERISTICS

 $T_A=25^{\circ}C,\ V_S=5V,\ 0V;\ V_S=3V,\ 0V;\ V_{CM}=V_{OUT}=half\ supply,\ unless\ otherwise\ noted$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage	V _{CM} = 0V V _{CM} = 0V (DD Package) V _{CM} = 0V (S5 Package)		70 150 200	350 700 850	μV μV μV
		$V_{CM} = V_S$ $V_{CM} = V_S$ (S5 Package)		0.5 0.5	2.5 3	mV mV
ΔV _{OS}	Input Offset Voltage Shift	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V		30 15	195 120	μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	V _{CM} = 0V V _{CM} = 0V (DD Package)		100 150	600 1100	μV μV
I _B	Input Bias Current	$V_{CM} = 1V$ $V_{CM} = V_S$		15 250	150 600	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$V_{CM} = 1V$ $V_{CM} = V_S$		15 20	175 250	nA nA
I _{OS}	Input Offset Current	$V_{CM} = 1V$ $V_{CM} = V_S$		15 15	100 100	nA nA
	Input Noise Voltage	0.1Hz to 10Hz		0.5		μV _{P-P}
en	Input Noise Voltage Density	f = 10kHz		10		nV/√Hz
in	Input Noise Current Density	f = 10kHz		8.0		pA/√Hz
C _{IN}	Input Capacitance			2		pF
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$ at $V_S/2$ $V_S = 5V$, $V_0 = 1V$ to 4V, $R_L = 100\Omega$ at $V_S/2$ $V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k$ at $V_S/2$	35 3.5 30	100 10 90		V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = 0V$ to 3.5V $V_S = 3V$, $V_{CM} = 0V$ to 1.5V	85 82	102 102		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$V_S = 5V$, $V_{CM} = 0V$ to 3.5V $V_S = 3V$, $V_{CM} = 0V$ to 1.5V	79 76	100 100		dB dB
	Input Common Mode Range		0		V_S	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, V_{CM} = 0V$	84	105		dB
	PSRR Match (Channel-to-Channel) (Note 9)		79	105		dB
	Minimum Supply Voltage (Note 6)			2.2	2.5	V
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 20mA		5 100 325	40 200 650	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 20mA		5 130 475	40 250 900	mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V$ $V_S = 3V$	20 20	45 35		mA mA
Is	Supply Current Per Amplifier			0.9	1	mA
GBW	Gain-Bandwidth Product	V _S = 5V, Frequency = 1MHz	35	60		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_O = 4V$	10	20		V/µs
FPBW	Full Power Bandwidth	$V_S = 5V$, $A_V = 1$, $V_O = 4V_{p-p}$		1.6		MHz
HD	Harmonic Distortion	$V_S = 5V$, $A_V = 1$, $R_L = 1k$, $V_O = 2V_{P-P}$, $f_C = 500kHz$		77.5		dBc
ts	Settling Time	0.01%, V _S = 5V, V _{STEP} = 2V, A _V = 1, R _L = 1k		300		ns
ΔG	Differential Gain (NTSC)	$V_S = 5V, A_V = 2, R_L = 1k$		0.3		%
$\Delta \theta$	Differential Phase (NTSC)	$V_S = 5V, A_V = 2, R_L = 1k$		0.3		Deg
	, ,	, · · · · · ·	I.			622012i

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $0^{\circ}C \leq T_A \leq 70^{\circ}C$ temperature range. $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = half supply, unless otherwise noted.$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = 0V V _{CM} = 0V (DD Package) V _{CM} = 0V (S5 Package) V _{CM} = V _S V _{CM} = V _S (S5 Package)	• • •		90 180 230 0.5 0.5	500 850 1250 3 3.5	μV μV μV mV
ΔV _{0S}	Input Offset Voltage Shift	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V	•		30 15	280 190	μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	V _{CM} = 0V V _{CM} = 0V (DD Package)	•		110 180	850 1400	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	•		1.5 3.5	5 10	μV/°C μV/°C
I _B	Input Bias Current	$\begin{vmatrix} V_{CM} = 1V \\ V_{CM} = V_S - 0.2V \end{vmatrix}$	•		20 275	175 800	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{vmatrix} V_{CM} = 1V \\ V_{CM} = V_S - 0.2V \end{vmatrix}$	•		15 20	200 300	nA nA
I _{OS}	Input Offset Current	$\begin{vmatrix} V_{CM} = 1V \\ V_{CM} = V_S - 0.2V \end{vmatrix}$	•		15 15	125 125	nA nA
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1kat \ V_S/2$ $V_S = 5V$, $V_0 = 1V$ to 4V, $R_L = 100\Omega at \ V_S/2$ $V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1kat \ V_S/2$	•	30 3 25	90 9 80		V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V	•	82 78	100 100		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V	•	77 73	100 100		dB dB
	Input Common Mode Range		•	0		V _S	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, V_{CM} = 0V$	•	81	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		•	76	104		dB
	Minimum Supply Voltage (Note 6)		•		2.2	2.5	V
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 20mA	•		8 110 375	50 220 750	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load SOURCE = 5mA SOURCE = 20mA	•		8 150 600	50 300 1100	mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V$ $V_S = 3V$	•	20 20	40 30		mA mA
I _S	Supply Current Per Amplifier		•		1	1.4	mA
GBW	Gain-Bandwidth Product	V _S = 5V, Frequency = 1MHz	•	30	60		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V_{P-P}$	•	9	18		V/µs

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $-40^{\circ}C \le T_A \le 85^{\circ}C$ temperature range. $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} =$ half supply unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = 0V V _{CM} = 0V (DD Package) V _{CM} = 0V (S5 Package) V _{CM} = V _S V _{CM} = V _S (S5 Package)	•		125 300 350 0.75 1	700 1300 2000 3.5 4.5	μV μV μV mV
ΔV_{0S}	Input Offset Voltage Shift	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V	•		30 30	300 210	μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	V _{CM} = 0V V _{CM} = 0V (DD Package)	•		175 300	1200 2200	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	•		1.5 3.5	7.5 15	μV/°C μV/°C
I _B	Input Bias Current	V _{CM} = 1V V _{CM} = V _S - 0.2V	•		25 300	200 900	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	V _{CM} = 1V V _{CM} = V _S - 0.2V	•		15 20	250 350	nA nA
I _{OS}	Input Offset Current	V _{CM} = 1V V _{CM} = V _S - 0.2V	•		20 20	150 150	nA nA
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$ at $V_S/2$ $V_S = 5V$, $V_0 = 1.5V$ to 3.5V, $R_L = 100\Omega$ at $V_S/2$ $V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k$ at $V_S/2$	•	25 2.5 20	70 8 60		V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = 0V$ to 3.5V $V_S = 3V$, $V_{CM} = 0V$ to 1.5V	•	81 77	100 100		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	V _S = 5V, V _{CM} = 0V to 3.5V V _S = 3V, V _{CM} = 0V to 1.5V	•	76 72	100 100		dB dB
	Input Common Mode Range		•	0		Vs	V
PSRR	Power Supply Rejection Ratio	V _S = 2.5V to 10V, V _{CM} = 0V	•	79	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		•	74	104		dB
	Minimum Supply Voltage (Note 6)	$V_{CM} = V_0 = 0.5V$	•		2.2	2.5	V
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 10mA	•		10 120 220	60 240 450	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load Source = 5mA Source = 10mA	•		10 160 325	60 325 650	mV mV mV
I _{SC}	Short-Circuit Current	V _S = 5V V _S = 3V	•	12.5 12.5	30 25		mA mA
Is	Supply Current Per Amplifier		•		1.1	1.5	mA
GBW	Gain-Bandwidth Product	V _S = 5V, Frequency = 1MHz	•	25	50		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V$	•	8	15		V/µs

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, $\,V_S=\pm 5 V,\,\,V_{CM}=0 V,\,\,V_{OUT}=0 V,\,\,unless$ otherwise noted.

Vos	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CM} = 5V (S5 Package) 200 900 μV V _{CM} = 5V (S5 Package) 0.7 2.5 mV V _{CM} = 5V (S5 Package) 0.7 3 mV V _{CM} = 5V (S5 Package) 0.7 3 mV V _{CM} = 5V (S5 Package) 0.7 3 mV V _{CM} = 5V (S5 Package) 0.7 3 mV V _{CM} = 5V (S5 Package) 0.7 3 mV V _{CM} = 5V (S5 Package) 0.7 0.8 650 μV V _{CM} = 5V (D5 Package) 150 1300 μV V _{CM} = 5V (D5 Package) 150 1300 μV V _{CM} = 5V (D5 Package) 150 1300 μV V _{CM} = 5V (D5 Package) 150 1300 μV V _{CM} = 5V (D5 Package) 150 1300 μV V _{CM} = 5V (D5 Package) 150 150 nA V _{CM} = 5V (D5 Package) 150 n	V _{OS}	Input Offset Voltage	V _{CM} = −5V		80	500	μV
V _{OM} = 5V (S5 Package)							
ΔV _{OS} Input Offset Voltage Shift V _{CM} = -5V to 35V 70 675 μV Input Offset Voltage Match (Channel-to-Channel) V _{CM} = -5V (DD Package) 100 850 μV Ig Input Bias Current V _{CM} = -5V (DD Package) 150 1300 μV Ig Input Bias Current Match (Channel-to-Channel) V _{CM} = -4V (DP Package) 20 150 nA Input Bias Current Match (Channel-to-Channel) V _{CM} = -4V (DP Package) 15 175 nA Input Moise Voltage V _{CM} = -4V (DP Package) 15 175 nA Input Noise Voltage 0.1Hz to 10Hz 0.5 μV _{PL} en Input Noise Voltage 0.1Hz to 10Hz 0.5 μV _{PL} en Input Noise Voltage 0.1Hz to 10Hz 0.5 μV _{PL} en Input Noise Voltage 1 = 10KHz 0.8 pA/×Hz In Input Noise Current Density 1 = 10KHz 0.8 pA/×Hz In Input Noise Current Density 1 = 10KHz 0.8 pA/×Hz In Inpu							
AVOS Input Offset Voltage Match (Channel-to-Channel) V_CM = -5V to 3.5V To 0 875 μV							1
Input Bias Current V _{CM} = -5V (DD Package) 150 1300 μV V _{CM} = -4V V _{CM} = -4V V _{CM} = 0 150 nA V _{CM} = 0V 250 700 nA V _{CM} = 0V 260 250 nA V _{CM} = 0V 260 260 nA V _{CM} = 0V 260 260 nA V _{CM} = 0V 260 nA V _{CM}	ΔV_{OS}	Input Offset Voltage Shift			70	675	μV
Ing Input Bias Current V _{CM} = -4V V _{CM} = 5V 20 250 700 nA nA Input Bias Current Match (Channel-to-Channel) V _{CM} = 5V V _{CM} = 5V 15 175 nA nA Ios Input Offset Current V _{CM} = 4V V _{CM} = 5V 15 100 nA nA Input Noise Voltage 0.11½ to 10Hz 0.5 μ/ν_P μ/ν_P 10 nM/√Hz in Input Noise Voltage Density f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.7√Hz In Input Noise Current Density f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10kHz 0.8 pA√Hz 0.8 pA√Hz 0.8 pA√Hz Cin Input Capacitance f = 10		Input Offset Voltage Match (Channel-to-Channel)	$V_{CM} = -5V$		100	850	μV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,			150	1300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{B}	Input Bias Current					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		250	700	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Input Bias Current Match (Channel-to-Channel)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c } \hline & Input Noise Voltage & 0.1Hz to 10Hz & 0.5 & \mu V_{P-P} \\ e_n & Input Noise Voltage Density & f = 10kHz & 10 & nV/\frac{1}{Hz} \\ \hline i_n & Input Noise Current Density & f = 10kHz & 0.8 & pA/\frac{1}{Hz} \\ \hline I_n & Input Noise Current Density & f = 10kHz & 0.8 & pA/\frac{1}{Hz} \\ \hline I_n & Input Capacitance & f = 100kHz & 2 & pF \\ \hline A_{VOL} & Large Signal Voltage Gain & V_0 = -4V to 4V, R_L = 1k & 35 & 95 & V/mV \\ V_0 = -2V to 2V, R_L = 1000\Omega & 3.5 & 10 & V/mV \\ \hline CMRR & Common Mode Rejection Ratio & V_{CM} = -5V to 3.5V & 82 & 102 & dB \\ \hline CMRR Match (Channel-to-Channel) & 77 & 100 & dB \\ \hline Input Common Mode Range & V_S^- & V_S^+ & V \\ \hline PSRR & Power Supply Rejection Ratio & V_5* = 2.5V to 10V, V_S^= 0V, V_{CM} = 0V & 84 & 105 & dB \\ \hline PSRR Match (Channel-to-Channel) & V_0L & 0.04 & 5 & 40 & mV \\ \hline U_0L & 0.04 & 5 & 40 & mV \\ \hline V_0H & 0.04 & 5 & 40 & mV \\ \hline V_0H & 0.04 & 5 & 40 & mV \\ \hline I_{SINK} = 5mA & 100 & 220 & mV \\ \hline I_{SINK} = 20mA & 325 & 650 & mV \\ \hline V_0H & 0.04 & 5 & 40 & mV \\ \hline I_SOURCE = 5mA & 130 & 250 & mV \\ \hline I_SOURCE = 5mA & 130 & 250 & mV \\ \hline I_SOURCE = 20mA & 475 & 900 & mV \\ \hline I_SC & Short-Circuit Current & 25 & 50 & mA \\ \hline I_S & Supply Current Per Amplifier & 1 & 1.5 & mA \\ \hline GBW & Gain-Bandwidth Product & Frequency = 1MHz & 60 & MHz \\ \hline SR & Slew Rate & A_V = -1, R_L = 1k, V_0 = \pm 4V, & 20 & V_{JLS} \\ \hline FPBW & Full Power Bandwidth & V_0 = 8V_{P-P} & 0.8 & MHz \\ \hline HD & Harmonic Distortion & A_V = 1, R_L = 1k, V_0 = 2V_{P-P}, f_c = 500kHz & 77.5 & dBc \\ \hline t_S & Settling Time & 0.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & \% \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & \% \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & \% \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & 0.15 & \% \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & 0.15 & \% \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & 0.15 & 0.15 & 0.15 \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & 0.15 & 0.15 & 0.15 \\ \hline O.01\%, V_{STEP} = 5V, A_V = 1, R_L = 1k & 0.15 & 0.15 & 0.15 & 0.15 \\ $	108	Input Offset Current					l .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Innut Noise Voltage	-			100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				35			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, vol	Large orginal voltage dam					
$ \begin{array}{ c c c c c c c c } \hline & Input Common Mode Range & & V_S^- & V_S^+ & V \\ \hline PSRR & Power Supply Rejection Ratio & V_S^+ = 2.5V to 10V, V_S^- = 0V, V_{CM} = 0V \\ \hline & PSRR Match (Channel-to-Channel) & & 79 & 105 & dB \\ \hline & PSRR Match (Channel-to-Channel) & & No Load & 5 & 40 & mV \\ \hline & I_{SINK} = 5mA & 100 & 200 & mV \\ \hline & I_{SINK} = 5mA & 325 & 650 & mV \\ \hline & V_{OH} & Output Voltage Swing HIGH (Note 7) & No Load & 5 & 40 & mV \\ \hline & I_{SOURCE} = 5mA & 130 & 250 & mV \\ \hline & I_{SOURCE} = 20mA & 475 & 900 & mV \\ \hline & I_{SOURCE} = 20mA & 25 & 50 & mA \\ \hline & I_{SOU$	CMRR	Common Mode Rejection Ratio	$V_{CM} = -5V$ to 3.5V	82	102		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CMRR Match (Channel-to-Channel)		77	100		dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Input Common Mode Range		V _S -		V_S^+	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PSRR	Power Supply Rejection Ratio	$V_S^+ = 2.5V \text{ to } 10V, V_S^- = 0V, V_{CM} = 0V$	84	105		dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PSRR Match (Channel-to-Channel)		79	105		dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{OL}	Output Voltage Swing LOW (Note 7)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	Output Valtage Codes IIICH (Nata 7)					_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VОН	Output voltage Swing High (Note 7)					1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{SC}	Short-Circuit Current		25	50		mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Is	Supply Current Per Amplifier			1	1.5	mA
$\begin{tabular}{c ccccccccccccccccccccccccccccccccccc$	GBW	Gain-Bandwidth Product	Frequency = 1MHz		60		MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR	Slew Rate			20		V/µs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FPBW	Full Power Bandwidth	V ₀ = 8V _{P-P}		0.8		MHz
ΔG Differential Gain (NTSC) $A_V = 2$, $R_L = 1k$ 0.15 %	HD	Harmonic Distortion	$A_V = 1$, $R_L = 1$ k, $V_0 = 2V_{p-p}$, $f_c = 500$ kHz		77.5		dBc
	ts	Settling Time	0.01%, V _{STEP} = 5V, A _V = 1, R _L = 1k		375		ns
$\Delta \theta$ Differential Phase (NTSC) $A_V = 2, R_L = 1k$ 0.6 Deg	ΔG	Differential Gain (NTSC)	A _V = 2, R _L = 1k		0.15		%
	$\Delta \theta$	Differential Phase (NTSC)	$A_V = 2, R_L = 1k$		0.6		Deg

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $0^{\circ}C \leq T_A \leq 70^{\circ}C$ temperature range. $V_S = \pm 5V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage	V _{CM} = -5V V _{CM} = -5V (DD Package) V _{CM} = -5V (S5 Package) V _{CM} = 5V V _{CM} = 5V (S5 Package)	•		100 180 230 0.75 0.75	650 900 1300 3 3.5	μV μV μV mV
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = -5V \text{ to } 3.5V$	•		90	850	μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$V_{CM} = -5V$ $V_{CM} = -5V$ (DD Package)	•		90 180	1100 1500	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	•		1.5 3.5	5 10	μV/°C μV/°C
I _B	Input Bias Current	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		20 275	175 800	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		15 20	200 300	nA nA
I _{OS}	Input Offset Current	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		15 15	125 125	nA nA
A _{VOL}	Large Signal Voltage Gain	$V_0 = -4V \text{ to } 4V, R_L = 1k$ $V_0 = -2V \text{ to } 2V, R_L = 100\Omega$	•	30 3	90 9		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = -5V$ to 3.5V	•	80	100		dB
	CMRR Match (Channel-to-Channel) (Note 9)		•	75	100		dB
	Input Common Mode Range		•	Vs-		V _S +	V
PSRR	Power Supply Rejection Ratio	$V_S^+ = 2.5V \text{ to } 10V, V_S^- = 0V, V_{CM} = 0V$	•	81	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		•	76	104		dB
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load SINK = 5mA SINK = 20mA	•		8 110 375	50 220 750	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load Source = 5mA Source = 20mA	•		8 150 600	50 300 1100	mV mV mV
I _{SC}	Short-Circuit Current		•	20	40		mA
I _S	Supply Current Per Amplifier		•		1.2	2	mA
GBW	Gain-Bandwidth Product	Frequency = 1MHz			60		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = \pm 4V$, Measure at $V_0 = \pm 2V$			18		V/µs

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $-40^{\circ}C \le T_A \le 85^{\circ}C$ temperature range. $V_S = \pm 5V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{os}	Input Offset Voltage	V _{CM} = -5V V _{CM} = -5V (DD Package) V _{CM} = -5V (S5 Package) V _{CM} = 5V V _{CM} = 5V (S5 Package)	•		150 300 350 0.75 1	800 1300 2000 3.5 4.5	μV μV μV mV
ΔV _{OS}	Input Offset Voltage Shift	$V_{CM} = -5V \text{ to } 3.5V$	•		90	950	μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$V_{CM} = -5V$ $V_{CM} = -5V$ (DD Package)	•		175 300	1350 2200	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	•		1.5 3.5	7.5 15	μV/°C μV/°C
I _B	Input Bias Current	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		25 300	200 900	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		15 20	250 350	nA nA
I _{OS}	Input Offset Current	$V_{CM} = -4V$ $V_{CM} = 4.8V$	•		20 20	150 150	nA nA
A _{VOL}	Large Signal Voltage Gain	$V_0 = -4V \text{ to } 4V, R_L = 1k$ $V_0 = -1V \text{ to } 1V, R_L = 100\Omega$	•	25 2.5	70 8		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = -5V \text{ to } 3.5V$	•	79	100		dB
	CMRR Match (Channel-to-Channel) (Note 9)		•	74	100		dB
	Input Common Mode Range		•	-5		5	V
PSRR	Power Supply Rejection Ratio	$V_S^+ = 2.5V \text{ to } 10V, V_S^- = 0V, V_{CM} = 0V$	•	79	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		•	74	104		dB
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 10mA	•		10 120 220	60 240 450	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load Source = 5mA Source = 10mA	•		10 160 325	60 325 650	mV mV mV
I _{SC}	Short-Circuit Current		•	12.5	30		mA
Is	Supply Current		•		1.4	2.25	mA
GBW	Gain-Bandwidth Product	Frequency = 1MHz			50		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = \pm 4V$, Measure at $V_0 = \pm 2V$			15		V/µs

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4V, the input current should be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 4: The LT6220C/LT6221C/LT6222C and LT6220I/LT6221I/LT6222I are guaranteed functional over the temperature range of -40° C and 85° C.

Note 5: The LT6220C/LT6221C/LT6222C are guaranteed to meet specified performance from 0°C to 70°C. The LT6220C/LT6221C/LT6222C are designed, characterized and expected to meet specified performance from -40°C to 85°C but is not tested or QA sampled at these temperatures. The

LT6220I/LT6221I/LT6222I are guaranteed to meet specified performance from -40°C to 85°C .

Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.

Note 7: Output voltage swings are measured between the output and power supply rails.

Note 8: This parameter is not 100% tested.

Note 9: Matching parameters are the difference between amplifiers A and D and between B and C on the LT6222; between the two amplifiers on the LT6221.

Note 10: Thermal resistance (θ_{JA}) varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. If desired, the thermal resistance can be substantially reduced by connecting Pin 2 of the LT6220CS5/LT6220IS5 or the underside metal of DD packages to a larger metal area $(V_S^-$ trace).

PACKAGE DESCRIPTION

DD Package 8-Lead Plastic DFN (3mm × 3mm)

(Reference LTC DWG # 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
 2. ALL DIMENSIONS ARE IN MILLIMETERS
- 3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE

4. EXPOSED PAD SHALL BE SOLDER PLATED

PACKAGE DESCRIPTION

S5 Package 5-Lead Plastic SOT-23

(Reference LTC DWG # 05-08-1633)

- NOTE: (NOTE 3)

 1. DIMENSIONS ARE IN MILLIMETERS
 2. DRAWING NOT TO SCALE
 3. DIMENSIONS ARE INCLUSIVE OF PLATING
 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
 5. MOLD FLASH SHALL NOT EXCEED 0.254mm
 6. JEDEC PACKAGE REFERENCE IS MO-193

PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

NOTE:
1. DIMENSIONS IN (MILLIMETERS)

2. DRAWING NOT TO SCALE

3. DRAWING NOT TO SCALE

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

SO8 0303

GN Package 16-Lead Plastic SSOP (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1641)

GN16 (SSOP) 0502

TYPICAL APPLICATION

The circuit on the front page of this data sheet is a stepped gain transimpedance photodiode amplifier. At low signal levels, the circuit has a high $100k\Omega$ gain, but at high signal levels the circuit automatically and smoothly changes to a low $3.2k\Omega$ gain. The benefit of a stepped gain approach is that it maximizes dynamic range, which is very useful on limited supplies. Put another way, in order to get $100k\Omega$ sensitivity and still handle a 1mA signal level without resorting to gain reduction, the circuit would need a 100V negative voltage supply.

The operation of the circuit is quite simple. At low photodiode currents (below $10\mu A$) the output and inverting input of the op amp will be no more than 1V below ground. The LT1634 in parallel with R3 and Q2 keep a constant current though Q2 of about $20\mu A$. R4 maintains quiescent current through the LT1634 and pulls Q2's emitter above

ground, so Q1 is reverse biased and no current flows through R2. So for small signals, the only feedback path is R1 (and C1) and the circuit is a simple transimpedance amplifier with $100k\Omega$ gain.

As the signal level increases though, the output of the op amp goes more negative. At $12.5\mu A$ of photodiode current, the $100k\Omega$ gain dictates that the LT6220 output will be about 1.25V below ground. However, at that point the emitter of Q2 will be at ground, and the base of Q1 will be 1V below ground. Thus, Q1 turns on and photodiode current starts to flow through R2. The transimpedance gain is therefore now reduced to R1||R2, or about $3.1k\Omega$. The circuit response is shown in the oscillogram to the right of the schematic. Note the smooth transition between the two operating gains, as well as the linearity.

3V, 1MHz, 4th Order Butterworth Filter

1MHz Filter Frequency Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1498/LT1499	Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input/ Output C _{LOAD} Op Amps	High DC Accuracy, 475μV V _{OS(MAX)} Max Supply Current 2.2mA/Amp
LT1800/LT1801/LT1802	Single/Dual/Quad 80MHz, 25V/µs, Low Power Rail-to-Rail Input/Output Precision Op Amps	350μV V _{OS(MAX)} , 250nA I _{BIAS(MAX)} , Max Supply Current 2mA/Amp
LT1803/LT1804/LT1805	Single/Dual/Quad 85MHz, 100V/µs Rail-to-Rail Input/Output Op Amps	2mV V _{OS(MAX)} , Max Supply Current 3mA/Amp
LT1806/LT1807	Single/Dual 325MHz, 140V/µs Rail-to-Rail Input/ Output Op Amps	High DC Accuracy, 550μV V _{OS(MAX)} Max Low Noise 3.5nV/√Hz Low Distortion –80dBc at 5MHz, Power Down (LT1806)
LT1809/LT1810	Single/Dual 180MHz, Rail-to-Rail Input/Output Op Amps	350V/μs Slew Rate, Low Distortion –90dBc at 5MHz, Power Down (LT1809)