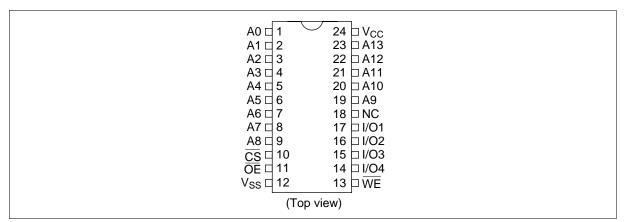
16384-word \times 4-bit High Speed CMOS Static RAM (with \overline{OE})

HITACHI

Description

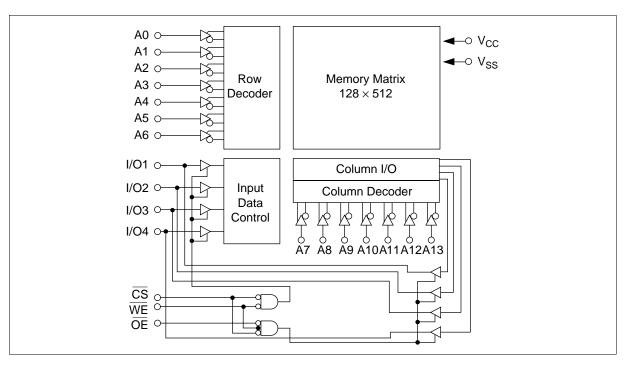
The Hitachi HM6289 is a high speed 64 k static RAM organized as 16-kword \times 4-bit. It realizes high speed access time (25/35 ns) and low power consumption, employing CMOS process technology. It is most advantageous for high speed and high density memory, such as in cache memory for mainframes or 32-bit MPUs. The HM6289, packaged in a 300-mil SOJ, is available for high density mounting. The low power version retains the data with battery backup.


Features

- High speed access time:
 - t_{AA} : 25/35 ns (max)
 - t_{OE} : 12/15 ns (max)
- High density 24-pin S0J package
- Low power
 - Active mode: 300 mW (typ)
 - Standby mode: 100 μW (typ)
- Single 5 V supply
- Completely static memory: No clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible: All inputs and outputs

Ordering Information

Type No.	Access Time	Package
HM6289JP-25 HM6289JP-35	25 ns 35 ns	300-mill, 24-pin SOJ (CP-24D)
HM6289LJP-25 HM6289LJP-35	25 ns 35 ns	


Pin Arrangement

Pin Description

Pin Name	Function
A0 – A13	Address
I/O1 – I/O4	Input/output
CS	Chip select
ŌĒ	Output enable
WE	Write enable
V _{cc}	Power supply
V _{SS}	Ground

Block Diagram

Truth Table

CS	OE	WE	Mode	V _{cc} current	I/O pin	Ref. cycle
Н	×	×	Not selected	I_{SB}, I_{SB1}	High-Z	_
L	L	Н	Read	I _{cc}	Dout	Read cycle (1) – (3)
L	Н	L	Write	I _{cc}	Din	Write cycle (1) – (2)
L	L	L	Write	I _{cc}	Din	Write cycle (3) – (6)

Note: x: Don't care (H or L).

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{ss}	Vin	-0.5 ^{*1} to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature range	Topr	0 to +70	°C
Storage temperature range	Tstg	-55 to +125	°C
Storage temperature range under bias	Tbias	-10 to +85	°C

Note: 1. Vin min = -2.0 V for pulse width ≤ 10 ns.

Recommended DC Operating Conditions ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.5 *1	_	0.8	V

Note: 1. V_{IL} min = -2.0 V for pulse widths \leq 10 ns.

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Min	Typ ^{*1}	Max	Unit	Test Conditions
Input leakage current	I _u	_	_	2.0	μΑ	$V_{cc} = Max$ $Vin = 0 \ V \ to \ V_{cc}$
Output leakage current	I _{LO}	_	_	2.0	μΑ	$\overline{\text{CS}} = V_{\text{IH}}, V_{\text{I/O}} = 0 \text{ V to } V_{\text{CC}}$
Operating V _{cc} current	I _{cc}	_	60	120	mA	$\overline{\text{CS}} = V_{\text{IL}}$, lout = 0 mA, min cycle
Standby V _{cc} current	I _{SB}	_	15	30	mA	CS = V _{IH} , min cycle
Standby V _{cc} current (1)	I _{SB1}	_	0.02	2.0	mA	
	I _{SB1} *2	_	_	0.1	μΑ	
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 8 mA
Output high voltage	V _{OH}	2.4	_	_	V	I _{OH} = -4.0 mA

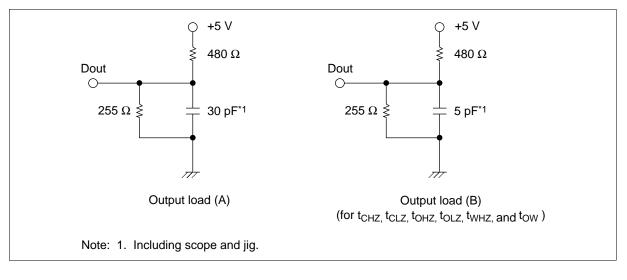
Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

2. L-version

Capacitance (Ta = 25°C, f = 1 MHz)*1

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	_	6	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V

Note: 1. These parameters are sampled and not 100% tested.

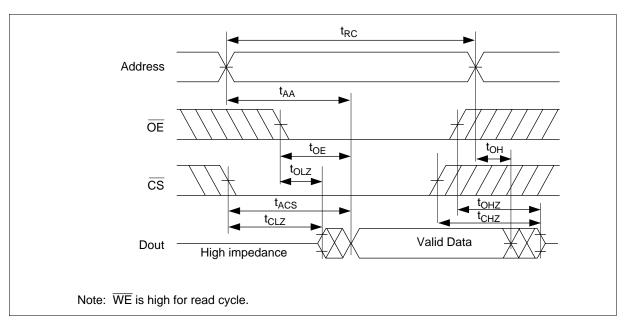

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, unless otherwise noted)

Test Conditions

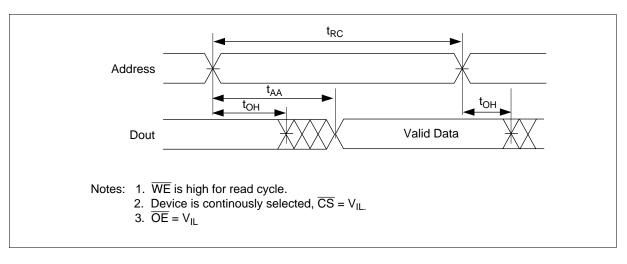
Input pulse levels: V_{ss} to 3.0 V
Input rise and fall time: 5 ns

• Input and output timing reference levels: 1.5 V

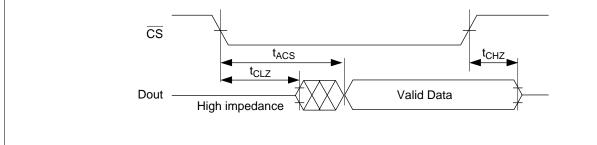
• Output load: See figures



Read Cycle


		HM6289-25		HM6289-35		
Parameter	Symbol	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	25	_	35	_	ns
Address access time	t _{AA}	_	25	_	35	ns
Chip select access time	t _{ACS}	_	25	_	35	ns
Chip selection to output in low-Z	t _{CLZ} *1	5	_	5	_	ns
Output enable to output valid	t _{OE}	_	12	_	15	ns
Output enable to output in low-Z	t _{OLZ} *1	0	_	0	_	ns
Chip deselection to output in high-Z	t _{CHZ} *1	0	12	0	20	ns
Chip disable to output high-Z	t _{OHZ} *1	0	10	0	10	ns
Output hold from address change	t _{oH}	3	_	5	_	ns

Note: 1. Output transition is measured ± 200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.

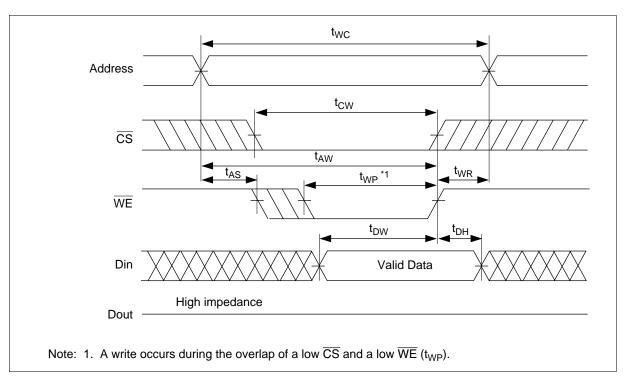

Read Timing Waveform (1)

Read Timing Waveform (2)

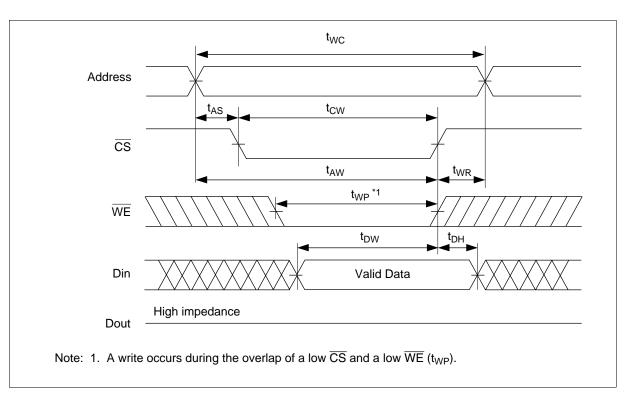
Read Timing Waveform (3)

Notes: 1. $\overline{\text{WE}}$ is high for read cycle.

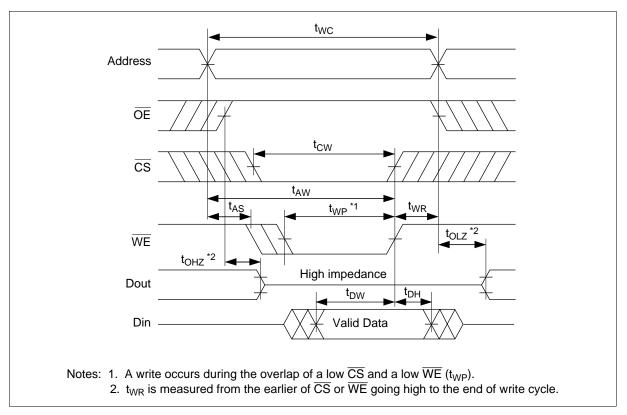
2. Address valid prior to or coincident with $\overline{\text{CS}}$ transition low.

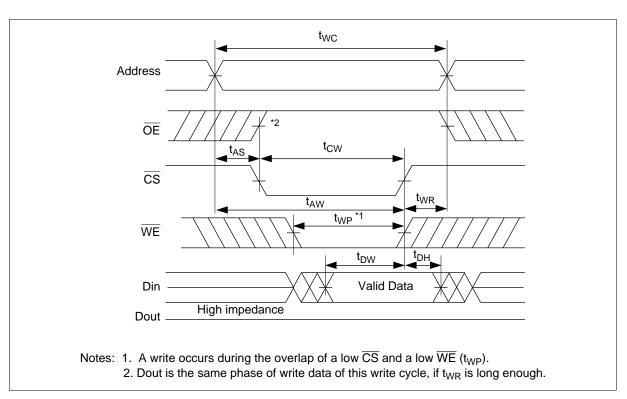

3. $\overline{OE} = V_{IL}$

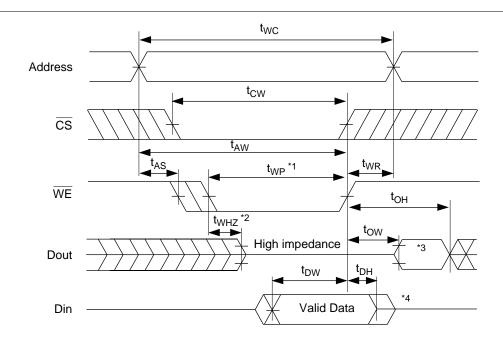
Write Cycle


		HM6289	9-25	HM6289-35		
Parameter	Symbol	Min	Max	Min	Max	Unit
Write cycle time	t _{wc}	25	_	35	_	ns
Chip selection to end of write	t _{cw}	20	_	30	_	ns
Address valid to end of write	t _{AW}	20	_	30	_	ns
Address setup time	t _{AS}	0	_	0	_	ns
Write pulse width	t _{wP}	20	_	30	_	ns
Write recovery time	t _{wR}	0	_	0	_	ns
Output disable to output in high-Z ⁻¹	t _{OHZ}	0	10	0	10	ns
Write to output in high-Z ^{*1}	t _{wHZ}	0	8	0	10	ns
Data to write time overlap	t _{DW}	12	_	20	_	ns
Data hold from write time	t _{DH}	0	_	0	_	ns
Output active from end of write *1	t _{ow}	5	_	5	_	ns

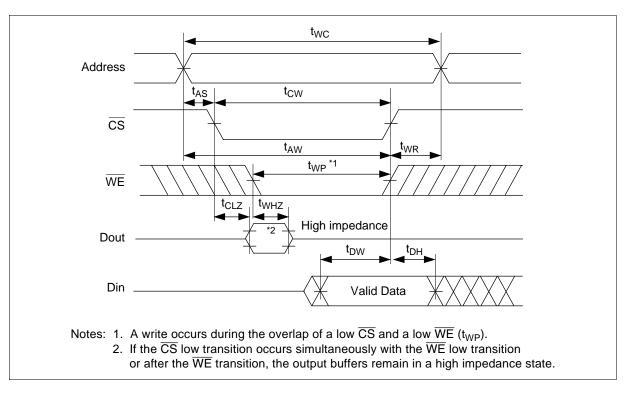
Note: 1. Output transition is measured ± 200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.


Write Timing Waveform (1) $(\overline{OE} = High, \overline{WE} = Controlled)$


Write Timing Waveform (2) (\overline{OE} = High, \overline{CS} = Controlled)


Write Timing Waveform (3) (\overline{OE} = Clocked, \overline{WE} = Controlled)

Write Timing Waveform (4) (\overline{OE} = Clocked, \overline{CS} = Controlled)


Write Timing Waveform (5) ($\overline{OE} = Low, \overline{WE} = Controlled$)

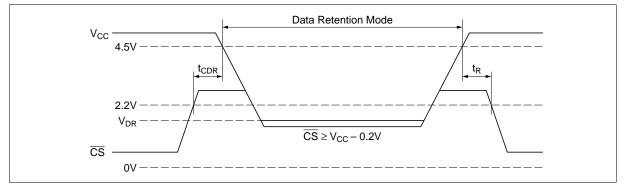
Notes: 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$ (t_{WP}).

- 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 4. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state after t_{OW}. Then the data input signals of opposite phase to the outputs must not be applied to them.

Write Timing Waveform (6) $(\overline{OE} = Low, \overline{CS} = Controlled)$

Low V_{cc} Data Retention Characteristics (Ta = 0 to +70°C)

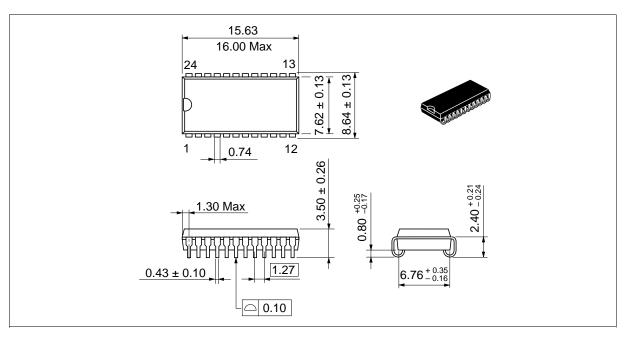
These characteristics are guaranteed for the L-version only.


Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
V _{cc} for data retention	V_{DR}	2	_	_	V	$\label{eq:control_control_control} \begin{split} \overline{CS} &\geq V_{\text{cc}} - 0.2 \text{ V}, \\ \text{Vin} &\geq V_{\text{cc}} - 0.2 \text{ V or} \\ 0 \text{ V} &\leq \text{Vin} \leq 0.2 \text{ V} \end{split}$
Data retention current	I _{CCDR}	_	_	50*2	μΑ	_
		_	_	35 ^{*3}	μΑ	_
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	t _{RC} *1	_	_	ns	

Notes: 1. t_{RC} = Read cycle time

2. $V_{cc} = 3.0 \text{ V}$

3. $V_{CC} = 2.0 \text{ V}$


Low V_{CC} Data Retention Waveform

Package Dimension

HM6289JP/LJP Series (CP-24D)

Unit: mm

