1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

PM5313

SPECTRA-622

SONET/SDH PAYLOAD

EXTRACTOR/ALIGNER
FOR 622 MBIT/S

DRIVER MANUAL

DOCUMENT ISSUE 2
ISSUED NOVEMBER, 2000

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

ABOUT THIS MANUAL AND SPECTRA-622

This manual describes the SPECTRA-622 device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s interfaces
to your application, real-time operating system, and the devices. It also describes in
general terms how to modify and port the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

» Evaluate and test the SPECTRA-622 devices
* Modify and add to the SPECTRA-622 driver’s functions
e Port the SPECTRA-622 driver to a particular platform.

References

For more information about the SPECTRA-622 driver, see the driver’s release notes. For
more information about the SPECTRA-622 device, see the documents listed in Table 1
and any related errata documents.

Table 1: Related Documents

Document Name Document Number
SPECTRA-622 Telecom Standard Product Data PMC-1981162
Sheet

PM5313 SPECTRA-622 SONET/SDH Payload PMC-1981271
Extractor/Aligner for 622 Mbit/s Interfaces Short

Form Data Sheet

Note: Ensure that you use the document that PMC-Sierra issued for your version of the
device and driver.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual

Revision History

Issue No.

Issue Date

Details of Change

Issue 1

December 1999

Document created

Issue 2

November
2000

1) Modified the alarm, status and statistics architecture
(structures and APIs):

a) removed MSB and DSB structures as well as

spect raCl ear St at s() API since statistics are no longer
accumulated inside the driver.

b) Added SPE_STATUS XX and SPE_CNT_ XX structures to add
granularity.

c) replaced spect r aGet St at s() API with

spectraGet Cnt XX() and spect r aGet St at usXX() APIs.

2) Modified “normal mode” initialization profile in section 4.2:
a) replaced seri al Mode, st nLMbde and ds3Mbde fields with 3
new fields: | i neSi deMbde, sysSi deMbde and cl ock77 to
allow for a better initialization of the 10 interface.

b) replaced mast er [4] [3] field with st s12c and st s3c[4]
for easier configuration of concatenated payloads.

3) Added spect r aTOCReadS1 to read the received S1 byte.

4) Removed spect r aRPPSDi agPJ and spect r aTPPSDi agPJ
APIs since the feature is not available in hardware.

5) Fixed incorrect descriptions throughout the document:

a) added missing cf gCnt field in DDB structure.

b) added missing t pps! | | req[4] [3] in ISR mask structure.
c) removed r ppsCdi ff[4] [3] and t ppsBI kBi p[4] [3] from
CFG_CNT.

d) added missing au3 parameter description in

spect r aDPGVicenRegen.

e) fixed function table description of spect r al SR

f) valid states for spect r aDi agTest Reg now show as
PRESENT only.

6) Fixed various typos and formatting issues.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

Legal Issues

None of the information contained in this document constitutes an express or implied
warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular
purpose of any such information or the fitness, or suitability for a particular purpose,
merchantability, performance, compatibility with other parts or systems, of any of the
products of PMC-Sierra, Inc., or any portion thereof, referred to in this document.
PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind
regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost
data resulting from any use of or reliance upon the information, whether or not
PMC-Sierra, Inc. has been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its
customers’ internal use. In any event, no part of this document may be reproduced in any
form without the express written consent of PMC-Sierra, Inc.

© 2000 PMC-Sierra, Inc.

PMC-1991254 (R2), ref 990876 (R3)

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4Vv7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com

Web Site: http://www.pmc-sierra.com

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

TABLE OF CONTENTS

About this Manual and SPECTRA-622ccooiiiiiiiiiee ettt 2
TabIE Of CONIENTS. ...ttt e e st e e e st e e e sab e e e s sbeeeeeees 5
[o) T 0= PR 11
TS o B =1 o] 1= RSP 12
1 Driver Porting QUICK SEaArtccuiiiiiiii e e e e e e e e e e e 13
2 Driver FUNCLIONS @Nd FEAIUESueiiiiiie ittt a e e ee e 14
3 SOftWAre ArCHITECIUIE e e e eas 16
3.1 Driver EXternal INterfaCes.ot 16
Application Programming Interfaceccccooiiiiiiiiiiii e 16

Real-Time OS INterfaceooueiiiiiieeie e 17

Driver Hardware INtErface ... 17

G720 /- 11 T @de) 4] o Yo 1= o1 £ 0 17
Alarms, Status and StatiStICScovvviieiiiiiie i 19

INPUL / OULPUL (IO) et ee e e e s e e e e e e e s ee e e e e e e nnnnnes 19

Transport Overhead Controller (TOC).......ccccviiiiiie e 19

Receive / Transmit Section Overhead Processor (RSOP/TSOP).............. 20

SONET / SDH Section Trace Buffer (SSTB)cuveeevvicciiieeeee e ieiiiieeeeee e 20

Receive / Transmit Line Overhead Processor (RLOP/TLOP)ccccco...e 20

Receive Path Processing Slice (RPPS) ... 20

Transmit Path Processing Slice (TPPS) ..o 20

Ring Control Ports (RING)uuuiiiiiiiiiiiieeee e 20

WAN Synchronization Controller (WANS) ..., 20

DROP Bus PRBS Generator and Monitor (DPGM)........ccccccovvcivieeneeeninnnns 21

ADD Bus PRBS Generator and Monitor (APGM).........cccovvvviviiveeee v, 21

Module Data BIOCK (MDB)c.cuvuiiiieeeeiiiiiieeee e e e e ceiieeee e e e e e s esninreneeeae e 21

Device Data BIOCKS (DDB)uuuiiiiieiiiiiiiiiiieiee e s ciieee e e e s ssvvnneee e e e e 21

Interrupt SErvice ROULINE........c..viiiiiie e 21

Deferred Processing ROULINEoovieiiiiiiiiiiiie e e e e 21

3.3 SOMWAIE SEALESeeiiiiiieiiiee e e e a e e 22
MOAUIE SEALES ...ttt e e e e e e e e e aanes 22

DEVICE SEALES ..o i i ittt e e e e et e e e e e e e 23

3.4 ProCesSING FIOWScooiiiiiiiieii et a e 24
Module ManNagEMENT........cciiiiiiiiiiiii e a e a e e 24

Device ManagemMENT.ccuii ittt e e e e e e e 25

T I [01 (=T ¢ (T o a Y= Y/ [ox | o USSR 26
Calling SPECIIAISReuiiiiiiee e r e e e e r e e e e e e e annes 26

Calling SPECITADPRuviiiiee e e e s s r e e e e e e e ennes 27

Calling SPECIIAPOI.........ueiiieeee i e e 28

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

4 DALA SHUCIUIESeeeiiiieeiiieiie et e et e e et e e e e e e st bbb et e e e e e e san b e r e e e e e e e s e snnrnnneeas 29
o R O] 0153 1= | £ TP PP PPPP PP PPOPP 29
4.2 Structures Passed by the Application............cccoiiiiiiiiiiiiiiiee e 29

Module Initialization Vector: MIV ... 29
Device Initialization Vector: DIV.........coou i 30
Initialization Profile: INIT_PROF..........ccccoi i, 31
Diagnostic Profile: DIAG_PROF ... 35
ISR Enable/Disable Mask..............ccoiiiiiii e 37
4.3 Structures in the Driver’s Allocated MemOryccuvveveeeiiiiciiiieeee e ecieeeeeeens 41
Module Data BIOCK: MDBcooiiiiiiiiiiiiie e 41
Device Data BIOCK: DDB........cuuiieiiiiieeiiiiie ettt 42
Statistic Counter Configuration (CFG_CNT)ccooiiviiiiiiieee e vciiieeeee e 50
Statistic COUNLEIS (CNT) weriieeeiiiciiiieeeie e e s e s e e e e e e s s serre e e e e e e s srnaarreeeeeeanns 51
4.4 Structures Passed Through RTOS BUffers ..o 54
Interrupt Service VECIOI: ISVuiiiiiiiiiiiieee e 54
Deferred Processing Vector: DPVc.uuiiiiiiiiiiiieeeee e 54
4.5 Global Variable ... 55
5 Application Programming INterfacCe...........coouiuiiiiiiiiiiiiieee e 56
5.1 Module INItIaliZatioN.........ooieuiiiiiiie e 56
Opening the Driver Module: spectraModuleOpen...........cccccooiiiiieeieaennnns 56
Closing the Driver Module: spectraModuleCloseccccccevvvcvvvieereeeiinnns 56
5.2 MOAUIE ACHIVALIONeeieeiiiiiie et e e 57
Starting the Driver Module: spectraModuleStart...........cccccceevvvciviienreeenninns 57
Stopping the Driver Module: spectraModuleStopccccceveevviciiieeeeeeenenns 57
5.3 Profile Management.........cccuuuiiiiiiei e e e 58
Initialization Profile............o e 58
Creating an Initialization Profile: spectraAddInitProfile..............ccccocciieie 58
Retrieving an Initialization Profile: spectraGetinitProfile..................co....... 59
Deleting an Initialization Profile: spectraDeletelnitProfile..............c............ 59
DiagnoStic Profile..........ueeeiiieee e 60
Creating a Diagnostic Profile: spectraAddDiagProfile............cccoiiinnnis 60
Retrieving a Diagnostic Profile: spectraGetDiagProfile..........cccccccvveevinnns 60
Deleting a Diagnostic Profile: spectraDeleteDiagProfileccccconnee. 61
5.4 Device Addition and Deletioncceeiiiiiiieiiiiiee e 61
Adding a Device: SPeCtraAddcoccvviiieree e 61
Deleting a Device: spectraDeletecccvvvieeiee i 62
5.5 Device INILANZAtIONooiiiiiiiiiiiiiie e 63
Initializing a Device: SPeCtralNitcoooiiiiiiiiiiiiiiee e 63
Updating the Configuration of a Device: spectraUpdate..............ccccceeennee 63
Resetting a Device: SpectraReSelccuuiiiiiiiiiiie e 64
5.6 Device Activation and De-ACtVALIONcouiiiiiiiiiie i 64
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

Activating a Device: SPeCtraACtVALEceveeeiiviiiieieee e 64

DeActivating a Device: spectraDeACtVALecccvveiveeeeeeiicciiiieee e 65

5.7 Device Reading and WIING..........cooiuiiiiiiiiiiiiieieee e 66

Reading from a Device Register: spectraRead............ccccccviiiiiiiiieieaannnnns 66

Writing to a Device: SPECLraWIILecc.evviiiiiiee e 66

Reading a Block of Registers: spectraReadBlocK............cccoociiiieiiiiiniis 67

Writing a Block of Registers: spectraWriteBIlock ..., 68

5.8 Transport Overhead Controller (TOC)ooiiiiiiiiiiieee e 68

Modifying the Z0 Byte: spectraTOCWIItEZO0..........cccvvvveeeeeeiiiiiiiieee e e e 68

Modifying the S1 Byte: spectraTOCWIItESTccooccvvvveeeeee e cciiiieeee e 69

Reading the S1 Byte: spectraTOCReadS1ccccvvvvveveeeiviiiiiieeece e 69

5.9 Receive / Transmit Section Overhead Processor (RSOP/TSOP)......cccccceevueee 70

Forcing Out-of-Frame: spectraSOPFOrceOOFccccccvveeiiiiciiiiiieeee e 70

Inserting Line AlS: spectraSOPINsertLineAIScccvvveveeei i 71

Forcing Errors in the Al Byte: spectraSOPDiagFB...........ccoooiiiiiieiieennnns 71

Forcing Errors in the B1 Byte: spectraSOPDIagBlccccccovviiiiiieiieennnns 72

Forcing Loss-Of-Signal: spectraSOPDIagLOS..........cccccevieeiiiiiiiieeeee e 72

5.10 SONET / SDH Section Trace Buffer (SSTB).........uceiiiiiiiiiiiiiiieeeeiiiiieeee e 73
Retrieving and Setting the Section Trace Messages:

SPECIraSECtiONTIACEMSQcueeiiiiieieee it 73

5.11 Receive / Transmit Line Overhead Processor (RLOP/TLOP)........ccccccvveeeennnns 73

Inserting Line Remote Defect Indication: spectraLOPInsertLineRDI 73

Forcing Errors in the B2: spectraLOPDIagB2..........cccccceveeeeiiiiiiiiieeeeeee s 74

Reading the Received K1 and K2 Bytes: spectraLOPReadK1K2.............. 75

Writing the Transmitted K1 and K2 Bytes: spectraLOPWriteK1K2 75

5.12 Receive Path Processing Slice (RPPS).......cooiiiiiiiiiiiiiiiiiee e 76

Retrieving and Setting the Path Trace Messages: spectraPathTraceMsg.76

Forcing Loss-Of-Pointer: spectraRPPSDIagLOPccccciiiiiiiiiiieieiiins 76

Forcing Errors in the H4 Byte: spectraRPPSDiagH4 ... 77

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS ... 78

Forcing DS3 AIS: spectraRPPSDS3AISGENccoiiiiviiiiiieee et 78

5.13 Transmit Path Processing SliCe (TPPS) ...ccviieiiiiiiiieee s 79

Forcing Path AIS: spectraTPPSINSErPAISoccciieeeeee e 79

Forcing Errors in the B3 Byte: spectraTPPSDiagB3........ccccccoevvvvevveeennnns 80

Forcing a Pointer Value: spectraTPPSFOrceTXPIrcccveevvvvcviiiinee e, 80

Writing the New Data Flag Bits: spectraTPPSInsertNDF...............ccccuveeee. 81

Writing the Path Remote Error Indication Count:; spectraTPPSInsertPREI81

Forcing Errors in the H4 Byte: spectraTPPSDiagH4.........ccooviiiiieeieeennnis 82

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS ... 83

Forcing DS3 AIS: spectraTPPSDS3AISGENcoooiiiiiiiiiiieeieiiiieeeee e 83

Writing the J1 Byte: spectraTPPSWIteJ1oooiiiiiiiiieiiiiieieee e 84

Writing the C2 Byte: spectraTPPSWHIEC2cceeiveeieiieiiieeeee e 84

Writing the F2 Byte: spectraTPPSWIHtEF2ccccvvvvvveee e 85

Writing the Z3 Byte: spectraTPPSWIteZ3ccccvvvveeee e 86

Writing the Z4 Byte: spectraTPPSWItEZAccccvveeeeee e 86

Writing the Z5 Byte: spectraTPPSWIteZ5ccccvvveeeee e 87

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

5.14 Ring Control Ports (RING)coeieiiiiiiiiiiiieee st e e e s s e e e e e e e s snvnneeeee e e 87
Sending Line AIS Maintenance Signal: spectraRINGLineAlISControl........ 87
Sending Line RDI Maintenance Signal: spectraRINGLineRDIControl....... 88
5.15 WAN Synchronization Controller (WANS)oooiiiiiiiiiieee e 88
Forcing Phase Reacquisitions: spectraWANSForceReac...........cccccceeeneeee 88
5.16 DROP Bus and ADD Bus PRBS Monitor and Generator (DPGM & APGM)89
Configuring Diagnostics: spectraDiagCfg........ccueeriniiiiiiiiieiiiiiiieeeee e 89
5.17 DPGM FUNCHONSeiiiiieiiiitie ettt e e e e e e e beeeaaa e an 90
Forcing Generation of a New PRBS: spectraDPGMGenRegen 90
Forcing Bit Errors: spectraDPGMGENFOrCEENT........ccccvvveeeiiiiiiiiieeee e 90
Forcing a Resynchronization: spectraDPGMONRESYNCccvvvvvveeeeinnns 91
5.18 APGM FUNCLONSooiiiiiiiiieiiieesiee et 92
Forcing Generation of a New PRBS: spectraAPGMGenRegen................. 92
Forcing Bit Errors: spectraAPGMGENFOICEEITccvvvvvvveeeiiiiiiiiieeeee e e 92
Forcing a Resynchronization: spectraAPGMONRESYNCcc.eveeeeeeeennnnes 93
5.19 Interrupt SErviCe FUNCHONScccoiiiiiiiiiiie et 93
Getting the Interrupt Mask: spectraGetMask............ccceeiiiiiiiiiiiccs 93
Setting the Interrupt Mask: spectraSetMaskccccveeeieiiiiiiiiiiienieenee 94
Clearing the Interrupt Mask: spectraClearMaskcccccoevviiiiiiieiinennnnnns 95
Polling Interrupt Status Registers: spectraPollccccceiiiiiiiiiinnns 95
Interrupt Service Routing: SPectralSR.........cccccveeiviiiiiieeee e 96
Deferred Processing Routine: spectraDPR...........ccccvvveeei v 96
5.20 Alarm, Status and StatiSticS FUNCHIONScccoooveiiieiniiee e 97
Configuring Statistical Counts: spectraCfgStatsccccccevveevviviieneeeenneens 97
Statistics Collection Routine: spectraGetCnt...........cccvvveveeeeiiicivieeneeee e 97
Retrieving Counter for SOP Block: spectraGetCntSOPccccceeveeennnes 98
Retrieving Counter for LOP Block: spectraGetCntLOP............ccccceeeeeeines 98
Retrieving Counter for RPPS Block: spectraGetCntRPPS......................... 99
Retrieving Counter for TPPS Block: spectraGetCntTPPSccoo..e. 100
Retrieving Counter for Pointer Justifications: spectraGetCntPJ............... 100
Retrieving Alarm Status: spectraGetStatusccvvveeeeeeniiiiiiiieeeee s 101
Retrieving Alarm Status for IO block: spectraGetStatuslOc...cco.eeee 102
Retrieving Alarm Status for SOP block: spectraGetStatusSOP................ 102
Retrieving Alarm Status for LOP block: spectraGetStatusLOP 103
Retrieving Alarm Status for RPPS block: spectraGetStatusRPPS........... 104
Retrieving Alarm Status for TPPS block: spectraGetStatusTPPS............ 104
5.21 DEViICE DIagNOSLICS. . ceiieeiiiiciiiieieie e e e siiiie e e e e s s s strer e e e e e s e s s e e e e e e s s annnrenneeeees 105
Verifying Register Access: spectraTestReq..........uueeeeeeriiiiiiiieieeeeeiiiiee, 105
Clearing and Setting a Line Loopback: spectraLoopLing...........ccccueeeeenn. 105
Clearing and Setting a Serial Loopback: spectralLoopSerialDiag 106
Clearing and Setting a Parallel Loopback: spectraLoopParaDiag 107
Clearing and Setting a System-Side Loopback: spectralLoopSysSideLinel07
Clearing and Setting a DS3 Line Loopback: spectraLoopDS3Line.......... 108
5.22 Callback FUNCLONScoiiiiiiieeeee et 109
Callbacks Due to IO Events: chackSpectralO...........ccccvvvveeeeiiiiciiiineeenn, 109
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

Callbacks Due to TOC Events: chackSpectraTOC.........cccccceeevivcvvieneennnn. 110
Callbacks Due to SOP Events: chackSpectraSOPcccccceeevvvvvvinennnnn. 110
Callbacks Due to SSTB Events: chackSpectraSSTB........cccccoviiiiieeeeenn. 111
Callbacks Due to LOP Events: chackSpectralLOPccccccoviiiiiiiinnnnnn. 111
Callbacks Due to RPPS Events: cbackSpectraRPPS............coociiiieeen. 112
Callbacks due to TPPS events: cbackSpectraTPPS.........cccccoiiiiiineeenn. 113
Callbacks Due to WANS Events: cbackSpectraWANSccccveeeeennn. 113
Callbacks Due to DPGM Events: cbackSpectraDPGM............ccccvveeeeennn. 114
Callbacks Due to APGM Events: cbhackSpectraAPGM............ccccvvveeeeennn. 114

6 Hardware INTEIfACEoooiiiiie s 116
6.1 DEVICE IO .o s 116
Reading Registers: sysSpectraRead...........ccccccevvvivviieireeeii e e e 116

Writing Values: SySSPeCtraWIite........ccuvvveeveeee et 116

LI [01 (=T ¢ (] 0| A ST=] /(o o S 117
Installing the ISR Handler: sysSpectralSRHandlerInstall........................ 117

ISR Handler: sysSpectralSRHandIer.............ccccoooiiiiiiiiiiiiiiiieeeeeee 118
Removing Handlers: sysSpectralSRHandlerRemove..............cccccceeeeenee 118

DPR Task: sysSpectraDPRTASKcooicuuiiiiiiiaaa it 119

T RTOS INEITACE ...eeeiiie ittt e e e e et e e e e e e e e ennbeeeeas 120
7.1 Memory Allocation / De-AlloCatiONeeiiiiiiiiiiiiiiieee e 120
Allocating Memory: sysSpectraMemAIllOCccccvveeeeeeiivcciieee e, 120

Freeing Memory: sysSpectraMemMFTeeccovvvviiieeeeeee e e 120

A 2 = 1 (= g\ = Vg T= To [=T o 0= o | SO 121
Starting Buffer Management: sysSpectraBufferStart..........ccccccoeevvvvnnennnn. 121

Getting DPV Buffers: sysSpectraDPVBuUfferGet............ccccceeeevvivcviinnnnnn. 121

Getting ISV Buffers: sysSpectralSVBUfferGet...........occuveeeeiieiiiiiiiieneeen. 122
Returning DPV Buffers: sysSpectraDPVBUfferRIN............coccvvieeeieennnnns 122
Returning ISV Buffers: sysSpectralSVBuUfferRtncccccooviinnnis 123

Stopping Buffer Management: sysSpectraBufferStopccccccoevviieeeennn. 123

RS T o =1=10 0] 1o o I U PTT TP 124
Disabling Preemption: sysSpectraPreemptDisable.............occcvveeiieinnnnnns 124
Re-Enabling Preemption: sysSpectraPreemptEnable..............ccc.ccooneeee. 124

A S 1= £ PRSPPSO 125
Suspending a Task Execution: sysSpectraTimerSIeepcccceevvvcvvvveerennnn. 125

T = o 4 110 T I 1V PO 126
8.1 DIrIVEr SOUICE FlES.....eiiiiiiii et 126
8.2 Driver Porting ProCEAUIEScuiiiiii it a e 127
Step 1: Porting the RTOS interface ..o, 127

Step 2: Porting the Hardware Interfacecccccceiiniiiiiiiiiiee, 129

Step 3: Porting the Application-Specific Elements............cccccoeviiiiiiienennnn. 130

Step 4: BUilding the DIVEToooeiiiieieeeeeee e 130

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

Appendix A: Driver RetUrn COAEScccviiieeieee it ee e s sieeee e e e e
Appendix B: Coding CONVENTIONS.........ccoiiiiiiieeie e cciieee e e srrre e e e e
Y=o o 1= SR
(070] 153 7> 1| 15U
S (o] L0 = USSP
L1 o 1o 1,
VaArADIES ...uviiiii
e I 1L
Hardware Dependent Files........cccccevvvvciiiiieeee e,
Other Driver FIleS......cuuviiiiee e
S o 1= 1 1 1SS
o] (o]0 1Y/ 0 1 = S PP UOPPPPPPTTR
INDEX .. ettt ettt ettt ettt ettt ettt e e st e s bbb e e s nn b e e e bt e e e nnaeeas

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

10

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

DIIVEL INTEITACESeei ettt 16
DIIVEr ATCHITECIUIEvii it 19
Driver SOftWAre SEAESccocviiiiieii e 22
Module Management FIOW Diagramcccooicuirirreeeeniiiieiieeeeeessssinneeeeeeeenanns 24

Device Management FIOW Diagramceciiicuieriieeeeeiiiiiiieeeeee e s sssienneeeeee e e s 25
Interrupt Service MOAEl 26

Polling Service MOEL.............ueiiiiiii e 28

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r N PMC-Sierra

LIST OF TABLES

Table 1: Driver FUNCIONS @nd FEALUIEScocuiiiiiiiiiie et 14
Table 2: Module Initialization Vector: SSPE_MIVc..vviiiiie i 30
Table 3: Device Initialization Vector: SSPE_DIV........cccviiiiiie i 30
Table 4: Initialization Profile: SSPE_INIT _PROF........ccoviiiiieii e 32
Table 5: Initialization Data: SSPE_INIT_DATA NORMccccoiiiiiiiiiieee e 33
Table 6: Initialization Data: SSPE_INIT_DATA COMP........cccccciiii, 34
Table 7: Initialization Data: SSPE_INIT_DATA FRM..........cccciiiii e, 34
Table 8: Diagnostic Profile: SSPE_DIAG_PROFcc.uuiiiiiiiiiieieeee e 35
Table 9: Diagnostic Data: SSPE_DIAG_DATA NORM ...t 36
Table 10: Diagnostic Data: SSPE_DIAG_DATA_COMPu ..ot 36
Table 11: Diagnostic Data: SSPE_DIAG_DATA FRM......ciiiiiiiiiiiiieeeiieeeee e 37
Table 12: ISR Mask: SSPE_MASKcccoiiiiiiee ettt s seer e e e et raee e e e e e e e annrnaeee s 37
Table 13: Module Data BIOCK: SSPE_MDB........ccoiiiiiiiiiiiiiiee e ee e 41
Table 14: Device Data BlOCK: SSPE_DDB.........couuiiiiiiiiiiiiiee e csiiieeeee e e s ssneeee e e e e e snenneees 42
Table 15: Input/Output Status: SSPE_STATUS 1O ... 44
Table 16: Counters Config: SSPE_CFG _CNT..ocociiiiiiiieieiiee e e e 50
Table 17: Statistic Counters: SSPE_STAT _CNToooiiiiiiiiie e 52
Table 18: Section Overhead Statistics Counters: SSPE_STAT _CNT_SOP.................... 52
Table 19: Line Overhead Statistic Counters: SSPE_STAT CNT LOPccoeeel. 52
Table 20: SPECTRA-622 Receive Path Processing Statistics Counters:

SSPE_STAT _CNT_RPPS ...ttt e e nbae e e nneas 53
Table 21: Transmit Path Processing Statistics Counters: STAT_CNT_TPPS................... 53
Table 22: Pointer Justification Statistics Counters: STAT_CNT_PJ......cccooccvivveeeevccvnnnn, 54
Table 23: Interrupt Service Vector: SSPE ISV ... 54
Table 24: Deferred Processing Vector: SSPE_DPVcviiiiiiiiiiiinece e 55
Table 25: REIUIN COUES.ciiiiiiiii ittt sttt e e e nbae e e anees 131
Table 26: Variable Type DefinitioNScoccuviiiiiiee e 132
Table 27: Naming CONVENTIONSuuiiiiieiiiiiiiiieee e e st e e e e e e e e snreee e e e e e s s s snneeeeeeeeesennnneees 132
Table 28: File Naming CONVENTIONS.oiiuuiiiiiiaaa ettt e e e eeeeeees 135

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Driver Porting Quick Start

1 DRIVER PORTING QUICK START

This section summarizes how to port the SPECTRA-622 device driver to your hardware
and operating system (OS) platform. For more information about porting the SPECTRA-
622 driver, see section 8 (page 126).

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the SPECTRA-622 driver.

The code for the SPECTRA-622 driver is organized into C source files. You may need to
modify the code or develop additional code. The code is in the form of constants, macros,
and functions. For the ease of porting, the code is grouped into source files (sr c) and
include files (i nc). The source files contain the functions and the include files contain the
constants and macros.

To port the SPECTRA-622 driver to your platform:

Step 1: Port the driver’s RTOS interface (page 127):

° Data types

° OS-specific services

° Utilities and interrupt services that use OS-specific services
Step 2: Port the driver’s hardware interface (page 129)

° Port low-level device read-and-write macros.

° Define hardware system-configuration constants.
Step 3: Port the driver’s application-specific elements (page 130):

° Define the task-related constants.

° Code the callback functions.

Step 4: Build the driver (page 130).

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID PMC-1991254 Issue 2

Spectra-622 (PM5313) Driver Manual
Driver Functions and Features

PB A C PMC-Sierra

2 DRIVER FUNCTIONS AND FEATURES

This section describes the main functions and features supported by the SPECTRA-622

driver.

Table 1: Driver Functions and Features

Document ID PMC-1991254 Issue 2

Function Description

Open/ Close Opening the Driver Module allocates all the memory needed by the

Driver Module driver and initializes all Module level data structures.

(page 56) Closing the Driver Module shuts down the driver module gracefully
after deleting all devices that are currently registered with the driver,
and releases all the memory allocated by the driver.

Start / Stop Starting the Driver Module involves allocating all RTOS resources

Driver Module needed by the driver such as timers and semaphores (except for
memory, which is allocated during the Open call).

(page 57)

Closing the Driver Module involves de-allocating all RTOS
resources allocated by the driver without changing the amount of
memory allocated to it.

Add / Delete Adding a device involves verifying that the device exists, associating

Device a device Handle to the device, and storing context information about
it. The driver uses this context information to control and monitor the

(page 61) device.

Deleting a device involves shutting down the device and clearing the
memory used for storing context information about this device.

Device The initialization function resets then initializes the device and any

Initialization associated context information about it. The driver uses this context
information to control and monitor the SPECTRA-622 device.

(page 63)

Activate / De- Activating a device puts it into its normal mode of operation by

Activate Device | enabling interrupts and other global registers. A successful device
activation also enables other API invocations.

(page 64)

On the contrary, de-activating a device removes it from its operating
state, disables interrupts and other global registers.
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Driver Functions and Features

Read / Write These functions provide a ‘raw’ interface to the device. Device

Device Registers | registers that are both directly and indirectly accessible are available
for both inspection and modification via these functions. If

(page 66) applicable, block reads and writes are also available.

Interrupt Interrupt Servicing is an optional feature. The user can disable device

Servicing / interrupts and instead poll the device periodically to monitor status

Polling and check for alarm/error conditions.

(page 93) Both polling and interrupt driven approaches detect a change in
device status and report the status to a Deferred Processing Routine
(DPR). The DPR then invokes application callback functions based
on the status information retrieved. This allows the driver to report
significant events that occur within the device to the application.

Statistics Functions are provided to retrieve a snapshot of the various counts

Collection that are accumulated by the SPECTRA-622 device. Routines should
be invoked often enough to avoid letting the counters to rollover.

(page 97)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

3 SOFTWARE ARCHITECTURE

This section describes the software architecture of the SPECTRA-622 device driver. This
includes a discussion of the driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the SPECTRA-622 device driver.

Figure 1: Driver Interfaces

Application

A

Function Calls Application Callbacks

v Service Callbacks

SPECTRA-622 Device Driver RTOS

A A Service Calls

Hardware Register
Interrupts Accesses

SPECTRA-622 Devices

Application Programming Interface

The driver’s API is a collection of high level functions that can be called by application
programmers to configure, control, and monitor the SPECTRA-622 device, such as:

» Initializing the device
» Validating device configuration

» Retrieving device status and statistics information.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

3.2 Main

» Diagnosing the device

The driver API functions use the driver library functions as building blocks to provide
this system level functionality to the application programmer (see below).

The driver API also consists of callback functions that notify the application of
significant events that take place within the device and driver, including alarms reporting.

Real-Time OS Interface

The driver’s RTOS interface module provides functions that let the driver use RTOS
services. The SPECTRA-622 driver requires the memory, interrupt, and preemption
services from the RTOS. The RTOS interface functions perform the following tasks for
the SPECTRA-622 device and driver:

* Allocate and de-allocate memory
» Manage buffers for the ISR and DPR

» Disable and enable preemption

The RTOS interface also includes service callbacks. These are functions installed by the
driver using RTOS service calls, such as installing the ISR handler and the DPR task.
These service callbacks are invoked when an interrupt occurs or the DPR is scheduled.

Note: You must modify RTOS interface code to suit your RTOS.

Driver Hardware Interface

The SPECTRA-622 hardware interface provides functions that read from and write to
device-registers. The hardware interface also provides a template for an ISR that the
driver calls when the device raises a hardware interrupt. You must modify this function
based on the interrupt configuration of your system.

Components

Figure 2 illustrates the top-level architectural components of the SPECTRA-622 device
driver. This applies in both polled and interrupt driven operation. In polled operation the
ISR is called periodically. In interrupt operation the interrupt directly triggers the ISR.

The driver includes the following main components:
* Module and Device(s) Data-Blocks

» Interrupt-Processing Routine

o Deferred-Processing Routine

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

» Alarm, Status and Statistics

e Input/Output

e Transport Overhead Controller

» Section Overhead Processor

* SONET/SDH Section Trace Buffer
» Line Overhead Processor

» Receive Path Processing Slice

e Transmit Path Processing Slice

* Ring Control Ports

* WAN Synchronization Controller

» DROP Bus PRBS Generator and Monitor

« ADD Bus PRBS Generator and Monitor

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

Figure 2: Driver Architecture

Application
Function
Calls
Application A
Callbacks ‘ Driver API ‘
o2
(&) Q
‘ Alarm, Status & ‘ Transport Overhead ‘ S8
P Q=
T Statistics < (.:ongollerr] . » 8
Processing ection Overhea
Routine ‘ Input/Output (10) ‘ ‘ EIEEESEOn
SONET/SDH Section
‘ RING ‘ ‘ WANS ‘ Trace Buffer ° m
Interrupt Line Overhead é O
Context Processor 9:3. 'E
Receive Path n
Processing Slice 9 >
Igteer:/r_upt Transmit Path @
(83 Processing Slice 8o
Routine >3
A ‘ DPGM ‘ ‘ APGM ‘ & °
Hardware Interface ‘
Hardware Register
Interrupts v Accesses

SPECTRA-622 Devices

Alarms, Status and Statistics

The Alarms, Status and Statistics is responsible for monitoring alarms, tracking devices
status information and retrieving statistical counts for each device registered with (added
to) the driver.

Input / Output (10)

The Input / Output section is responsible for configuring the line-side and system-side
device interfaces. On the line-side, functions are provided to control the 622.08 Mbps
clock/data interface. On the system-side, in Telecom Bus mode functions are provided to
control the Add/Drop Telecom Bus data interfaces and the Time Slot Interchange (TSI).
In DS3 mode, functions are provided to control the DS3 data interface.

Transport Overhead Controller (TOC)

The Transport Overhead Controller is responsible for configuring the transport overhead
processing on both receive and transmit sides. Functions are provided to directly write the
Z0 and S1 bytes.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

Receive / Transmit Section Overhead Processor (RSOP/TSOP)

The Receive / Transmit Section Overhead Processor is responsible for configuring and
monitoring the processing of the section overhead on both receive and transmit sides.
Functions are provided to monitor the received section overhead, to enable/disable Line
AIS insertion and to enable/disable insertion of section errors for diagnostics.

SONET / SDH Section Trace Buffer (SSTB)

The SONET / SDH Section Trace Buffer is responsible for configuring and monitoring
the section trace message (J0). Functions are provided to monitor the received section
trace message and set the transmit section message,

Receive / Transmit Line Overhead Processor (RLOP/TLOP)

The Receive / Transmit Line Overhead Processor is responsible for configuring and
monitoring the processing of the line overhead on both receive and transmit sides.
Functions are provided to monitor the received line overhead, to configure and monitor
the RASE (Receive APS Synchronization Extractor), and enable/disable the insertion of
line errors for diagnostics. Functions are provided to directly read/write the K1 and K2
bytes.

Receive Path Processing Slice (RPPS)

The Receive Path Processing Slice functions are provided to configure and monitor the
RTAL (Receive Telecombus Aligner) and tandem connection, to monitor the received
path overhead and path trace message (J1), and to configure the DS3 mapper (D3MD) in
DS3 mode.

Transmit Path Processing Slice (TPPS)

The Transmit Path Processing Slice functions are provided to configure and monitor the
TTAL (Transmit Telecombus Aligner) and tandem connection, to configure the path
overhead, to enable/disable the insertion of path overhead (J1) errors for diagnostics, and
to configure the DS3 mapper (D3MA) in DS3 mode. Functions are provided to directly
write the J1, C2, F2, Z3, Z4 and Z5 bytes.

Ring Control Ports (RING)

Ring Control Ports functions are provided to enable/disable the generation of the rx/tx
ring control port signals.

WAN Synchronization Controller (WANS)

The WAN Synchronization Controller functions are provided to enable/disable the
generation of the WAN synchronization signals.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

DROP Bus PRBS Generator and Monitor (DPGM)

The DROP Bus PRBS Generator and Monitor functions are provided to enable / disable
the insertion of a pseudo random byte sequence inside the payload.

ADD Bus PRBS Generator and Monitor (APGM)

The ADD bus PRBS Generator and Monitor functions are provided to enable / disable the
insertion of a pseudo random byte sequence inside the payload.

Module Data Block (MDB)

The Module Data Block (MDB) is the top-layer data structure, created by the SPECTRA-
622 device driver to keep track of its initialization and operating parameters, modes and
dynamic data. The MDB is allocated via an RTOS call, when the driver module is opened
and contains all the device structures

Device Data Blocks (DDB)

The Device Data Blocks (DDB) are contained in the MDB and they are allocated when
the module is opened. They are initialized by the SPECTRA-622 device driver for each
device that is registered, to keep track of that device’s initialization and operating
parameters, modes and dynamic data. There is a limit on the number of devices that can
be registered with the driver module. This number is set when the driver module is
opened.

Interrupt Service Routine

The SPECTRA-622 driver provides an ISR called spect r al SRthat checks if there are
any valid interrupt conditions present for the device. This function can be used by a
system-specific interrupt-handler function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls
spect r al SRis system and RTOS dependent. Therefore, it is outside the scope of the
driver. Example implementations of an interrupt handler and functions that install and
remove it are provided as a reference on page 117. You can customize these example
implementations to suit your specific needs.

Deferred Processing Routine

The DPR provided by the SPECTRA-622 driver (spect r aDPR) clears and processes
interrupt conditions for the device. Typically, a system specific function, which runs as a
separate task within the RTOS, executes the DPR.

See page 26 for a detailed explanation of the DPR and interrupt-servicing model.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

3.3 Software States

Figure 3 shows the software state diagram for the SPECTRA-622 driver. State transitions
occur on the successful execution of the corresponding transition functions shown. State
information helps maintain the integrity of the MDB and DDB(s) by controlling the set of
operations allowed in each state.

Figure 3: Driver Software States

spectraModuleOpen .«

Start

spectraModuleClos&i\

spectraModuleStop

spectraModuleStart spectraModuleClose

MODULE STATES ‘

spectraAdd spectraDelete

spectraReset

spectraReset

spectralnit

spectraActivate

spectraDeActivate

PER-DEVICE STATES

Module States

The following is a description of the SPECTRA-622 module states. See sections 5.1 and
5.2 for a detailed description of the API functions that are used to change the module
state.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

Start

The driver Module has not been initialized. In this state the driver does not hold any
RTOS resources (memory, timers, etc); has no running tasks, and performs no actions.

Idle

The driver Module has been initialized successfully. The Module Initialization VVector
(MIV) has been validated, the Module Data Block (MDB) has been allocated and loaded
with current data, the per-device data structures have been allocated, and the RTOS has
responded without error to all the requests sent to it by the driver.

Ready

This is the normal operating state for the driver Module. This means that all RTOS
resources have been allocated and the driver is ready for Devices to be added. The driver
Module remains in this state while Devices are in operation.

Device States

The following is a description of the SPECTRA-622 per-device states. The state that is
mentioned here is the software state as maintained by the driver, and not as maintained
inside the device itself. See sections 5.4, 5.5 and 5.6 for a detailed description of the API
functions that are used to change the per-device state.

Start

The Device has not been initialized. In this state the device is unknown by the driver and
performs no actions. There is a separate flow for each device that can be added, and they
all start here.

Present

The Device has been successfully added. A Device Data Block (DDB) has been
associated to the Device and updated with the user context, and a device handle has been
given to the USER. In this state, the device performs no actions.

Inactive

In this state the Device is configured but all data functions are de-activated including
interrupts and alarms, status and statistics functions.

Active

This is the normal operating state for the Device. In this state, interrupt servicing or
polling is enabled.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

3.4 Processing Flows

This section describes the main processing flows of the SPECTRA-622 driver modules.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application
programmer by illustrating the sequence in which the application must invoke the driver
API.

Module Management

The following diagram illustrates the typical function call sequences that occur when
initializing or shutting down the SPECTRA-622 driver module.

Figure 4: Module Management Flow Diagram

START

+ Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
+ the contents of the MDB with the validated MIV.

spectraModuleOpen

Performs module level startup of the driver. This involves allocating RTOS
spectraModuleStart resources such as semaphores and timers and installing the ISR handler
and DPR task.

+ Register an initialization or diagnostic profile. This allows the user to store
spectraAddInitProfile pre-defined parameter vectors that are validated ahead of time. When the
spectraAddDiagProfile device-initialization function is invoked only a profile number need to be
passed. This method simplifies and expedites the above operations.

Perform all device level functions here (add, init, activate, de-activate,
v reset, delete,...)

spectraDeletelnitProfile
spectraDeleteDiagPrfile

Performs Module level shutdown of the driver. This involves deleting all
‘ spectraModuleStop ‘ devices currently installed and de-allocating all timers and semaphores as
v well as removing the ISR handler and DPR task.

‘ spectraModuleClose ‘

De-register an initialization or diagnostic profile previously registered with
the driver.

Performs module level shutdown of the driver. De-allocates all the driver's

memory.
END
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24

Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Software Architecture

Device Management

The following diagram shows the functions and process that the driver uses to add,
initialize, re-initialize, and delete the SPECTRA-622 device.

Figure 5: Device Management Flow Diagram

START

v

spectraAdd

v

spectralnit

[spectraActivate J

[spectraReset J

y

Detects the new device in hardw are, assigns a DDB to the new device
and stores the user's context for the device. Returns a device handle to
the user.

Applies a reset to the device and initializes the device registers and
associated RAMs based on the DIV passed by the user. The user may
only pass a profile number, w hich corresponds to a previously saved &
validated set of configurations (by using spectraAddinitProfile).

Prepares the device for normal operation by enabling interrupts and other
global enables. ISR routines are installed w hen the module is started
using sysSpectralSRHandlerInstall. The device is now operational and all
other API can be invoked.

In order to re-initialize the device, reset the device using spectraReset
and go through the initialization sequence again.

- ~ De-activates the device and removes it from normal operation. This
spectraDeActivate involves disabling the device interrupts. ISR routines for this device are
L) removed using sysSpectralSRHandlerRemove w hen the module is
* closed.

r N

spectraReset Applies a softw are reset to the device to put it in its default startup state.
g * J
r 7y Removes the device fromthe list of devices being controlled by the

spectraDelete SPECTRA-622 driver. This function de-allocates the device context
L * ~ information for the device being deleted.

END
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

3.5 Interrupt Servicing

The SPECTRA-622 driver services device interrupts using an interrupt service routine
(ISR) that traps interrupts and a deferred processing routine (DPR) that actually processes
the interrupt conditions and clears them. This lets the ISR execute quickly and exit. Most
of the time-consuming processing of the interrupt conditions is deferred to the DPR by
gueuing the necessary interrupt-context information to the DPR task. The DPR function
runs in the context of a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should
set the DPR task’s priority higher than the application task interacting with the
SPECTRA-622 driver.

The driver provides the system-independent functions, spect r al SRand spect r aDPR.
You must fill in the corresponding system-specific functions, sysSpect r al SRHandl er
and sysSpect r aDPRTask. The system-specific functions isolate the system-specific
communication mechanism (between the ISR and DPR) from the system-independent
functions, spect r al SRand spect r aDPR.

Figure 6 illustrates the interrupt service model used in the SPECTRA-622 driver design.

Figure 6: Interrupt Service Model

Interrupt
sysSpectralSRHandler Context sysSpectraDPRTask Indication
Information Callbacks

Note: Instead of using an interrupt service model, you can use a polling service model in
the SPECTRA-622 driver to process the device’s event-indication registers (see page 28).

Calling spectralSR

An interrupt handler function, which is system dependent, must call spect r al SR. But
first, the low-level interrupt-handler function must trap the device interrupts. You must
implement this function to fit your own system. As a reference, an example
implementation of the interrupt handler (sysSpect r al SRHandl er) appears on page
118. You can customize this example implementation to suit your needs.

The interrupt handler that you implement (sysSpect r al SRHandl er) is installed in the
interrupt vector table of the system processor. It is called when one or more SPECTRA-
622 devices interrupt the processor. The interrupt handler then calls spect r al SR for
each device in the active state that has interrupt processing enabled.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

The spect r al SRfunction reads from the master interrupt-status registers and the
miscellaneous interrupt-status registers of the SPECTRA-622. If at least one valid
interrupt condition is found then spect r al SRfills an Interrupt Service Vector (ISV)
with this status information as well as the current device Handle. The spect r al SR
function also clears and disables all the device’s interrupts detected. The

sysSpect r al SRHandl er function is then responsible to send this ISV buffer to the
DPR task.

Note: Normally you should save the status information for deferred interrupt processing
by implementing a message queue.

Calling spectraDPR

The sysSpect r aDPRTask function is a system specific function that runs as a separate
task within the RTOS. You should set the DPR task’s priority higher than the application
task(s) interacting with the SPECTRA-622 driver. In the message-queue implementation
model, this task has an associated message queue. The task waits for messages from the
ISR on this message queue. When a message arrives, sysSpect r aDPRTask calls the
DPR (spect r aDPR) with the received ISV.

Then spect r aDPR processes the status information and takes appropriate action based
on the specific interrupt condition detected. The nature of this processing can differ from
system to system. Therefore, spect r aDPR calls different indication callbacks for
different interrupt conditions.

Typically, you should implement these callback functions as simple message posting
functions that post messages to an application task. However, you can implement the
indication callback to perform processing within the DPR task context and return without
sending any messages. In this case, ensure that the indication function does not call any
API functions that change the driver’s state, such as spect r aDel et e. Also, ensure that
the indication function is non-blocking because the DPR task executes while SPECTRA-
622 interrupts are disabled. You can customize these callbacks to suit your system. See
page 109 for example implementations of the callback functions.

Note: Since the spect r al SRand spect r aDPR routines themselves do not specify a
communication mechanism, you have full flexibility in choosing a communication
mechanism between the two. A convenient way to implement this communication
mechanism is to use a message queue, which is a service that most RTOSs provide.

You must implement the two system specific functions, sysSpect r al SRHandl er and
sysSpect r aDPRTask. When the driver calls sysSpect r al SRHandl er I nstal | , the
application installs sysSpect r al SRHandl er in the interrupt vector table of the
processor. The sysSpect r aDPRTask function is spawned as a task by the application.
The sysSpect ral SRHandl er I nstal | function also creates the communication
channel between sysSpect r al SRHandl er and sysSpect r aDPRTask. This
communication channel is most commonly a message queue associated with the
sysSpect r aDPRTask.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Software Architecture

Similarly, during removal of interrupts, the driver removes sysSpect r al SRHand! er
from the microprocessor’s interrupt vector table and deletes the task associated with
sysSpect r aDPRTask.

As a reference, this manual provides example implementations of the interrupt

installation and removal functions on page 117. You can customize these prototypes to
suit your specific needs.

Calling spectraPoll

Instead of using an interrupt service model, you can use a polling service model in the
SPECTRA-622 driver to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the SPECTRA-622 driver design.

Figure 7: Polling Service Model

Interrupt
spectraPoll Context Indication
Information Callbacks

spectralSR spectraDPR m Application

In polling mode, the application is responsible for calling spect r aPol | often enough to
service any pending error or alarm conditions. When spect r aPol | is called, the
spect r al SR function is called internally.

The spect r al SR function reads from the master interrupt-status registers and the
miscellaneous interrupt-status registers of the SPECTRA-622. If at least one valid
interrupt condition is found then spect r al SRfills an Interrupt Service Vector (ISV)
with this status information as well as the current device Handle. The spect r al SR
function also clears and disables all the device’s interrupts detected. In polling mode, this
ISV buffer is passed to the DPR task by calling spect r aDPR internally.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

4 DATA STRUCTURES

4.1 Constants

The following Constants are used throughout the driver code:

* <SPECTRA- 622 ERROR CODES> error codes used throughout the driver code,
returned by the API functions and used in the global error number field of the MDB
and DDB. See Appendix A on page 131.

* SPE_MAX_DEVS defines the maximum number of devices that can be supported by
this driver. This constant must not be changed without a thorough analysis of the
consequences to the driver code.

e SPE_MOD_START, SPE_MOD | DLE, SPE_MOD_READY are the three possible Module
states (stored in st at eMbdul e).

e SPE_START, SPE_PRESENT, SPE_ACTI VE, SPE_I NACTI VE are the four possible
Device states (stored in st at eDevi ce).

4.2 Structures Passed by the Application

These structures are defined for use by the application and are passed as argument to
functions within the driver. These structures are the Module Initialization Vector (MIV),
the Device Initialization Vector (DIV) and the ISR mask.

Module Initialization Vector: MIV

Passed via the spect r aMbdul eQpen call, this structure contains all the information
needed by the driver to initialize and connect to the RTOS.

e maxDevs is used to inform the Driver how many Devices will be operating
concurrently during this session. The number is used to calculate the amount of
memory that will be allocated to the driver. The maximum value that can be passed is
SPE_MAX_DEVS.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Table 2: Module Initialization Vector: sSSPE_MIV

Field Name Field Type | Field Description

pnub SSPE MB * (pointer to) MDB

naxDevs U NI2 Maximum number of devices supported
during this session

max| ni t Prof s U N2 Maximum number of initialization profiles

naxD agPr of s U Nr2 Maximum number of diagnostic profiles

Device Initialization Vector: DIV

Passed via the spect r al ni t call, this structure contains all the information needed by
the driver to initialize a SPECTRA-622 device. This structure is also passed via the
spect r aAddl ni t Profi | e call when used as an initialization profile.

val i d indicates that this initialization profile has been properly initialized and may
be used by the USER. This field should be ignored when the DIV is passed directly.

pol | I SRis a flag that indicates the type of interrupt servicing the driver is to use.
The choices are ‘polling’ (SPE_POLL_MODE), and ‘“interrupt driven’

(SPE_I SR_MODE). When configured in polling the Interrupt capability of the Device
is NOT used, and the USER is responsible for calling devi cePol | periodically. The
actual processing of the event information is the same for both modes.

cbackl O, cbackTOC, chackSOP, cbhackSSTB, cbackLOP, chackRPPS,
cbackTPPS, cbackWANS, cbackDPGMand cback APGMare used to pass the address
of application functions that will be used by the DPR to inform the application code
of pending events. If these fields are set as NULL, then any events that might cause
the DPR to “call back’ the application will be processed during ISR processing but
ignored by the DPR.

Table 3: Device Initialization Vector: sSSPE_DIV

Field Name | Field Type | Field Description

valid U N2 Indicates that this profile is valid

i ni t Mode SPE MOE Mode used for Initialization: SPE_NORM
SPE_COVP or SPE_FRM

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

30

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name | Field Type | Field Description

pi ni t Dat a U Nr1* (pointer to) initialization data. Depending on the
specified mode of initialization, this is in fact a
pointer to sSPE_I NI T_DATA_NORM
SSPE_|I NI T_DATA_COWP or
SSPE_| NI T_DATA FRM

pol Il SR sSPE PAL Indicates the type of ISR / polling to do

cbackl O SSPE (BAXK Address for the callback function for 10 Events

cbackTAC SSPE (BAKK Address for the callback function for TOC
Events

cbackSP SSPE (BAXK Address for the callback function for SOP
Events

cbackSSTB SSPE (BAKK Address for the callback function for SSTB
Events

cbackL@P SSPE (BAXK Address for the callback function for LOP
Events

cbackRPPS SSPE (BAKK Address for the callback function for RPPS
Events

cbackTPPS SSPE (BAXK Address for the callback function for TPPS
Events

cbackWANS SSPE (BAKK Address for the callback function for WANS
Events

cbackDPGM SSPE (BAXK Address for the callback function for DPGM
Events

cbackAPGM SSPE (BAKK Address for the callback function for APGM
Events

Initialization Profile: INIT_PROF
Initialization Profile Top-Level Structure

Passed via the spect r aAddl ni t Profi | e call, this structure contains all the
information needed by the driver to initialize and activate a SPECTRA-622 device. This
is in fact the same structure as sSPE_DI V.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Table 4: Initialization Profile: sSSPE_INIT_PROF

Field Name | Field Type | Field Description

valid U N2 Indicates that this profile is valid

i ni t Mbde SPE MIE Mode used for Initialization: SPE_NORM
SPE_COVP or SPE_FRM

pi ni t Dat a U Nr1* (pointer to) initialization data. Depending on the
specified mode of initialization, this is in fact a
pointer to sSPE_I NI T_DATA_NORM
SSPE_| NI T_DATA COWP or
SSPE_| NI T_DATA FRM

pol I 1SR sSPE PAL Indicates the type of ISR / polling to do

cbackl O SSPE (BAXK Address for the callback function for 10 Events

cbackTaC SSPE (BAXK Address for the callback function for TOC
Events

cbackSaP SSPE (BAKK Address for the callback function for SOP
Events

cbackSSTB SSPE (BAXK Address for the callback function for SSTB
Events

cbackLCP SSPE (BAKK Address for the callback function for LOP
Events

cbackRPPS SSPE (BAXK Address for the callback function for RPPS
Events

cbackTPPS SSPE (BAKK Address for the callback function for TPPS
Events

cback\VWNS SSPE (BAXK Address for the callback function for WANS
Events

cbackDPGM SSPE (BAKK Address for the callback function for DPGM
Events

cbackAPGM SSPE (BAXK Address for the callback function for APGM

Events

Initialization Data in Normal Mode (SPE_NORM)

In Normal mode (NORM), the user only specifies the main modes of operation of the
device. Most of the device’s register bits are left in their default state (after a software
reset). This structure is pointed to by pi ni t Dat a inside the initialization profile.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

32

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Table 5: Initialization Data: sSSPE_INIT_DATA_NORM

Field Name Field Type Field Description

| i neSi deMbde Ul NT2 selects between serial mode, parallel
mode, dual mode with serial input, and
dual mode with parallel input on the line
side

sysSi deMbde Ul NT2 selects between mode selected via
DMODE[1:0] inputs, telecom mode,
ds3 mode, dual mode w/ telecom bus
input, and dual mode w/ds3 input.

cl ock77 Ul NT2 selects between stm4 and stml telecom
bus mode on the system side

stsl2c U NI2 selects the master/slave slices for
sts-12/12¢ mode

st s3c[4] U Nr2 selects the master/slave slices for
sts-3/3c mode

ri ngkna U N2 enables the ring control ports

wanskna U N2 enables the phase comparison in the
wan synchronization controller

Initialization Data in Compatibility Mode (SPE_COMP)

In Compatibility mode (COMP), the user provides a list of data blocks to write directly to
the device registers. There are nunBl ocks blocks provided by the USER. The block
number [i] is fully defined by:

* ppbl ock[i], which points to the data to write to the device’s registers

* ppmask]i], which points to a data mask to specify which bits are to be modified

» psi ze]i], the block size

e pstart Regl[i], which is the register number at which the driver should start writing

the data.

This structure is pointed to by pi ni t Dat a inside the initialization profile.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

33

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Table 6: Initialization Data: SSPE_INIT_DATA _COMP

Field Name Field Type Field Description

nun8 ocks U N2 Number of provided blocks

ppbl k[] U NT1* (pointer to) an array of pointer to a data
block

ppnask(] U Nr1* (pointer to) an array of pointer to a mask

pbl kS ze[] U NI2 (pointer to) an array of block size

pstart Reg[] U NI2 array of register numbers

Initialization Data in Flat Register Mode (SPE_FRM)

In Flat Register Mode (FRM), for each of the hardware blocks (10, TOC, SOP, SSTB,
LOP, RPPS, TPPS, RING and WANS), the user needs to fill a structure that holds a
mapping of all the configuration bits for this hardware block. They are used to fully
configure the SPECRTA-622 device. This structure is pointed to by pi ni t Dat a inside
the initialization profile. The reader is referred to the code for the definitions of the

configuration blocks (s SPE_CFG_XXX).

Table 7: Initialization Data: SSPE_INIT_DATA_FRM

Field Name Field Type Field Description

cfglO SSPE G IO Input / Output (10) configuration block

cf gTaC SSPE GG TQC Receive / Transmit Transport Overhead
Controller (TOC) configuration block

cf gSCP SSPE OFG (P Receive / Transmit Section Overhead
Processor (RSOP/TSOP) configuration
block

cf gSSTB SSPE_ (FG SSTB Sonet/SDH Section Trace Buffer
(SSTB) configuration block

cf gLCP SSPE G LCP Receive / Transmit Line Overhead
Processor (RLOP/TLOP) configuration
block

cf gRPPY 4] [3] SSPE_CFG RPPS Receive Path Processing Slice (RPPS)
configuration block

cf gTPPY 4] [3] SSPE CFG TPPS Transmit Path Processing Slice (TPPS)
configuration block

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

34

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual

Data Structures

Field Name Field Type Field Description

cfgRING SSPE FGR NG Ring Control Port (RING)
configuration block

cf gVANS SSPE_GFG VWANS WAN Synchronization controller

(WANS) configuration block

Diagnostic Profile: DIAG_PROF

Diagnostic Profile Top-Level Structure

Passed via the spect r aAddDi agPr of i | e call, this structure contains all the
information needed by the driver to initiate a specific diagnostic on the SPECTRA-622

device.

» di agMode is a flag that tells the Driver which diagnostic mode is used to configure
the device. There are three different ways to configure a device for diagnostics, each
corresponding to a different mode:

° Normal Mode (SPE_NORM): the user only specifies the main modes of operation
of the DPGM and APGM. Most of the device’s register bits are left in their
default state (after a software reset).

° Compatibility mode (SPE_COWP): the user provides a list of data blocks to write
directly to the APGM and DPGM registers.

° Flat Register Mode (SPE_FRM: for each of the 12 DPGM and APGM hardware
blocks, the user needs to fill a structure (s SPE_CFG_DPGMand sSPE_CFG_APGM
that holds a mapping of all the configuration bits for this hardware block.

Table 8: Diagnostic Profile: SSPE_DIAG_PROF

Field Name Field Type | Field Description

valid U N2 Indicates that this profile is valid

di aghbde SPE MTE Mode used for diagnostic: SPE_NORM
SPE_COWP or SPE_FRM

pdi agDat a U NT1* (pointer to) diagnostic data. Depending on the

specified mode of diagnostic, this is in fact a
pointer to sSPE_|I NI T_DATA_NORM

SSPE_I NI T_DATA_COWP or
SSPE_I NI T_DATA_FRM

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

35

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Diagnostic Data in Normal Mode: SPE_NORM
In Normal mode (NORM), the user only specifies the main modes of operation of the

DPGM and APGM. Most of the register bits are left in their default state (after a software
reset). This structure is pointed to by pdi agDat a inside the diagnostic profile.

Table 9: Diagnostic Data: sSSPE_DIAG_DATA_NORM

Field Name Field Type | Field Description

dpgn@enEnal 4] [3] U NT1 Enables the Generator of the DROP Bus
PRBS Generator and Monitor (DPGM)

dpgnionEnal 4] [3] U NT1 Enables the Monitor of the DROP Bus
PRBS Generator and Monitor (DPGM)

apgn@enknal 4] [3] U NT1 Enables the Generator of the ADD Bus
PRBS Generator and Monitor (APGM)

apgnionEnal 4] [3] U NT1 Enables the Monitor of the ADD Bus
PRBS Generator and Monitor (APGM)

Diagnostic Data in Compatibility: Mode SPE_COMP

In Compatibility mode (COMP), the user provides a list of data blocks to write directly to
the DPGM and APGM registers. There are nunBl ocks blocks provided by the USER.
The block number [i] is fully defined by:

* ppbl ock]i], which points to the data to write to the device’s registers
» ppmask]i], which points to a data mask to specify which bits are to be modified
e psi zeli], the block size

e pstartReg[i], which is the register number at which the driver should start writing
the data.

This structure is pointed to by pdi agDat a inside the diagnostic profile.

Table 10: Diagnostic Data: sSSPE_DIAG_DATA _COMP

Field Name | Field Type | Field Description
nun8 ocks U N2 number of provided blocks
ppbl K] U N1~ array of pointer to a data block
ppnask(] U Nr1* array of pointer to a mask
pbl kS ze[] U N12 array of block size
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name | Field Type | Field Description

pstart Reg[] U Nr2 array of register numbers

Diagnostic Data in FRM Mode: SPE_FRM

In Flat Register Mode (FRM), for each of the 12 DPGM and APGM hardware blocks, the
user needs to fill a structure that holds a mapping of all the configuration bits for this
hardware block. They are used to fully configure the DPGM and APGM. This structure is
pointed to by pdi agDat a inside the diagnostic profile. The reader is referred to the code
for the definitions of the configuration blocks (s SPE_CFG_XXX).

Table 11: Diagnostic Data: sSSPE_DIAG_DATA_FRM

Field Name Field Type Field Description

cf gDPaM 4] [3] sSPE_CGFG CPaM DROP Bus PRBS Generator and
Monitor (DPGM) configuration block

cf gAPGM 4] [3] SSPE_CFG APGM ADD Bus PRBS Generator and
Monitor (APGM) configuration block

ISR Enable/Disable Mask
Passed via the spect r aSet Mask, spect r aGet Mask and spect r adl ear Mask calls,

this structure contains all the information needed by the driver to enable and disable any
of the interrupts in the SPECTRA-622.

Table 12: ISR Mask: sSPE_MASK

Field Name Field Field Description
Type
i oScpi fe[4] U NI Serial control port falling edge
i oScpi ref 4] U NIl Serial control port raising edge
i oDool U N1 Data out of lock (DOOL)
i oQ si Rool U NT1 Reference out of lock (ROOL)
i oLos U N1 Loss of signal (LOS)
i 0Gspi Rool U NIl Reference out of lock
i 0Ape[4] U N11 Add bus parity error
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r X\ PMC-Sierra Data Structures

Field Name Field Field Description
Type

tocLos U N1 Loss of signal (LOS)

t ocLof U N1 Loss of frame (LOF)

tocLai s U N1 Line alarm indication signal (LAIS)

tocLr di U N1 Line remote defect indication (LRDI)

t ocQof U N1 Out of frame (OOF)

t ocRdool U NT1 Receive data out of lock (RDOOL)

t ocTr ool U NT1 Transmit reference out of lock (TROOL)

sopQOof U Nr1 Out of frame

sopLof U Nr1 Loss of frame

sopLos U NT1 Loss of signal

sopBi pe U NT1 Bip-8 (B1) error

sstbRim U NT1 Receive section trace identifier (Model)
mismatch

sstbRiu U N1 Receive section trace identifier (Mode 1)
unstable

| opsf U NT1 Signal fail (SF)

| opd U N1 Signal degrade (SD)

| opLr di U N1 Line remote defect indication

| opLai s U NT1 Line alarm indication signal

| opBi pe U NT1 Bip-8 (B2) error

| opLr ei U N1 Line remote error indication

| opSdber U N1 Signal degrade threshold

| opSf ber U NT1 Signal fail threshold

| opZ1S1 U NT1 Change in the received synchronization
status

| opGoaps U N1 Change in the receive APS code

| opPsbf U N1 Protection switch byte failure

rppsTini4][3] U NT1 Path trace identifier (Mode 1) mismatch

rppsTi u[4] [3] U Nr1 Path trace identifier (Mode 1) unstable

rppsLomi[4] [3] U NI1 Loss of multiframe

r ppsLopl[4] [3] U NT1 Loss of pointer

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38

Document ID PMC-1991254 Issue 2

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Field Name Field Field Description

Type
rppsPsl ni 4] [3] U NT1 Path signal label mismatch
rppsPsl u[4] [3] U Nr1 Path signal label unstable
rppsPai s1[4] [3] U Nr1 Path alarm indication signal
rppsPrdi 1[4][3] U Nr1 Path remote defect indication
rppsPerdi [4][3] U Nr1 Path enhanced remote defect indication
rppsTi u2[4] [3] U Nr1 Path trace identifier mode 2 unstable
r ppsPai sGon[4] [3] U Nr1 Path alarm indication signal concatenation
r ppsLopGon[4] [3] U NT1 Loss of pointer concatenation
rppsNevPtr[4] [3] U NT1 Reception of new_point
rppsPrei [4][3] U Nr1 Path remote error indication
r ppsB pe[4] [3] U Nr1 Bip-8 error
rppsPrdi 2[4][3] U Nr1 Path remote defect indication
r ppsPai s2[4] [3] U NT1 Path alarm indication signal
r ppsAU3Pai sCon[4] [3] | U NTL AU3 concatenation path AIS
r ppsLop2[4] [3] U NT1 Loss of pointer
rppsAu3Lopn[4] [3] | U N1 AU3 concatenation Loss of pointer
rppskEr di [4] [3] U Nr1 Path enhanced remote defect indication
r ppsNdf [4] [3] U NT1 Detection of an NDF_enabl e
rppsPse[4] [3] U Nr1 Positive pointer adjustment event
r ppsNsef 4] [3] U Nr1 Negative pointer adjustment event
rppsl nvNdf [4] [3] U Nr1 Invalid NDF code
rppsD scopal 4] [3] U NT1 Change of pointer alignment event
rppsltlireq[4][3] U Nr1 Illegal pointer justification request
r ppsCona[4] [3] U Nr1 Change of multiframe alignment
r ppsLon®[4] [3] U NTr1 Loss of multiframe
rppsDpj e[4] [3] U NT1 DROP bus pointer justification event
r ppsEsef 4] [3] U Nr1 Elastic store error
rppsl sf[4][3] U Nr1 Incoming signal failure
rppsRinf 4] [3] U Nr1 Receive path trace identifier (Mode 1)

mismatch

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

39

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Field Name Field Field Description
Type

rppsRiu[4][3] U NT1 Receive path trace identifier (Mode 1)
unstable

rppsRosl nj 4] [3] U Nr1 Receive path signal label mismatch

r ppsRpsl u[4] [3] U NT1 Receive path signal label unstable

rppsUi[4][3] U Nr1 Elastic store underflow

rppsa I [4][3] U NT1 Elastic store overflow

t ppsLom[4] [3] U N1l Loss of multiframe

t ppsLopl[4] [3] U NT1 Loss of pointer

t ppsPai s1[4] [3] U NT1 Path alarm indication signal

t ppsPai sGon[4] [3] U NT1 Path alarm indication signal concatenation

t ppsLopCon[4] [3] U NT1 Loss of pointer concatenation

tppsH e[4] [3] U Nr1 Pointer justification event

t ppsEse[4] [3] U Nr1 Elastic store error

tppsl sf[4][3] U NT1 Incoming signal failure

t ppsNewPt r [4] [3] U NT1 Reception of a new_poi nt indication

tppsPrei [4][3] U Nr1 Path remote error indication

t ppsBi pe[4] [3] U NT1 Bip-8 error

t ppsPai s2[4] [3] U Nr1 Path alarm indication signal

t ppsAu3Pai sCon[4] [3] | U NT1 AU3 concatenation path alarm indication
signal

t ppsLop2[4] [3] U NT1 Loss of pointer

tppsAu3LopGn[4] [3] | UNT1 AU3 concatenation loss of pointer

t ppsNdf [4] [3] U NT1 Detection of an NDF_enable indication

t ppsPse[4] [3] U Nr1 Positive pointer adjustment event

t ppsNse[4] [3] U NT1 Negative pointer adjustment event

t ppsl nvNdf [4] [3] U Nr1 Invalid NDF code

t ppsDi scopal 4] [3] U Nr1 Change of pointer alignment event

tppsllireq 4][3] U NI Illegal pointer justification request

t ppsCona[4] [3] U NT1 Change of multiframe alignment

t ppsLon2[4] [3] U NTr1 Loss of multiframe

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

40

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field Field Description
Type
tppsUr I [4][3] U Nr1 Elastic store underflow
tppsAI[4][3] U Nr1 Elastic store overflow
wans| nt U N1 Beginning of a phase averaging period
dpgn@enS g[4] [3] U NT1 DROP generator signal
dpgnonS g[4] [3] U NT1 DROP monitor signal
dpgmonEr r[4] [3] U Nr1 DROP monitor byte error
dpgnonSync[4] [3] U Nr1 DROP monitor synchronize
apgn@ens g 4] [3] U Nr1 ADD generator signal
apgnhonS g[4] [3] U NT1 ADD monitor signal
apgnhonErr[4] [3] U NT1 ADD monitor byte error
apgnivonSync[4] [3] U Nr1 ADD monitor synchronize

4.3 Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory
allocated when the driver is opened.

Module Data Block: MDB

The MDB is the top-level structure for the Module. It contains configuration data about
the Module level code and pointers to configuration data about the Device level codes.

Table 13: Module Data Block: sSSPE_MDB

Field Name | Field Type Field Description

errMvdul e I NT4 Global error Indicator for module calls

valid U N2 Indicates that this structure has been

initialized

naxDevs U Nr2 Maximum number of devices supported

nunievs U N2 Number of devices currently registered

maxlnitProfs | UNI2 Maximum number of initialization profiles

naxD agProfs | U NT2 Maximum number of diagnostic profiles
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41

Document ID PMC-1991254 Issue 2

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Field Name | Field Type Field Description

st at eMbdul e SPE MID STATE Module state; can be one of the following:
SPE_MID START, SPE MD | DLEOr
SPE_ MID READY

pddb SSPE OB * (array of) Device Data Blocks (DDB) in
context memory

pi nitProfs SSPE IN T_PRCF * (array of) initialization profiles

pdi agPr of s SSPE D AG PRCF * (array of) diagnostic profiles

Device Data Block: DDB

The DDB is the top-level structure for each Device. It contains configuration data about
the Device level code and pointers to configuration data about Device level sub-blocks.

Table 14: Device Data Block: sSSPE_DDB

Field Name | Field Type Field Description

errDevi ce I NT4 Global error indicator for device
calls

valid U N2 Indicates that this structure has been
initialized

baseAddr U N1~ Base address of the Device

usr G xt sSPE_ SR CIXT Stores the user’s context for the
device. It is passed as an input
parameter when the driver invokes
an application callback

profileNum U N12 Profile number used at initialization

st at eDevi ce SPE OBV _STATE Device State; can be one of the
following: SPE_START,
SPE_PRESENT, SPE_| NACTI VE or
SPE_ACTI VE

cfglO SSPEGGIO Input / Output (10) configuration
block

cfgTQC SSPE (FG TCC Receive / Transmit Transport
Overhead Controller (TOC)
configuration block

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

42

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Field Name | Field Type Field Description

cf gSaP sSPE FG (P Receive / Transmit Section Overhead
Processor (RSOP/TSOP)
configuration block

cf gSSTB sSPE_ (FG SSTB Sonet/SDH Section Trace Buffer
(SSTB) configuration block

cfgLCP sSPE G LCP Receive / Transmit Line Overhead
Processor (RLOP/TLOP)
configuration block

cfgRPPF 4] [3] | sSPE FG RPPS Receive Path Processing Slice
(RPPS) configuration block

cfgTPPS 4] [3] | sSPE GFG TPPS Transmit Path Processing Slice
(TPPS) configuration block

cfgRING SSPE FGR NG Ring Control Port (RING)
configuration block

cf gVWANS SSPE_GFG WANS WAN Synchronization controller
(WANS) configuration block

cfgbPGM 4] [3] | sSPE CFG DPGV DROP Bus PRBS Generator and
Monitor (DPGM) configuration
block

cfgAPGM 4] [3] | sSPE GFG APQM ADD Bus PRBS Generator and
Monitor (APGM) configuration
block

cf gOnt sSPE (FG ONT Counter configuration structure

pol I I SR SPE PAL Indicates the current type of ISR /
polling

cbackl O SSPE (BAK Address for the callback function for
10 Events

cbackTCC SSPE (BAKK Address for the callback function for
TOC Events

cbackSP SSPE (BAXK Address for the callback function for
SOP Events

chackSSTB SSPE (BAKK Address for the callback function for
SSTB Events

cbackL@P SSPE (BAXK Address for the callback function for
LOP Events

chackRPPS SSPE (BAKK Address for the callback function for
RPPS Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

43

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name | Field Type Field Description

cbackTPPS SSPE (BAXK Address for the callback function for
TPPS Events

cbackWANS SSPE (BAK Address for the callback function for
WANS Events

cbackDPGM SSPE (BAXK Address for the callback function for
DPGM Events

cbackAPGM SSPE (BAKK Address for the callback function for
APGM Events

mask SSPE_MASK Interrupt Enable Mask

Input / Output (10) Status

Table 15: Input/Output Status: sSSPE_STATUS 10

Field Name Field Field Description
Type
refcl kActive Ul NT1 Monitors for low to high transitions on the

REFCLK reference clock input.

r ool Ul NT1 Monitors the transmit reference out of lock
status to report if the synthesis phase lock
loop is unable to lock to the reference
clock on REFLCK.

dckAct Ul NT1 Monitors for low to high transitions on the
DCK input.

ackActiv Ul NT1 Monitors for low to high transitions on the
ACK input.

i nsLRDI Ul NT1 Reports the value of the SENDLRDI bit

position in the transmit ring control port.

i nsLAI S Ul NT1 Reports the value of the SENDLAIS bit
position in the transmit ring control port.

rl os Ul NT1 The loss of transition status indicates the
receive power is lost or at least 95
consecutive ones or zeros have been
received.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field Field Description
Type
rrool Ul NT1 Monitors the recovered reference out of

lock status to report if the clock recovery
phase locked loop is unable to lock to the
reference clock on REFCLK.

r dool Ul NT1 Monitors the recovered data out of lock
status to report if the clock recovery phase
locked loop is unable to recover and lock
to the input data stream.

ds3t dat Act Ul NT1 Monitors for low to high transitions on the
sampled DS3TDAT input for the TPPS.
ds3ti O kAct Ul NT1 Monitors for low to high transitions on the

DS3TICLK input for the TPPS.

addCont rol Act [4] Ul NT1 Monitors for low to high transitions on the
corresponding APL[n], AC1J1V1[n] and
ADPI[n] inputs. addCont r ol Acti v[n] is
non-zero when rising edges have been
observed on all these signals.

addDat aAct [4] Ul NT1 Monitors for low to high transitions on the
corresponding AD[7:0] (#1), AD[15:8]
(#2), AD[23:16] (#3) or AD[31:24] (#4)
bus when configured for byte Telecom
ADD bus mode. addDataActiv[n] is non-
zero when rising edges have been observed
on all the required signals in the
corresponding Telecom ADD bus.

scpi [4] Ul NT1 Status of the associated SCPI[3:0] input
pins.

Section Overhead Processor (SOP) Status

Table 14: Section Overhead Processor Status: SSPE_STATUS_SOP

Field Name | Field Type | Field Description

| os Ul NT1 The LOSV bit is set high when loss of signal is
declared. LOS is removed when two valid
framing words (A1, A2) are detected, and during
the intervening time (125 us), no violating period
of all zeros patterns is observed.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name | Field Type | Field Description

| of Ul NT1 The LOFV bit is set high when loss of frame is
declared. LOFV is set high and loss of frame
declared when an out-of-frame state persists for 3
ms. LOF is removed when an in frame state
persists for 3 ms.

oof Ul NT1 The OOFV bit is set high when out of frame is
declared. OOFV is set high and out-of frame
declared while the SPECTRA-622 is unable to
find a valid framing pattern (A1, A2) in the
incoming stream. OOF is removed when a valid
framing pattern is detected.

tiu Ul NT1 Monitors the receive section trace identifier
unstable status, which is dependent on the Trace
Identifier Mode. In Mode 1, the bit is set high
when 8 trace messages mismatching against their
immediate predecessor message have been
received without a persistent message being
detected. In Mode 2, RTIUV is set low during the
stable state which is declared after having
received the same 16 byte trace message 3
consecutive times.

tim Ul NT1 Monitors the receive section trace identifier
mismatch status to report if the accepted
message differs from the expected message.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Line Overhead Processor (LOP) Status

Table 15: Line Overhead Status: SSPE_STATUS_LOP

Field Name | Field Type | Field Description

sf ber Ul NT1 Indicate the signal failure threshold crossing
alarm state.

sdber Ul NT1 Indicates the signal degrade threshold crossing
alarm state.

psbf Ul NT1 Indicates the protection switching byte failure
alarm state.

| rdi Ul NT1 Indicates when the line Remote Defect Indication
(RDI) is detected.

lais Ul NT1 Indicates when the line Alarm Indication Signal
(AIS) is detected.

Receive Path Processing Slice (RPPS) Status

Table 16: Receive Path Status: sSSPE_STATUS_RPPS

Field Name Field Type | Field Description

ptiu Ul NT1 Monitors the receive path trace identifier
unstable status bit (RTIUV), which is
dependent on the Trace Identifier Mode. In
Mode 1, the bit is set high when 8 trace
messages mismatching against their immediate
predecessor message have been received
without a persistent message being detected. In
Mode 2, RTIUV is set low during the stable
state which is declared after having received the
same 16 byte trace message 3 consecutive times.

ptim Ul NT1 Monitors the receive path trace identifier
mismatch status bit (RTIMV) in Trace Identifier
Mode 1 to report if the accepted message
differs from the expected message.

au3pai sc Ul NT1 Indicates reception of path AIS alarm in the
concatenation indication in the receive STS-1
(STM-0/AU3) or equivalent stream.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field Type | Field Description

au3pl opc Ul NT1 Indicates entry to LOPCON_state for the
receive STS-1 (STM-0/AU3) or equivalent
stream in the RPOP pointer interpreter.

pai s Ul NT1 Indicates reception of path AIS alarm in the
receive stream.

| op Ul NT1 Indicates entry to the LOP_state in the RPOP
pointer interpreter state machine.

pr di Ul NT1 Indicates reception of path RDI alarm in the
receive stream.

erdiv Ul NT1 Reflect the current filtered value of the
enhanced RDI codepoint (G1 bits 5, 6, & 7) for
the receive SONET/SDH stream. Filtering is
controlled using rdi10 in the RPPS
configuration block.

| om Ul NT1 Reports the current state of the multiframe
framer monitoring the receive stream.

i sf Ul NT1 Reports an incoming signal fail alarm.

uneq Ul NT1 Monitors the unequipped status bit (UNEQV),

which is dependent on the PSL Mode. In Mode
1, this bit is set high when the accepted path
signal label indicates that the path connection is
unequipped. When in PSL Mode 2, the UNEQV
is set high upon the reception of five
consecutive frames with an unequipped (00h)
label.

psl m Ul NT1 Monitors the receive path signal label mismatch
status bit (RPSLMV), which is dependent on the
PSL Mode. In Mode 1, this bit reports the
match/mismatch status between the expected
and the accepted path signal label. In Mode 2,
this bit reports the match/mismatch status
between the expected and the received path
signal label.

pslu Ul NT1 Monitors the receive path signal label unstable
status bit (RPSLUV) and is independent on the
PSL Mode. This bit reports the stable/unstable
status of the path signal label in the receive
stream.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field Type | Field Description

dr opGensSi g Ul NT1 Indicates if the partial pseudo random sequence
(PRBS) begin generated is correctly aligned
with the partial PRBS begin generated in the
master generator.

dr opMonSi g Ul NT1 Indicates if the partial pseudo random sequence
(PRBS) being monitored for is correctly aligned
with the partial PRBS being monitored for by
the master generator.

dr opMonSync Ul NT1 Reports when the monitor is out of
synchronization

Transmit Path Processing Slice (TPPS) Status

Tablel7: Transmit Path Status: SSPE_STATUS_TPPS

Field Name Field Field Description

Type
i sf Ul NT1 Reports an incoming signal failure detected.
au3l opc Ul NT1 Indicates entry to LOPCON_state for the

transmit STS-1 (STM-0/AU3) or equivalent
stream in the TPIP pointer interpreter.

au3pai sc Ul NT1 Indicates reception of path AIS alarm in the
concatenation indication in the transmit STS-1
(STM-0/AU3) or equivalent stream.

| op Ul NT1 Indicates entry to the LOP_state in the TPIP
pointer interpreter state machine.

pai s Ul NT Indicates reception of path AIS alarm in the
receive stream.

r di Ul NT1 Indicates remote defect indication detected in
transmit stream.

l om Ul NT1 Reports the current state of the multiframe
framer monitoring the receive stream.

addGenSi g Ul NT1 Indicates if the partial pseudo random sequence
(PRBS) begin generated is correctly aligned with
the partial PRBS begin generated in the master
generator.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field Field Description
Type
addMonSi g Ul NT1 Indicates if the partial pseudo random sequence

(PRBS) being monitored for is correctly aligned
with the partial PRBS being monitored for by the
master generator

addMonSync Ul NT1 Reports when the monitor is out of
synchronization

addMbnSync Ul NT1 Reports when the monitor is out of
synchronization

Statistic Counter Configuration (CFG_CNT)

This structure contains all the fields needed to configure the device counters. It is also
passed via the spect r aCf gSt at s function call.

Table 16: Counters Config: SSPE_CFG_CNT

Field Name Field | Field Description
Type
sopBl kBi p Ul NT1 | Enables the accumulating of section block BIP
errors.

When non-zero, one or more errors in the
section BIP-8 byte (B1) results in a single error
accumulated in the B1 error counter.

When zero, all errors in the B1 byte are
accumulated in the B1 error counter.

| opBI kRei Ul NT1 | Controls the accumulation of REI's.

When non-zero, and the REI has a value
between 1 and 4, the REI event counter is
incremented for each set REI bit. If the REI has
value greater than 4, and is valid, the REI
counter is only incremented by 4.

When zero, the REI event counter is
incremented for each and every REI bit that
occurs during that frame. The counter may be
incremented up to 96 times. The REI counter is
not incremented for invalid REI codewords.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Field Name Field | Field Description
Type
| opBI kBi p ul NT1 | Controls the accumulation of B2 errors.

When non-zero, the B2 error event counter is
incremented only once per frame whenever one
or more B2 bit errors occur during that frame.

When zero, the B2 error event counter is
incremented for each B2 bit error that occurs
during that frame (the counter can be
incremented up to 96 times per frame).

r ppsMonr s[4] [3] Ul NT1 | When non-zero, selects the receive side pointer
justification events counters to monitor the
receive stream directly.

When zero, the counters accumulates pointer
justification events on the DROP bus.

r ppsBl kBi p[4] [3] Ul NT1 | When non-zero, indicates that path BIP-8
errors are to be reported and accumulated on a
block basis. Asingle BIP error is accumulated
and reported to the return transmit path
overhead processor if any of the BIP-8 results
indicates a mismatch.

When zero, BIP-8 errors are accumulated on a
bit basis.

r ppsBl kRei [4] [3] Ul NT1 | When non-zero, block REI indicates that path
REI counts are to be reported and accumulated
on a block basis. Asingle REI error is
accumulated if the received REI code is
between 1 and 8 inclusive.

When zero, REI errors are accumulated
literally.

Statistic Counters (CNT)

This structure, as well as its component structures, is being used by the statistics
collection APIs to retrieve the device counts. The user can either collect all statistics at
once by using spect r aGet Cnt , or collect statistics from individual blocks using
spect raGet Cnt SOP, spect raCGet Cnt LOP, spect r aGet Cnt RPPS,

spect r aGet Cnt TPPS, and/or spect r aGet Cnt PJ.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID PMC-1991254 Issue 2

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Data Structures

Table 17: Statistic Counters: SSPE_STAT_CNT

Field Name Field Type Field Description

cnt SOP SSPE_STAT_CNT_SOP Statistics counters of the Section
Overhead (SOH)

cnt LOP SSPE_STAT_CNT_LOP Statistics counters of the Line

Overhead (LOH)

cnt RPPS] 4] [3]

SSPE_STAT_CNT_RPPS | Statistics counters of the Receive Path

Overhead (RPOH)

cnt TPPS[4] [3]

SSPE_STAT_CNT_TPPS | Statistics counters of the Transmit Path

Overhead (TPOH)

cnt PJ[4] 3]

SSPE_STAT_CNT_PJ Statistics counters of the Pointer

Justifications

Section Overhead (SOP) Statistics Counters

Table 18: Section Overhead Statistics Counters: SSPE_STAT_CNT_SOP

Field Name

Field Type

Field Description

sopBi p

Ul NT4

Section BIP errors counter

Line Overhead (LOP) Statistics Counters

Table 19: Line Overhead Statistic Counters: SSPE_STAT _CNT_LOP

Field Name Field Type Field Description
| opBi p Ul NT4 Line BIP errors counter
| opRei Ul NT4 Line REI error counter
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Receive Path Overhead (RPOH) Statistics Counters

Table 20: SPECTRA-622 Receive Path Processing Statistics Counters:
SSPE_STAT_CNT_RPPS

Field Name Field Type Field Description
rppsBip Ul NT4 Path BIP error counter
r ppsRei Ul NT4 Path REI error counter
r pps DPGVPr se Ul NT4 Number of PRBS byte errors detected since

the last accumulation interval. Errors are
only accumulated in the synchronized state
and each PRBS data byte can have a
maximum of 1 errors.

Transmit Path Overhead (TPOH) Statistics Counters

Table 21: Transmit Path Processing Statistics Counters: STAT_CNT_TPPS

Field Name Field Type Field Description

t ppsAPGVPr se Ul NT4 Number of PRBS byte errors detected since
the last accumulation interval. Errors are
only accumulated in the synchronized state
and each PRBS data byte can have a
maximum of 1 errors.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Data Structures

Pointer Justification Statistics Counters

Table 22: Pointer Justification Statistics Counters: STAT _CNT_PJ

Field Name Field Type Field Description

r ppsPosJust Ul NT4 Positive RPPS pointer justification event
counter

r ppsNegJust Ul NT4 Negative RPPS pointer justification event
counter

t ppsPosJust Ul NT4 Positive TPPS pointer justification event
counter

t ppsNegJust Ul NT4 Negative TPPS pointer justification event
counter

4.4 Structures Passed Through RTOS Buffers

Interrupt Service Vector: ISV

This block is used in two ways. First it is used to determine the size of buffer required by
the RTOS for use in the driver. Second it is the template for data that is captured during
ISR processing and sent to the Deferred Processing Routine (DPR).

Table 23: Interrupt Service Vector: SSPE_ISV

Field Name Field Type | Field Description
devi cetandl e SSPE H\OL Handle to the device in cause
nask SSPE MAK SSPE MAK

Deferred Processing Vector: DPV

This block is used in two ways. First it is used to determine the size of buffer required by
the RTOS for use in the driver. Second it is the template for data that is assembled by the
DPR and sent to the application code.

Note: the application code is responsible for returning this buffer to the RTOS buffer
pool.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual

Data Structures

Table 24: Deferred Processing Vector: sSSPE_DPV

Field Name Field Type Field Description
event SPE DPR EVENT Event being reported
cause U N2 Reason for the Event

45 Global Variable

Most variables within the driver are not meant to be used by the application code. There
is one, however, that can be of great use to the application code:

spect r aMdb: A global pointer to the Module Data Block (MDB). This global variable is

to be considered read only by the application.

e errModul e: This structure element is used to store an error code that specifies the
reason for an API function’s failure. The field is only valid when the function in

question returns a SPE_FAI LURE value.

e stat eMdul e: This structure element is used to store the Module state.

e pddb[]: An array of pointers to the individual Device Data Blocks. The USER is
cautioned that a DDB is only valid if the *val i d’ flag is set. Note that the DDBs are
in no particular order.

° errDevi ce: This structure element is used to store an error code that specifies
the reason for an API function’s failure. The field is only valid when the function
in question returns a SPE_FAI LURE value.

° stateDevi ce: This structure element is used to store the Device state.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

55

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
SPECTRA-622 driver Application Programming Interface (API).

5.1 Module Initialization

Opening the Driver Module: spectraModuleOpen
This function performs module level initialization of the device driver. This involves

allocating all of the memory needed by the driver and initializing the Module Data Block
(MDB) with the passed Module Initialization Vector (MIV).

Prototypes | NT4 spectrahbdul eQpen(sSPE_ MV *pmv, sSPE MB** ppnulb)

Inputs pmi v : (pointer to) Module Initialization Vector
pprdb : (pointer to) pointer to the Module Data Block

Outputs pprdb : pointer to the Module Data Block

Returns Success = SPE_SUCCESS

Failure = <SPECTRA-622 ERRCR CODE>
Valid States START

Side Effects Changes MODULE state to IDLE

Closing the Driver Module: spectraModuleClose

This function performs module level shutdown of the driver. This involves deleting all
devices being controlled by the driver (by calling spect r aDel et e for each device) and
de-allocating the MDB.

Prototype I NT4 spectraMdul el ose(voi d)
Inputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ALL STATES

Side Effects Changes MODULE state to START

5.2 Module Activation

Starting the Driver Module: spectraModuleStart

This function performs module level startup of the driver. This involves allocating
semaphores and timers, initializing buffers and installing the ISR handler and DPR task.
Upon successful return of this function the driver is ready to add devices.

Prototype | NT4 spectrahbdul eStart (void)
Inputs None

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States IDLE

Side Effects Changes MODULE state to READY

Stopping the Driver Module: spectraModuleStop

This function performs module level shutdown of the driver. This involves deleting all
devices being controlled by the driver and removing the ISR handler and DPR task.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Prototype I NT4 spectrahbdul eSt op(voi d)
Inputs None

Outputs None

Returns Success = SPE_SUCCESS

Failure = < SPECTRA- 622 ERROR CODE>
Valid States READY

Side Effects Changes MODULE state to IDLE

5.3 Profile Management

Initialization Profile

Creating an Initialization Profile: spectraAddInitProfile

This function creates an initialization profile that is stored by the driver. A device can
now be initializaed by simply passing an initialization profile number.

Prototype I NT4 spectraAddinitProfile(sSPE INT PROF *pProfile, UNI2

*pProfil eNun)
Inputs pProfile : (pointer to) initialization profile being added
pProfil eNum . (pointer to) profile number to be assigned by
the driver
Outputs pProfil eNum : profile number assigned by the driver
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Retrieving an Initialization Profile: spectraGetlInitProfile

This function retrieves the contents of the initialization profile.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

INT4 spectraGetInitProfile(UNrI2 profileNum sSPE INT PR
*pProfil e)

- initialization profile number
. (pointer to) initialization profile

profil eNum
pProfile

pProfile : contents of the corresponding profile

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

IDLE, READY

None

Deleting an Initialization Profile: spectraDeletelnitProfile

This function deletes an initialization profile given its profile number.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spectrablel etelnitProfile(U N2 profil eNun)
profil eNum > initialization profile number

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

IDLE, READY

None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

59

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Diagnostic Profile

Creating a Diagnostic Profile: spectraAddDiagProfile

This function creates a diagnostic profile that is stored by the driver. Passing the
diagnostic profile number starts a diagnostic.

Prototype I NT4 spect raAddD agProf i | e(sSPE O AG PROF *pProfile, UNI2

*pProfil eNun)
Inputs pProfile : (pointer to) diagnostic profile being added
pProfil eNum . (pointer to) profile number
Outputs pProfil eNum : profile number assigned by the driver
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States IDLE, READY

Side Effects None

Retrieving a Diagnostic Profile: spectraGetDiagProfile

This function retrieves the contents of a diagnostic profile.

Prototype I NT4 spectraGet D agProfil e(UNI2 profil eNum sSPE O AG PRCF

*pProfile)
Inputs profil eNum : diagnostic profile number
pProfile : (pointer to) diagnostic profile
Outputs pProfile : contents of the corresponding profile
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Valid States IDLE, READY

Side Effects None

Deleting a Diagnostic Profile: spectraDeleteDiagProfile

This function deletes a diagnostic profile.

Prototype I NT4 spectrablel et eD agProfi | e(U NTI2 profil eNun)

Inputs profil eNum : diagnostic profile number
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States IDLE, READY

Side Effects None

5.4 Device Addition and Deletion

Adding a Device: spectraAdd

Verifies the presence of a new device in the hardware then returns a handle back to the
user. The device handle is passed as a parameter of most of the Device APl Functions. It
is used by the driver to identify the device on which the operation is to be performed.

Prototype sSPE H\DL spect raAdd(voi d *usrG xt, UNT1 *baseAddr, |NT4
**pper r Devi ce)

Inputs usr Ct xt : user context for this device
baseAddr : base address of the device
pper r Devi ce . (pointer to) an area of memory
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs

Returns

Valid States

Side Effects

pperr Devi ce : (pointer to) errDevice (inside the DDB)

Device handle (to be used as an argument to most of the SPECTRA-622
APIs) or NULL pointer in case of an error

READY

Changes the DEVICE state to PRESENT

Deleting a Device: spectraDelete

This function is used to remove the specified device from the list of devices being
controlled by the SPECTRA-622 driver. Deleting a device involves clearing the DDB for
that device and releasing its associated device handle.

Prototype I NT4 spect ralel et e(SSPE H\OL devi ceHandl €)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>
Valid States PRESENT, ACTIVE, INACTIVE
Side Effects None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.5 Device Initialization

Initializing a Device: spectralnit

This function initializes the Device Data Block (DDB) that is associated with that device
during spect r aAdd. It applies a reset to the device and configures it according to the
DIV passed by the Application. If the DIV is passed as a NULL the profile number is
used. A profile number of zero indicates that all the register bits are to be left in their
default state (after a soft reset). Note that the profile number is ignored UNLESS the
passed DIV is NULL.

Prototype I NT4 spectral nit(sSPE H\OL devi cerandl e, sSPE DV *pdiv, U NT2

profil eNun)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pdi v : (pointer to) Device Initialization Vector
profil eNum : profile number (ignored if pdi v is NULL)
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States PRESENT

Side Effects Changes DEVICE state to INACTIVE

Updating the Configuration of a Device: spectraUpdate

Updates the configuration of the device as well as the Device Data Block (DDB)
associated with that device according to the DIV passed by the Application. The only
difference between spect r aUpdat e and spect r al ni t is that no soft reset will be
applied to the device.

Prototype I NT4 spectral nit(sSPE H\CL devi cerandl e, sSPE DV *pdiv, U NT2

profil eNun)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pdi v : (pointer to) Device Initialization Vector
profil eNum : profile number (ignored if pdi v is NULL)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs

Returns

Valid States

Side Effects

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

PRESENT

Changes DEVICE state to INACTIVE

Resetting a Device: spectraReset

This function applies a software reset to the SPECTRA-622 device. It also resets all the
DDB contents (except for the user context). This function is typically called before re-
initializing the device.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

voi d spect raReset (sSPE H\DL devi ceHand! e)

devi ceHandl e : device Handle (from spect r aAdd)
None

None

ACTIVE, INACTIVE

Changes DEVICE state to PRESENT

5.6 Device Activation and De-Activation

Activating a Device: spectraActivate

This function restores the state of a device after it has been deactivated. Interrupts may be
re-enabled after deactivation.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Prototype I NT4 spectraActi vat e(sSPE H\CL devi cetHand e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States Inactive

Side Effects Change the DEVICE state to ACTIVE

DeActivating a Device: spectraDeActivate

This function de-activates the device from operation. In the process, interrupts are
masked and the device is put into a quiet state via enable bits.

Prototype I NT4 spectraDeActi vat e(sSPE H\CL devi ceHandl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE

Side Effects Changes the DEVICE state to INACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.7 Device Reading and Writing

Reading from a Device Register: spectraRead

This function can be used to read a register of a specific SPECTRA-622 device by
providing the register number. This function derives the actual address location based on
the device handle and register number inputs. It then reads the contents of this address
location using the system specific macro, sysSpect r aRead.

Note: A failure to read returns a zero and any error indication is written to the DDB.

Prototype U NT1 spect raRead(sSPE H\CL devi cetHandl e, U NTI2 regNun)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
regNum : register number

Outputs ERROR code written to the DDB

Returns Success = the register value
Failure = 0x00

Valid States ALL DEVICE STATES

Side Effects May affect registers that change after a read operation

Writing to a Device: spectraWrite

This function can be used to write to a register of a specific SPECTRA-622 device by
providing the register number. The function derives the actual address location based on
the device handle and register number inputs. It then writes the contents of this address
location using the system specific macro sysSpectraWite.

Note: A failure to write returns a zero and any error indication is written to the DDB.

Prototype U NT1 spectraWite(sSPE H\OL devi cerandl e, U NT2 regNum U NT1 val ue)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
regNum : register number
val ue : value to be written
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs ERROR code written to the DDB
Returns Success = previous value
Failure = 0x00

Valid States ALL DEVICE STATES

Side Effects May change the configuration of the Device

Reading a Block of Registers: spectraReadBlock

This function can be used to read a register block of a specific SPECTRA-622 device by
providing the starting register number, and the size to read. The function derives the
actual start address location based on the device handle and starting register number
inputs. It then reads the contents of this data block using multiple calls to the system
specific macro and sysSpect r aRead.

Note: Any error indication is written to the DDB. It is the USER’s responsibility to
allocate enough memory for the block read.

Prototype voi d spect raReadB ock(sSPE H\OL devi ceHandl e, U NT2 st art RegNum
U NT2 size, UNI1 *pbl ock)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st art RegNum : starting register number
si ze - size of the block to read
pbl ock . (pointer to) the block to read
Outputs ERROR code written to the DDB
pbl ock . (pointer to) the block read
Returns None

Valid States ALL DEVICE STATES

Side Effects May affect registers that change after a read operation

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Writing a Block of Registers: spectraWriteBlock

This function can be used to write to a register block of a specific SPECTRA-622 device
by providing the starting register number and the block size. The function derives the
actual starting address location based on the device handle and starting register number
inputs. It then writes the contents of this data block using multiple calls to the system
specific macro and sysSpect raW i t e. A bit from the passed block is only modified in
the device’s registers if the corresponding bit is set in the passed mask.

Note: Any error indication is written to the DDB

Prototype voi d spectraWiteB ock(sSPE H\OL devi ceHandl e, U NI2 st art Reghum
U NT2 size, UNI1 *pbl ock, UNI1 *pnask)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st art RegNum - starting register number
si ze - size of block to read
pbl ock : (pointer to) block to write
pmask . (pointer to) mask
Outputs ERROR code written to the DDB
Returns None

Valid States ALL DEVICE STATES

Side Effects May change the configuration of the Device

5.8 Transport Overhead Controller (TOC)

Modifying the Z0 Byte: spectraTOCWriteZ0

This function writes the Z0 byte into the transmit transport overhead.

Prototype I NT4 spect raTQOWi t eZ0(sSPE H\OCL devi ceHandl e, U NT1 Z0)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
Z0 : Z0 byte to write
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Modifying the S1 Byte: spectraTOCWriteS1

This function writes the S1 byte into the transmit transport overhead.

Prototype I NT4 spectraTQOWi t eS1(sSPE H\CL devi ceHandl e, U NT1 Sl)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
S1 : S1 byte to write

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>
Valid States ACTIVE, INACTIVE

Side Effects None

Reading the S1 Byte: spectraTOCReadS1

This function reads the S1 byte received in the transport overhead of the received stream.

Prototype I NT4 spectraTOCReadS1(sSPE_HNDL devi ceHandl e, Ul NT1
*pSl)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pS1 : (pointer to) S1 byte
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs pS1 : S1 byte read

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.9 Receive/ Transmit Section Overhead Processor (RSOP/TSOP)

Forcing Out-of-Frame: spectraSOPForceOOF

When the enable flag is set, this function forces the Receive section overhead processor
out-of-frame. When the enable flag is not set, the function resumes normal processing.

Prototype I NT4 spect r aSOPFor ceQOH sSPE H\OL devi cetHandl e, U NTI2 enabl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop forcing OOF

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID PMC-1991254 Issue 2

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

PB A C PMC-Sierra

Inserting Line AIS: spectraSOPInsertLineAlS

When the enable flag is set, this function forces a Line-AlS insertion. When the enable
flag is not set, the function resumes normal processing.

Prototype I NT4 spectraSCPl nsert Li neAl S(sSPE H\OL devi cetandl e, U NI2 enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop Line-AlS insertion
Outputs None
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>
Valid States ACTIVE, INACTIVE
Side Effects None

Forcing Errors in the Al Byte: spectraSOPDiagFB

This function enables the insertion of a single bit error continuously in the most
significant bit (bit 1) of the Al section overhead framing byte. Al bytes are set to 76H

instead of F6H.
Prototype I NT4 spect raSOPD agFB(sSPE H\OL devi cetandl e, U NTI2 enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)

enabl e : flag to start/stop error insertion
Outputs None
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE
Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

71

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

PB A C PMC-Sierra

Forcing Errors in the B1 Byte: spectraSOPDiagB1

This function enables insertion of bit errors continuously in the B1 section overhead byte.
The B1 byte value is inverted.

Prototype I NT4 spect raSCPD agBl(sSPE HN\OL devi ceHandl e, U NT2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Loss-Of-Signal: spectraSOPDiagLOS

This function enables the insertion of zeros in the transmit outgoing stream.

Prototype I NT4 spect raSCPD agLC5(sSPE H\CL devi ceHandl e, U NT2 enabl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

72

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.10 SONET / SDH Section Trace Buffer (SSTB)

Retrieving and Setting the Section Trace Messages:
spectraSectionTraceMsg

This function retrieves and sets the section trace message (JO) in the Sonet/SDH Section

Trace Buffer.

Note: It is the USER’s responsibility to ensure that the message pointer points to an area
of memory large enough to hold the returned data.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spect raSecti onTr aceMsg(SSPE H\OL devi ceHandl e, U NI2 t ype,
U Nri* pJo)

devi ceHandl e : device Handle (from spectraAdd)
type - type of access
0 = write tx section trace
1 =read rx accepted section trace
2 = read rx captured section trace
3 = write rx expected section trace
pJo . (pointer to) the section trace message

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>

ACTIVE, INACTIVE

None

5.11 Receive/ Transmit Line Overhead Processor (RLOP/TLOP)

Inserting Line Remote Defect Indication: spectraLOPInsertLineRDI

This function enables the insertion of a transmit line remote defect indication (RDI). The
Line RDI is inserted by transmitting the code 110 in bit positions 6, 7, and 8 of the K2

byte.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spectral (Pl nsert Li neRD (sSPE_ H\OL devi ceHandl e, U NI2
enabl e)

devi ceHandl| e
enabl e

: device Handle (from spect r aAdd)
: flag to start/stop Line RDI insertion

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

ACTIVE, INACTIVE

None

Forcing Errors in the B2: spectraLOPDiagB2

This function enables the insertion of bit errors continuously in each of the line BIP-8
bytes (B2 bytes). Each bit of every B2 is inverted.

Prototype I NT4 spect ralL(PD agB2(sSPE H\OL devi cetandl e, U NTI2 enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop B2 error insertion
Outputs None
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE
Side Effects None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Reading the Received K1 and K2 Bytes: spectraLOPReadK1K?2

This function reads the K1 and K2 bytes from the received line overhead.

Prototype I NT4 spect ral(PReadK1K2(sSPE H\OL devi cetandl e, U NT1 *pKl, U NT1
“pK2)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pK1 . (pointer to) K1 byte
pK2 : (pointer to) K2 byte
Outputs pK1 : K1 byte read
pK2 : K2 byte read
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Transmitted K1 and K2 Bytes: spectraLOPWriteK1K2

This function writes the K1 and K2 bytes into the transmit line overhead.

Prototype I NT4 spect ral(PWi t eKIK2(sSPE H\OL devi ceHandl e, U NTI'1 Ki,

U NTL K2)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
K1 : K1 byte to write
K2 : K2 byte to write

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Side Effects None

5.12 Receive Path Processing Slice (RPPS)

Retrieving and Setting the Path Trace Messages:
spectraPathTraceMsg

This function retrieves and sets the current path trace message (J1) in the Sonet/SDH Path
Trace Buffer. Note: It is the USER’s responsibility to make sure that the message pointer
points to an area of memory large enough to hold the returned data.

Prototype I NT4 spect r aPat hTr aceMsg(SSPE H\CL devi ceHandl e, U NTI2 stnd, U NI2
au3, UNT2 type, UNI1* pJi)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
stml : STM-1 index
au3 : AU-3 index
type - type of access

0 = write tx path trace

1 =read rx accepted path trace
2 = read rx captured path trace
3 = write rx expected path trace

pJ1 . (pointer to) the path trace message
Outputs pJ1 : updated path trace message
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Loss-Of-Pointer: spectraRPPSDiagLOP

This function forces the downstream pointer processing to enter the Loss of Pointer
(LOP) state. It does so by inverting the new data flag (NDF) field of the payload pointer
that is inserted in the DROP bus.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Prototype I NT4 spect raRPPSO agLOP(sSPE H\DL devi cetandl e, U NT2 stni, U NI2
au3, U NT2 enabl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st nl : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop NDF inversion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the H4 Byte: spectraRPPSDiagH4

This function enables the inversion of the multiframe indicator (H4) byte in the DROP
bus. An inversion forces an out-of-multiframe alarm in the downstream circuitry. This
can only occur when the SPE (VC) is used to carry virtual tributary (VT) or tributary unit
(TU) based payloads.

Prototype I NT4 spect raRPPSO agH4(sSPE H\DL devi ceHandl e, U NT2 strmi, U NI2
au3, U N2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop H4 inversion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Side Effects None

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS

This function enables the insertion of tributary path AIS on the DROP bus for VT1.5
(TU11), VT2 (TU12), VT3 and VT6 (TU2) payloads. Columns in the DROP bus carrying
tributary traffic are set to all ones. The pointer bytes (H1, H2, and H3), the path overhead
column, and the fixed stuff columns remain unaffected. Note: This is not applicable for
TU3 tributary payloads.

Prototype I NT4 spect raRPPS nsert TUAl S(sSPE H\OL devi ceHandl e, U NTI2 st
U NT2 au3, U NI2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop TUAIS

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing DS3 AIS: spectraRPPSDs3AisGen

Forces generation of DS3 AIS. Note: Any data on the STS-1 (STM-0/AU3) SPE is then
lost.

Prototype I NT4 spect r aRPPSDs3A sGn(sSPE H\OL devi cerandl e, UNT2 stmi, U NI2
au3, U NT2 enabl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

enabl e : flag to start/stop DS3 AIS generation
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

5.13 Transmit Path Processing Slice (TPPS)

Forcing Path AIS: spectraTPPSInsertPAIS

This function enables the insertion of the path alarm indication signal (PAIS) in the
transmit stream. The synchronous payload envelope and the pointer bytes (H1 — H3) are
set to all ones.

Prototype I NT4 spectraTPPS nsert PAl §(sSPE H\OL devi ceHandl e, U NT2 stni, U NT2
au3, U NT2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop PAIS insertion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Forcing Errors in the B3 Byte: spectraTPPSDiagB3

This function enables the inversion of the path BIP-8 byte (B3) in the transmit stream.
The B3 byte is inverted causing the insertion of eight path BIP-8 errors per frame.

Prototype I NT4 spect raTPPSO agB3(sSPE H\OL devi ceHandl e, U NT2 strmi, U NI2
au3, U NT2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 - AU-3 index
enabl e : flag to start/stop B3 inversion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing a Pointer Value: spectraTPPSForceTxPtr

This function enables the insertion of the pointer value passed in argument into the H1
and H2 bytes of the transmit stream. As a result, the upstream payload mapping circuitry
and a valid SPE can continue functioning and generating normally.

Prototype I NT4 spect r aTPPSFor ceTxPt r (sSPE H\NOL devi ceHandl e, U NT2 stni, U N2
au3, UNT2 enable, UNI2 aptr)

Inputs devi ceHandl e : device Handle (from spectraAdd)
st : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop generation
aptr - pointer value to insert in (H1,H2)

Outputs None

Returns Success = SPE_SUCCESS

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the New Data Flag Bits: spectraTPPSInsertNDF

This function enables the insertion of the passed new data flag bits (NDF[3:0]) in the
NDF bit positions.

Prototype I NT4 spect raTPPS nsert NOF(sSPE_ HN\OL devi ceHandl e, U NT2 strmi, U NI2
au3, UNT2 enabl e, U NIl ndf)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 - AU-3 index
enabl e : flag to start/stop NDF insertion
ndf : NDF value
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Path Remote Error Indication Count:
spectraTPPSInsertPREI

This function inserts the path remote error indication count passed in argument inside the
path status byte.

Prototype I NT4 spect raTPPS nsert PRE (sSPE H\OL devi ceHandl e, U NT2 stni, U N2
au3, UNT1 PRR)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
pr ei : PREI value

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the H4 Byte: spectraTPPSDiagH4

This function enables the inversion of the multiframe indicator (H4) byte in the
TRANSMIT stream. This forces an out of multiframe alarm in the downstream circuitry
when the SPE (VC) is used to carry virtual tributary (VT) or tributary unit (TU) based

payloads.
Prototype I NT4 spect raTPPSO agH4(sSPE H\DL devi ceHandl e, U NT2 strmi, U NI2
au3, U NT2 enabl €)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop H4 inversion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS

This function enables the insertion of tributary path AIS in the transmit stream for VT1.5
(TU11), VT2 (TU12), VT3 and VT6 (TU2) payloads. Columns in the transmit stream
carrying tributary traffic are set to all ones. The pointer bytes (H1, H2, and H3); the path
overhead column; and the fixed stuff columns are unaffected. Note: This is not applicable
for TU3 tributary payloads.

Prototype I NT4 spectraTPPS nsert TUAl S(sSPE HN\OL devi ceHandl e, U NTI2 stnd,
U NT2 au3, U NI2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
enabl e : flag to start/stop TUAIS insertion
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing DS3 AIS: spectraTPPSDs3AisGen

This function forces the generation of a DS3 AIS. Note: Any data on the STS-1 (STM-
0/AU3) SPE is then lost.

Prototype I NT4 spect r aTPPSDs3A sGn(sSPE H\OL devi ceHandl e, U NT2 st i,
U NT2 au3, U NI2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 - AU-3 index
enabl e : flag to start/stop DS3 AIS generation
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the J1 Byte: spectraTPPSWriteJ1

This function writes the J1 byte into the transmit path overhead

Prototype I NT4 spectraTPPSWi teJ1(sSPE H\OL devi ceHandl e, U NT2 stni, U NI2

au3, UNTL J1)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
J1 : J1 byte to write
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the C2 Byte: spectraTPPSWriteC2

This function writes the C2 byte into the transmit path overhead.

Prototype I NT4 spect raTPPSWit eC(sSPE H\DL devi cetandl e, U NT2 stni, U NI2
au3, UNIM @)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
c2 : C2 byte to write

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the F2 Byte: spectraTPPSWriteF2

This function writes the F2 byte into the transmit path overhead.

Prototype I NT4 spect raTPPSWi t eF2(sSPE H\NDL devi cetandl e, U NT2 stni, U NI2
au3, UNTL F)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
F2 : F2 byte to write
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Writing the Z3 Byte: spectraTPPSWriteZ3

This function writes the Z3 byte into the transmit path overhead.

Prototype I NT4 spect raTPPSWi t eZ3(sSPE H\OL devi cetandl e, U NT2 stni, U NI2
au3, UNTL 73)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
Z3 : Z3 byte to write
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Z4 Byte: spectraTPPSWriteZ4

This function writes the Z4 byte into the transmit path overhead.

Prototype I NT4 spect raTPPSWi t eZ4(sSPE H\DOL devi ceHandl e, U NT2 stni, U NI2

au3, UNTL Z74)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 : AU-3 index
Z4 : Z4 byte to write

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTIVE, INACTIVE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Side Effects None

Writing the Z5 Byte: spectraTPPSWriteZ5

This function writes the Z5 byte into the transmit path overhead.

Prototype I NT4 spect raTPPSWi t eZ5(sSPE H\OL devi ceHandl e U NT2 strmi, U NI2

au3, UNTL 75)
Inputs devi ceHandl e : device Handle(from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
Z5 : Z5 byte to write
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

5.14 Ring Control Ports (RING)

Sending Line AIS Maintenance Signal: spectraRINGLineAlISControl

This function forces a mate SPECTRA-622 to send the line AIS maintenance signal.

Prototype I NT4 spectraR NA.i neAl Sont rol (SSPE_ H\OL devi ceHandl e, U NTI2 enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop Line-AlS insertion
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Sending Line RDI Maintenance Signal: spectraRINGLineRDIControl

This function forces a mate SPECTRA-622 to send the line RDI maintenance signal.

Prototype I NT4 spectraR NA.i neRD Gont rol (sSPE_ HN\CL devi ceHandl e, U NTI2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e : flag to start/stop Line-RDI insertion

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>
Valid States ACTIVE, INACTIVE

Side Effects None

5.15 WAN Synchronization Controller (WANS)

Forcing Phase Reacquisitions: spectraWANSForceReac

This function forces a phase reacquisition of the Phase Detector.

Prototype I NT4 spect r aWANSFor ceReac(sSPE_ HN\OL devi ceHandl €)

Inputs devi ceHandl e : device Handle (from spect r aAdd)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.16 DROP Bus and ADD Bus PRBS Monitor and Generator (DPGM &
APGM)

Configuring Diagnostics: spectraDiagCfg

This function configures the DPGM and APGM for diagnostics in accordance with the
profile passed by the Application. Note: The DPGM and APGM are both disabled by
default unless this function is called. A profile number of zero indicates a NULL profile.
All register bits are left unchanged.

Prototype I NT4 spectral agdf g(sSPE H\DL devi ceHandl e, U NT2 profil eNun)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
profil eNum : profile number

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May insert a pseudo random byte sequence inside the payload.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.17 DPGM Functions

Forcing Generation of a New PRBS: spectraDPGMGenRegen

This function reinitializes the generator LFSR and regenerates the pseudo random bit
sequence (PRBS) from the known reset state. The LFSR is dependent on the sequence
number. This automatically forces all slaves to reset at the same time.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spect r aDPGMENRegen(sSPE H\LCL devi ceHandl e, U NTI2 stnd, U NI2
aul)

devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index

au3 : AU-3 index

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>

ACTIVE, INACTIVE

None

Forcing Bit Errors: spectraDPGMGenForceErr

This function forces bit errors in the inserted pseudo random bit sequence (PRBS).
Thereafter, the MSB of the PRBS is inverted, inducing a single bit error.

Prototype I NT4 spect r aDPAGVEnFor ceE r (sSPE HNOL devi ceHandl e, U NTI2 stnd,
U NT2 au3)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Valid States

Side Effects

Failure = <SPECTRA- 622 ERROR CCDE>

ACTIVE, INACTIVE

None

Forcing a Resynchronization: spectraDPGMonResync

This function forces the resynchronization of the monitor to the incoming pseudo random
bit sequence (PRBS). The monitor will go out of synchronization and begin re-
synchronizing the incoming PRBS payload. This will automatically force all slaves to
resynchronize at the same time.

Prototype I NT4 spect r aDPGWbnResync(sSPE HN\OL devi ceHandl e, U NT2 stmi, U NI2
aul)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
stml : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.18 APGM Functions

Forcing Generation of a New PRBS: spectraAPGMGenRegen

This function re-initializes the generator LFSR and begins regenerating the pseudo
random bit sequence (PRBS) from the known reset state. The LFSR is dependent on the
sequence number. This automatically forces all slave to reset at the same time.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spect r aAPGVENRegen(sSPE H\OL. devi ceHandl e, U NTI2 stni,
U NT2 au3)

devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index

au3 : AU-3 index

None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>

ACTIVE, INACTIVE

None

Forcing Bit Errors: spectraAPGMGenForceErr

This function forces bit errors in the inserted pseudo random bit sequence (PRBS).
Thereafter, the MSB of the PRBS is inverted, inducing a single bit error.

Prototype I NT4 spect r aAPGVEnFor ceE r (sSPE HNOL devi ceHandl e, U NTI2 stnd,
U NT2 au3)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 - AU-3 index

Outputs None

Returns Success = SPE_SUCCESS

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

Forcing a Resynchronization: spectraAPGMonResync
This function forces resynchronization of the monitor to the incoming pseudo random bit

sequence (PRBS). This process will automatically force all slaves to resynchronize at the
same time.

Prototype I NT4 spect r aAPGWbnResync(sSPE H\CL devi ceHandl e, U NT2 strmi, U NI2

aul)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 - AU-3 index

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE

Side Effects None

5.19 Interrupt Service Functions

Getting the Interrupt Mask: spectraGetMask

This function returns the contents of the interrupt mask registers of the SPECTRA-622
device.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spect r aGet Mask(sSPE H\DL devi ceHandl e, sSPE MAK *pnask)

: device Handle (from spect r aAdd)
. (pointer to) mask structure

devi ceHandl e
prmask

ERROR code written to the DDB

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>

ACTIVE, INACTIVE

None

Setting the Interrupt Mask: spectraSetMask

This function sets the contents of the interrupt mask registers of the SPECTRA-622

device.
Prototype I NT4 spect r aSet Mask(sSPE H\DL devi ceHandl e, sSPE MAK *pnask)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pmask : (pointer to) mask structure
Outputs ERROR code written to the DDB
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE, INACTIVE
Side Effects May change the operation of the ISR / DPR
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94

Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Clearing the Interrupt Mask: spectraClearMask

This function clears the individual interrupt bits and registers in the SPECTRA-622
device. Any bits that are set in the passed structure are cleared in the associated registers.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spectrad ear Mask(sSPE H\OL devi ceHandl e, sSPE MAK *prrask)

devi ceHandl e
prmask

: device Handle (from spect r aAdd)
: (pointer to) mask structure

ERROR code written to the DDB

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

ACTIVE, INACTIVE

May change the operation of the ISR / DPR

Polling Interrupt Status Registers: spectraPoll

Commands the Driver to poll the interrupt registers in the Device. The call will fail unless
the device is initialized in polling mode.

Prototype I NT4 spectraPol | (sSPE_HNDL devi ceHandl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None
Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CCDE>
Valid States SPE_ACTI VE
Side Effects None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Interrupt Service Routine: spectralSR
This function reads the state of the interrupt registers in the SPECTRA-622 and stores

them into an ISV. It performs whatever functions are needed to clear the interrupt. This
routine is called by the application code from within sysSpect ral SRHandl er .

Prototype voi d *spect ral SR(sSPE H\DL devi ceHandl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None
Returns (pointer to) ISV buffer (to send to the DPR) or NULL (pointer)

Valid States ACTIVE

Side Effects None

Deferred Processing Routine: spectraDPR
This function acts on data contained in an ISV. It creates a DPV that invokes application

code callbacks (if defined and enabled), and possibly other performing linked actions.
This function is called from within the application function sysSpect r aDPRTask.

Prototype voi d spectralDPR(SSPE | SV *pi sv)

Inputs pi sv . (pointer to) ISV buffer
Outputs None
Returns None

Valid States ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.20 Alarm, Status and Statistics Functions

Configuring Statistical Counts: spectraCfgStats

This function configures all the statistical counts.

Prototype I NT4 spectraCfgStats(sSPE_HNDL devi ceHandl e,
SSPE_CFG_CNT cfgCnt)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
cf gCnt : counters configuration block

Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTIVE, INACTIVE

Side Effects None

Statistics Collection Routine: spectraGetCnt

This function retrieves all the device counts.Note: It is the USER’s responsibility to
ensure that the structure points to an area of memory large enough to hold a copy of the
counter structure.

Prototype | NT4 spectraGet Cnt (SSPE_HNDL devi ceHandl e,
SSPE_STAT_CNT *pcnt)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pcnt . (pointer to) allocated memory
Outputs pcnt : current device counts
Returns Success = SPE_SUCCESS
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTI VE, | NACTI VE

Side Effects None

Retrieving Counter for SOP Block: spectraGetCntSOP
This function retrieves the specified device counts block.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype I NT4 spectraGet Cnt SOP(sSPE_HNDL devi ceHandl e,
SSPE_STAT_CNT_SOP *pcnt SOP)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pcnt SOP . (pointer to) allocated memory

Outputs pcnt SOP current device counts

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTI VE, | NACTI VE

Side Effects None

Retrieving Counter for LOP Block: spectraGetCntLOP

This function retrieves the specified device counts block.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype I NT4 spectraGet Cnt LOP(SPE_HNDL devi ceHandl e,
SSPE_STAT_CNT_LOP *pcnt LOP)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pcnt LOP : (pointer to) allocated memory

Outputs pcnt LOP : current device counts

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTI VE, | NACTI VE

Side Effects None

Retrieving Counter for RPPS Block: spectraGetCntRPPS
This function retrieves the specified device counts block.
Note: It is the USER’s responsibility to ensure that the structure points to an area of

memory large enough to hold a copy of the counter structure.

Prototype I NT4 spect raGet Cnt RPPS(sSPE_HNDL devi ceHandl e,
U NT2 stml, U NT2 au3, sSPE_STAT_CNT_RPPS *pcnt RPPS)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st : STM-1 index
au3 : AU-3 index
pcnt RPPS . (pointer to) allocated memory
Outputs pcnt RPPS : current device counts
Returns Success = SPE_SUCCESS
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTI VE, | NACTI VE

Side Effects None

Retrieving Counter for TPPS Block: spectraGetCntTPPS
This function retrieves the specified device counts block.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype I NT4 spect raGet Cnt TPPS(sSPE_HNDL devi ceHandl e,
U NT2 stml, U NT2 au3, sSPE_STAT_CNT_TPPS *pcnt TPPS)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 : AU-3 index
pcnt TPPS : (pointer to) allocated memory
Outputs pcnt TPPS > current device counts
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTI VE, | NACTI VE

Side Effects None

Retrieving Counter for Pointer Justifications: spectraGetCntPJ

This function retrieves the specified device counts block.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

I NT4 spectraCet Cnt TPPS(sSPE_HNDL devi ceHandl e,
U NT2 stnll, U NT2 au3, sSPE _STAT_CNT_PJ *pcnt PJ)

devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index

au3 : AU-3 index

pcnt PJ . (pointer to) allocated memory

pcnt PJ . current device counts

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

ACTI VE, | NACTI VE

None

Retrieving Alarm Status: spectraGetStatus

This function retrieves the current alarm status by reading all the alarm status registers.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype I NT4 spectraGet St at us(sSPE_HNDL devi ceHandl e,
SSPE_STATUS *pal m
Inputs devi ceHandl e : device Handle (from spect r aAdd)
pal m . (pointer to) allocated memory
Outputs pal m : current alarm status
Returns Success = SPE_SUCCESS
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Alarm Status for 10 block: spectraGetStatusIO

This function reads a given alarm status from the alarm status registers.

Prototype I NT4 spectraGet Statusl QU sSPE_HNDL devi ceHandl e,
SSPE_STATUS | O *pal m O)

Inputs devi ceHandl! e : device Handle (from spect r aAdd)
pal M O : (pointer to) allocated memory

Outputs pal m O > current alarm status

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTI VE

Side Effects None

Retrieving Alarm Status for SOP block: spectraGetStatusSOP

This function reads a given alarm status from the alarm status registers.

Prototype | NT4 spectraGet St at usSOP(sSPE_HNDL devi ceHandl e,
SSPE_STATUS_SOP *pal nSOP)

Inputs devi ceHandl e : device Handle (from spect r aAdd)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

pal nSOP . (pointer to) allocated memory
Outputs pal nsOP current alarm status
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTI VE

Side Effects None

Retrieving Alarm Status for LOP block: spectraGetStatusLOP

This function reads a given alarm status from the alarm status registers.

Prototype I NT4 spectraGet St at usLOP(sSPE_HNDL devi ceHandl e,
SSPE_STATUS LOP *pal mLOP)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pal mLOP : (pointer to) allocated memory

Outputs pal mLOP > current alarm status

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTI VE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Retrieving Alarm Status for RPPS block: spectraGetStatusRPPS

This function reads a given alarm status from the alarm status registers.

Prototype I NT4 spect raGet St at usRPPSP(sSPE_HNDL devi ceHandl e,
SSPE_STATUS_RPPS *pal nRPPS)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pal nRPPS . (pointer to) allocated memory

Outputs pal mRPPS current alarm status

Returns Success = SPE_SUCCESS

Failure = < SPECTRA- 622 ERROR CODE>

Valid States ACTI VE

Side Effects None

Retrieving Alarm Status for TPPS block: spectraGetStatusTPPS

This function reads a given alarm status from the alarm status registers.

Prototype I NT4 spectraGet St at usTPPS(sSPE_HNDL devi ceHandl e,
SSPE_STATUS_TPPS *pal niTPPS)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
pal nirPPS . (pointer to) allocated memory

Outputs pal mTPPS current alarm status

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTI VE

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Side Effects None

5.21 Device Diagnostics

Verifying Register Access: spectraTestReg

This function verifies the hardware access to the device registers by writing and reading

back values.

Prototype I NT4 spectraTest Reg(sSPE_HNDL devi ceHandl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
Outputs None

Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>
Valid States PRESENT

Side Effects None

Clearing and Setting a Line Loopback: spectraLoopLine

This function clears and sets a Line Loopback (SLLE=1). The spectralL.oopLine connects
the high speed receive data and clock to the high speed transmit data and clock, and can
be used for line side investigations (including clock recovery and clock synthesis). While
in this mode, the entire receive path is operating normally. Note: It is up to the USER to
perform any tests on the looped data.

Prototype I NT4 spectralLoopLi ne(sSPE_HNDL devi ceHandl e, Ul NT2
enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Outputs

Returns

Valid States

Side Effects

enabl e - sets loop if non-zero, else clears loop
None

Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

ACTIVE

Will inhibit the flow of active data

Clearing and Setting a Serial Loopback: spectraLoopSerialDiag

This function clears and sets a Serial Diagnostic Loopback (SDLE=1). It connects the
high speed transmit data and clock to the high speed receive data and clock. While in this
mode, the entire transmit path is operating normally and data is transmitted on the
TXD+/- outputs. Note: It is up to the USER to perform any tests on the looped data.

Prototype | NT4 spectralLoopSeri al Di ag(sSPE_HNDL devi ceHandl e, Ul NT2
enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e - sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Clearing and Setting a Parallel Loopback: spectraLoopParaDiag

This function clears and sets a parallel diagnostic loopback (PDLE=1). It connects the
byte wide transmit data and clock to the byte wide receive data and clock. While in this
mode, the entire transmit path is operating normally and data is transmitted on the
TXD+/- outputs. Note: It is up to the USER to perform any tests on the looped data.

Prototype INT4 spectraLoopParaDiag(sSPE_HNDL deviceHandle, UINT2 enable)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
enabl e - sets loop if non-zero, else clears loop
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Clearing and Setting a System-Side Loopback:
spectraLoopSysSideLine

This function clears and sets a system-side line loopback (SLLBEN=1). It connects the
STS-1 (STM-0/AU3) or equivalent receive stream from the Receive Telecom bus Aligner
(RTAL) of the associated RPPS to the Transmit Telecom bus Aligner (TTAL) of the
corresponding TPPS. This mode can be used for line side investigations (including clock
recovery and clock synthesis) as well as path processing investigations. While in this
mode, the entire receive path is operating normally. The SPECTRA-622 may be
configured to support the system-side line loopback of up to twelve STS-1 (STM-0/AU3)
or equivalent receive streams. Note: It is up to the USER to perform any tests on the

looped data.
Prototype | NT4 spectraLoopSysSi deLi ne(sSPE_HNDL devi ceHandl e, Ul NT2
st ml, U NT2 au3, U NT2 enabl e)
Inputs devi ceHandl e : device Handle (from spect r aAdd)
stml : STM-1 index
au3 : AU-3 index
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

enabl e - sets loop if non-zero, else clears loop
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CODE>
Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Clearing and Setting a DS3 Line Loopback: spectraLoopDS3Line

This function clears and sets a DS3 line loopback (DS3LLBEN=1). It connects the DS3
receive stream from the DS3 Mapper DROP side (D3MD) of the associated RPPS to the
DS3 Mapper ADD side (D3MA\) of the corresponding TPPS. The DS3ADDSEL bit in the
SPECTRA-622 TPPS Path and DS3 Configuration register of the TPPS must be set high.
This mode can be used for line side investigations (including clock recovery and clock
synthesis) as well as DS3 stream processing investigations. While in this mode, the entire
receive (DS3) path is operating normally. The SPECTRA-622 may be configured to
support the DS3 line loopback of up to twelve DS3 receive streams. Note: It is up to the
USER to perform any tests on the looped data.

Prototype | NT4 spectralLoopDS3Li ne(sSPE_HNDL devi ceHandl e, Ul NT2
stml, U NT2 au3, U NT2 enabl e)

Inputs devi ceHandl e : device Handle (from spect r aAdd)
st ml : STM-1 index
au3 - AU-3 index
enabl e - sets loop if non-zero, else clears loop
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

5.22 Callback Functions

The SPECTRA-622 driver has the capability to callback to functions within the USER
code when certain events occur. These events and their associated callback routine
declarations are detailed below. There is no USER code action that is required by the
driver for these callbacks — the USER is free to implement these callbacks in any manner
or else they can be deleted from the driver.

The names given to the callback functions are given as examples only. The addresses of
the callback functions invoked by the spect r aDPR function are passed during the
spectral nit call (inside a DIV). However the USER shall use the exact same
prototype.

Note: The Application is left responsible for releasing the passed DPV as soon as possible
(to avoid running out of DPV buffers) by calling sysSpect r aDPVBuf f er Rt n either
within the callback function or later inside the Application code.

Callbacks Due to 10 Events: cbackSpectralO

This callback function is provided by the USER and is used by the DPR to report
significant 10 section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d chackSpect ral Q(sSPE_UBSR CIXT usr G xt, sSPE DPV *pdpv)

Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Callbacks Due to TOC Events: cbackSpectraTOC

This callback function is provided by the USER and is used by the DPR to report
significant TOC section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d chackSpect raTQQ sSPE_USR CIXT usr G xt, sSPE DPV *pdpv)

Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to SOP Events: chackSpectraSOP

This callback function is provided by the USER and is used by the DPR to report
significant SOP section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d chackSpect raSaP(sSPE_USR CIXT usr G xt, SSPE DPV *pdpv)

Inputs usr Ct xt : user context (from spect r aAdd)
pdpv . (pointer to) formatted event buffer
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns None
Valid States ACTIVE

Side Effects None

Callbacks Due to SSTB Events: cbackSpectraSSTB

This callback function is provided by the USER and is used by the DPR to report
significant SSTB section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d cbackSpect r aSSTB(sSPE_USR CTXT usr G xt, sSPE _DPV *pdpv)

Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to LOP Events: cbackSpectraLOP

This callback function is provided by the USER and is used by the DPR to report
significant LOP section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

voi d cbackSpect ral(sSPE USR CTXT usrG xt, sSPE DPV *pdpv)

usr Ct xt
pdpv

: user context (from spect r aAdd)
. (pointer to) formatted event buffer

None

None

ACTIVE

None

Callbacks Due to RPPS Events: cbackSpectraRPPS

This callback function is provided by the USER and is used by the DPR to report
significant RPPS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype

Inputs

Outputs

Returns

Valid States

Side Effects

voi d cbackSpect raRPPS(sSPE LBR CTXT usr G xt, sSPE DPV *pdpv)

usr Ct xt
pdpv

> user context (from spect r aAdd)
: (pointer to) formatted event buffer

None

None

ACTIVE

None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

112

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Callbacks due to TPPS events: cbackSpectraTPPS

This callback function is provided by the USER and is used by the DPR to report
significant TPPS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d cbackSpect r aTPPS(sSPE_USR CTXT usr G xt, sSPE DPV *pdpv)

Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to WANS Events: cbackSpectraWANS

This callback function is provided by the USER and is used by the DPR to report
significant WANS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d chackSpect r aWANS(sSPE USR CIXT usr G xt, sSSPE DPV *pdpv)

Inputs usr Ct xt : user context (from spect r aAdd)
pdpv . (pointer to) formatted event buffer
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Returns None
Valid States ACTIVE

Side Effects None

Callbacks Due to DPGM Events: cbackSpectraDPGM

This callback function is provided by the USER and is used by the DPR to report
significant DPGM section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype voi d cbackSpect r aDPG sSPE_USR CTXT usr G xt, sSPE_DPV *pdpv)

Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to APGM Events: cbackSpectraAPGM

This callback function is provided by the USER and is used by the DPR to report
significant APGM section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Application Programming Interface

Note: the USER should free the DPV buffer.

Prototype voi d cbackSpect raAPG sSPE LR CTXT usr G xt, sSPE DPV *pdpv)
Inputs usr Ct xt > user context (from spect r aAdd)
pdpv : (pointer to) formatted event buffer
Outputs None
Returns None
Valid States ACTIVE
Side Effects None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Hardware Interface

6 HARDWARE INTERFACE

The SPECRTA-622 driver interfaces directly with the USER’s hardware. In this section, a
listing of each point of interface is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the hardware, either by defining a macro or by writing a function for each item listed.
Care should be taken when matching parameters and return values.

6.1 Device l/O

Reading Registers: sysSpectraRead

This function serves as the most basic hardware connection by reading the contents of a
specific register location. This Macro should be UINT1 oriented, and should be defined
by the user to reflect the target system’s addressing logic. There is no need for error
recovery in this function.

Prototype U NT1 sysSpect raRead(U NT1 *addr)

Inputs addr - register location to be read
Outputs None

Returns value read from the addressed register location
Format #def i ne sysSpectraRead(addr)

Writing Values: sysSpectraWrite
This function serves as the most basic hardware connection by writing the supplied value
to the specific register location. This macro should be UINT1 oriented and should be

defined by the user to reflect the target system’s addressing logic. There is no need for
error recovery in this function.

Prototype voi d sysSpectraWite(U NTI1 *addr, U NT val ue)

Inputs addr - register location to be read

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Hardware Interface

Outputs None
Returns value read from the addressed register location
Format #defi ne sysSpectraWite(addr, val ue)

6.2 Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many
different implementations of these hardware level routines. In this driver, the USER is
responsible for installing an interrupt handler (sysSpect r al SRHandl er) in the
interrupt vector table of the system processor. This handler shall call spect r al SR for
each device that has interrupt servicing enabled, to perform the ISR related housekeeping
required by each device.

During execution of the API function spect r aMbdul eSt art / spect r aMbdul eSt op
the driver informs the application that it is time to install / uninstall this shell via
sysSpect ral SRHandl er I nst al | /sysSpectral SRHandl er Renpve, that needs to
be supplied by the USER.

Note: A device can be initialized with ISR disabled. In that mode, the USER should

periodically invoke a provided “polling’ routine (spect r aPol |) that in turn calls
spectral SR.

Installing the ISR Handler: sysSpectralSRHandlerInstall

This function installs the USER-supplied Interrupt Service Routine (ISR),
sysSpect r al SRHandl er, into the processor’s interrupt vector table.

Prototype voi d sysSpectral SRHandl erinstal | (voi d *func)

Inputs func . (pointer to) the function spectral SR
Outputs None
Returns None

Valid States None

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Hardware Interface

Format #def i ne sysSpectral SRHandl erInstall (func)

ISR Handler: sysSpectralSRHandler
This routine is invoked when one or more SPECTRA-622 devices raise the interrupt line

to the microprocessor. This routine invokes the driver-provided routine (spect r al SR)
for each device registered with the driver.

Prototype voi d sysSpect r al SRandl er (voi d)

Inputs None
Outputs None
Returns None
Format #def i ne sysSpectral SRHandl er ()

Removing Handlers: sysSpectralSRHandlerRemove
This function disables Interrupt processing for this device. It removes the USER-supplied

Interrupt Service routine (ISR), sysSpect r al SRHandl er, from the processor’s
interrupt vector table.

Prototype voi d sysSpect r al SRHandl er Rerove(voi d)

Inputs None
Outputs None
Returns None
Format #def i ne sysSpectral SRHandl er Renove()
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Hardware Interface

DPR Task: sysSpectraDPRTask
This routine is installed as a separate task within the RTOS. It runs periodically and

retrieves the interrupt status information sent to it by the spect r al SRHandl er routine,
thereafter invoking the spect r aDPR routine for the appropriate device.

Prototype voi d sysSpect r aDPRTask(voi d)

Inputs None
Outputs None
Returns None
Format #def i ne sysSpectraDPRTask()
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

7/ RTOS INTERFACE

The SPECTRA-622 driver requires the use of some RTOS resources. In this section, a
listing of each required resource is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the RTOS, either by defining a macro or writing a function for each item listed. Care
should be taken when matching parameters and return values.

7.1 Memory Allocation / De-Allocation

Allocating Memory: sysSpectraMemAlloc

This function allocates specified number of bytes of memory.

Prototype U NT1 *sysSpect raMeniN | oc(U NT4 nunByt es)

Inputs nunByt es : number of bytes to be allocated
Outputs None
Returns Success = Pointer to first byte of allocated menory

Failure = NULL pointer (memory allocation failed)

Format #def i ne sysSpectraMeni | oc(nunByt es)

Freeing Memory: sysSpectraMemFree

This function frees the memory allocated when using the sysSpect r aMemAl | oc.

Prototype voi d sysSpect r aMentr ee(U NIl *pf i r st Byt e)

Inputs pfirstByte : pointer to first byte of the memory region
being de-allocated

Outputs None
Returns None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

Format #def i ne sysSpectraMenfree(pfirstByte)

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending
and receiving messages. The following calls, provided by the USER, allow the Driver to
Get and Return buffers from the RTOS. It is the USER’s responsibility to create any
special resources or pools to handle buffers of these sizes during the
sysSpectraBufferStart call

Starting Buffer Management: sysSpectraBufferStart

This function alerts the RTOS that the ISV buffers and DPV buffers are available and
should be sized correctly. This may or may not involve the creation of new buffer pools,
depending on the RTOS.

Prototype I NT4 sysSpectraBuf f er Sart (voi d)

Inputs None
Outputs None
Returns Success = SPE_SUCCESS

Failure = <SPECTRA- 622 ERROR CCDE>

Format #define sysSpectraBufferStart ()

Getting DPV Buffers: sysSpectraDPVBufferGet
This function retrieves a buffer from the RTOS. The buffer is used by the DPR code to

create a Deferred Processing Vector (DPV). The DPV contains information about the
state of the device. This information is passed on to the USER via a callback function.

Prototype SSPE [PV *sysSpect r aDPVBUf f er Get (voi d)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

Inputs None
Outputs None
Returns Success = (pointer to) a DPV buffer

Failure = NULL (pointer)

Format #defi ne sysSpectraDPVBuf fer Get ()

Getting ISV Buffers: sysSpectralSVBufferGet
This function retrieves a buffer from the RTOS. The buffer is used by the ISR code to

create a Interrupt Service Vector (ISV). The ISV contains data transferred from the
devices interrupt status registers.

Prototype SSPE | SV *sysSpect ral SVBuf f er Get (voi d)

Inputs None
Outputs None
Returns Success = (pointer to) a ISV buffer

Failure = NULL (pointer)

Format #defi ne sysSpectral SVBuf ferCet ()

Returning DPV Buffers: sysSpectraDPVBufferRtn

This device returns a DPV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype voi d sysSpect raDPVBUf f er R n(sSPE DPV *pdpv)

Inputs pdpv . (pointer to) a DPV buffer
Outputs None
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

Returns None

Format #def i ne sysSpectraDPVBuf f er Rt n(pdpv)

Returning ISV Buffers: sysSpectralSVBufferRtn

This device returns a ISV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype voi d sysSpectral SVBUf f er R n(sSPE_| SV *pi sv)

Inputs pi sv : (pointer to) a ISV buffer
Outputs None

Returns None

Format #def i ne sysSpectral SVBuf f er Rt n(pi sv)

Stopping Buffer Management: sysSpectraBufferStop
This function alerts the RTOS that the Driver no longer needs the ISV buffers or DPV

buffers. If any special resources were created to handle these buffers, they can be deleted
at this time.

Prototype voi d sysSpect r aBuf f er & op(voi d)

Inputs None
Outputs None
Returns None
Format #defi ne sysSpectraBufferStop()
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

7.3 Preemption

Disabling Preemption: sysSpectraPreemptDisable
This routine prevents the calling task from being preempted. If the driver is in interrupt

mode, this routine locks out all interrupts as well as other tasks in the system. If the driver
is in polling mode, this routine locks out other tasks only.

Prototype I NT4 sysSpect r aPr eenpt O sabl e(voi d)

Inputs None
Outputs None
Returns Preemption key (passed back as an argument in

sysSpect r aPr eenpt Enabl e)

Format #def i ne sysSpectraPreenpt Di sabl e()

Re-Enabling Preemption: sysSpectraPreemptEnable
This routine allows the calling task to be preempted. If the driver is in interrupt mode,

this routine unlocks all interrupts and other tasks in the system. If the driver is in polling
mode, this routine unlocks other tasks only.

Prototype voi d sysSpect r aPr eenpt Enabl e(| NT4 key)

Inputs key :preemption key (returned by sysSpect r aPr eenpt Di sabl e)
Outputs None
Returns None
Format #define sysSpect r aPr eenpt Enabl e(key)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra RTOS Interface

7.4 Timers

Suspending a Task Execution: sysSpectraTimerSleep

This function suspends the execution of a driver task for a specified number of
milliseconds.

Prototype voi d sysSpect raTi ner S eep(U NI'4 nsec)

Inputs nsec : sleep time in milliseconds
Outputs None
Returns None
Format #def i ne sysSpectraTi ner Sl eep(nsec)
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125

Document ID PMC-1991254 Issue 2

Spectra-622 (PM5313) Driver Manual
Porting Drivers

PB A C PMC-Sierra

8 PORTING DRIVERS

This section outlines how to port the SPECTRA-622 device driver to your hardware and
OS platform. However, this manual can offer only guidelines for porting the SPECTRA-
622 driver because each platform and application is unique.

8.1 Driver Source Files

The C files listed in the following table contain the code for the SPECTRA-622 driver.
You may need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped into source
files (sr c) and include files (i nc). The source files contain the functions and the include
files contain the structures, constants and macros.

Directory File Description
src spe_api 1. c All the API functions that take care of module,
device and profile management
spe_api 2. ¢ All the SPECTRA-622 specific API functions.
spe_hw.c Hardware interface functions
spe_isr.c Internal functions that deal with interrupt servicing
spe_prof.c Internal functions that deal with profiles
spe_rtos.c RTOS interface functions
spe_stat.c Internal functions that deal with statistics
spe_util.c | All the remaining internal functions
inc spe_api . h All API headers
spe_defs. h Driver macros, constants and definitions (such as
register mapping and bit masks)
spe_err.h SPECTRA-622 error codes
spe_fns. h Prototype of non-API functions
spe_hw. h HW interface macros and prototype
spe_rtos. h RTOS interface macros and prototypes
spe_strs. h driver structures
spe_typs. h | types definitions
exanpl e spe_app. ¢ Sample driver callback functions and example code
spe_app. h Prototypes, macros and structures used inside the
example code

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use

Document ID PMC-1991254 Issue 2

126

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Porting Drivers

8.2 Driver Porting Procedures

The following procedures summarize how to port the SPECTRA-622 driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the SPECTRA-622 driver to your platform:

Step 1: Port the driver’s RTOS interface (page 127):

Step 2: Port the driver’s hardware interface (page 128):

Step 3: Port the driver’s application-specific elements (page 130):
Step 4: Build the driver (page 130).

Porting Assumptions

The following porting assumptions have been made:

e Itisassumed that ram assigned to the Driver’s static variables is initialized to ZERO
before any Driver function is called.

« Itis assumed that a ram stack of 4K is available to all of the Driver’s non-ISR
functions and that a ram stack of 1K is available to the Driver’s ISR functions.

e Itisassumed that there is no memory management or MMU in the system or that all
accesses by the driver, to memory or hardware can be direct.

Step 1: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent and
needs to be modified as per your RTOS’s characteristics.

To port the driver’s OS extensions:

1. Redefine the following macros and functions in the spe_rt os. h file to the
corresponding system calls that your target system supports:

Service Type | Macro Name Description

Memory sysSpect ravenA | oc Allocates a memory block
sysSoect r aMent ee Frees a memory block
sysSpect r aMenCpy Copies the contents of one

memory block to another

sysSpect r aMenget Fills a memory block with a
specified value

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Porting Drivers

Timer sysSpect r aTi ner S eep Delays the task execution for a
given number of milliseconds

Pre-emption | sysSpect raPreenpt D sabl e Disables pre-emption of the
Lock/Unlock currently executing task by any
other task or interrupt

sysSpect r aPr eenpt Enabl e Re-enables pre-emption of a task
by other tasks and/or interrupts

2. Modify the example implementation of the buffer management routines provided in
the spe_rt os. h file with the corresponding system calls that your target system

supports:
Service Type | Macro Name Description
Buffer sysSpectraBufferSart Starts buffer management
sysSpect r aBuf f er & op Stops buffer management
sysSpect r al SVBUf f er Get Gets an ISV buffer from the
ISV buffer queue
sysSpectral SvBuf ferRn Returns an ISV buffer to the
ISV buffer queue
sysSpect r aCPVBUf f er Get Gets a DPV buffer from the
DPV buffer queue
sysSpectralCPVBUf fer R n Returns a DPV buffer to the
DPV buffer queue

3. Define the following constants for your OS-specific services in spe_rt os. h:

Task Constant Description Default
SFEDRTAKPRRARTY Deferred Task (DPR) task priority 85

SPE OPR TAK STAK &Z DPR task stack size, in bytes 8192
SPE_MAX I SV BUF The queue message depth of the 50

queue used for pass interrupt context
between the ISR task and DPR task

SPE_MAX_DPV_BUF The queue message depth of the 950
queue used for pass interrupt context
between the ISR task and DPR task

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID PMC-1991254 Issue 2

PB A c PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Porting Drivers

Step 2: Porting the Hardware Interface

This section describes how to modify the SPECTRA-622 driver for your hardware

platform.

To port the driver to your hardware platform:

1. Modify the variable type definitions in spe_t yps. h.

2. Modify the low-level hardware-dependent functions and macros in the spe_hw. h
file. You may need to modify the raw read/write access macros (sysSpect r aRead
and sysSpect raW i t e) to reflect your system’s addressing logic.

the OS

Service Type | Function Name Description
Register sysSpect raRead Reads a device register given its
Access real address in memory
sysSpectrawite Writes to a device register given
its real address in memory
Interrupt sysSpectral SRtandl erinstall | Installs the interrupt handler for

sysSect r al SRandl er Renove

from the OS

Removes the interrupt handler

sysSpect r al SRandl er

Interrupt handler for the
SPECTRA-622 device

sysSpect r aDPRTask

DPR

Task that calls the SPECTRA-622

3. Define the hardware system-configuration constants in the spe_hw. h file. Modify
the following constants to reflect your system’s hardware configuration:

Device Constant | Description Default
SPE_MAX_DEVS The maximum number of SPECTRA-622 devices 5
that can be supported by the driver
SPE_MAX DR AY Delay between two consecutive polls of a busy bit 100us
SPE_ MAX PQL Maximum number of times a busy bit will be polled | 100
before the operation times out
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129

Document ID PMC-1991254 Issue 2

1 Y am | . Spectra-622 (PM5313) Driver Manual
r \ PMC-Sierra Porting Drivers

Step 3: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the application callback and
defining all the constants used by the API.

To port the driver’s application-specific elements:

1.

2.

Modify the base value of SPE_ERR BASE (default = -300) in spe_err. h.

Define the following constants as required by your application in spe_rt os. h:

Task Constant Description Default

SPE MAX IN T_PROFS The maximum number of initialization 5
profiles that can be added to the driver

SPE_MAX DO AG PRCFS The maximum number of diagnostic 5
profiles that can be added to the driver

Code the callback functions according to your application. Example implementations
of these callbacks are provided in app. c. The driver will call these callback
functions when an event occurs on the device. These functions must conform to the

following prototype:
voi d cbackXX(sSPE_USR_CTXT usrCtxt, void *pdpv)

Step 4: Building the Driver

This section describes how to build the SPECTRA-622 driver.

To build the driver:

1. Modify the Makef i | e to reflect the absolute path of your code, your compiler and
compiler options.

2. Choose from among the different compile options supported by the driver as per your
requirements.

3. Compile the source files and build the SPECTRA-622 API driver library using your
make utility.

4. Link the SPECTRA-622 API driver library to your application code.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130

Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
Appendix A: Driver Return Codes

APPENDIX A: DRIVER RETURN CODES

Table 25 describes the driver’s return codes.

Table 25: Return Codes

Return Type

Description

SPE BRR MM ALLCC

Memory allocation failure

SPE_ERR | \VALI D ARG

Invalid argument

SPE_ERR | \VALI D MIDULE_STATE

Invalid Module state

SPE ERR INVALID MV

Invalid Module Initialization Vector

SPE_ERR PRCFI LES FULL

Maximum number of profiles already added

SPE_ERR | \VALI D PROFI LE

Invalid profile

SPE_ERR | \VALI D PROFI LE_ MIE

Invalid profile mode selected

SPE_ERR | \VALI D PRCFI LE NLM

Invalid profile number

SPE_ERR | N\VALI D DBVl CE_STATE

Invalid Device state

SPE ERR DBVS FULL

Maximum number of devices already added

SPE_ERR DEV_ALREADY_ACCED

Device already added

SPE_ERR | N\VALI D [EV

Invalid device handle

SPE BRR INVALID D'V

Invalid Device Initialization Vector

SPE ERR I NT_I NSTALL

Error while installing interrupts

SPE_ERR | N\VALI D MIDE

Invalid ISR/polling mode

SPE ERR | \VALI D REG

Invalid register number

SPE_ERR PQLL._TI MEQUT

Time-out while polling

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131

Document ID PMC-1991254 Issue 2

1 Y am | _ Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra Appendix B: Coding Conventions

APPENDIX B: CODING CONVENTIONS

This section describes the coding conventions used in the implementation of all PMC
driver software.

Variable Type Definitions

Table 26: Variable Type Definitions

Type Description

U N1 unsigned integer — 1 byte
U N2 unsigned integer — 2 bytes
u NT4 unsigned integer — 4 bytes
I NT1 signed integer — 1 byte

I NT2 signed integer — 2 bytes

| NT4 signed integer — 4 bytes

Naming Conventions

Table 27 presents a summary of the naming conventions followed by all PMC driver
software. A detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This

makes the code more readable. Generally, the device’s name or abbreviation appears in
prefix.

Table 27: Naming Conventions

Type Case Naming convention |Examples

Macros Uppercase | prefix with “m” and nSPE S B GFFSET
device abbreviation

Constants | Uppercase | prefix with device SPE MAX REGS
abbreviation

Structures | Hungarian | prefix with “s” and device | SSPE DB
Notation | abbreviation

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID PMC-1991254 Issue 2

1 Y am | _ Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra Appendix B: Coding Conventions

Type Case Naming convention |Examples
API Hungarian | prefix with device name | spect r aAdd()
Functions | Notation
Porting Hungarian | prefix with “sys” and sysSpect r aRead()
Functions | Notation | device name
Other Hungarian nyQanFunct i on()
Functions | Notation
Variables | Hungarian maxDevs

Notation

Pointers to | Hungarian | prefix variable name with | praxDevs
variables | Notation |“p”

Global Hungarian | prefix with device name | spect raMib
variables | Notation

Macros

The following list identifies the marcro conventions used in the driver code:

» Macro names can be uppercase.
* Words can be separated by an underscore.

e The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then the
device abbreviation appears.

e Example: nBPE_SLI CE_OFFSET is a valid name for a macro.

Constants

The following list identifies the constants conventions used in the driver code:

» Constant names can be uppercase.
» Words can be separated by an underscore.
» The device abbreviation can appear as a prefix.

* Example: SPE_MAX_REGS is a valid name for a constant.

Structures

The following list identifies the structures conventions used in the driver code:

« Structure names can be uppercase.

* Words can be separated by an underscore.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID PMC-1991254 Issue 2

Vi

Y am | _ Spectra-622 (PM5313) Driver Manual
3 PMC-Sierra Appendix B: Coding Conventions

e The letter ‘s’ in lowercase can be used as a prefix to specify that it is a structure, then
the device abbreviation appears.

» Example: sSPE_DDB is a valid name for a structure.

Functions

API Functions
* Naming of the API functions follows the hungarian notation.
e The device’s full name in all lowercase can be used as a prefix.

* Example: spect raAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependant.

* Naming of the porting functions follows the hungarian notation.
» The “sys’ prefix can be used to indicate a porting function.
* The device’s name starting with an uppercase can follow the prefix.

e Example: sysSpect raRead() is a hardware / RTOS specific.
Other Functions

» Other Functions are all the remaining functions that are part of the driver and have no
special naming convention. However, they can follow the hungarian notation.

* Example: nyOamnFuncti on() is a valid name for such a function.

Variables

* Naming of variables follows the hungarian notation.

* Apointer to a variable shall use ‘p’ as a prefix followed by the variable name
unchanged. If the variable name already starts with a ‘p’, the first letter of the
variable name may be capitalized, but this is not a requirement. Double pointers
might be prefixed with ‘pp’, but this is not required.

» Global variables are identified with the device’s name in all lowercase as a prefix.

» Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a
pointer to maxDevs, and spect r aMlb is a valid name for a global variable.

* Note: Both ppr evBuf and pPrevBuf are accepted names for a pointer to the
pr evBuf variable, and that both pmatrix and ppmatrix are accepted names for a
double pointer to the variable matrix.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID PMC-1991254 Issue 2

1 Y am | _ Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra Appendix B: Coding Conventions

File Organization

Table 28 presents a summary of the file naming conventions. All file names must start
with the device abbreviation, followed by an underscore and the actual file name. File
names should convey their purpose with a minimum amount of characters. If a file size is
getting too big one might separate it into two or more files, providing that a number is
added at the end of the file name (e.g. spe_api 1. c or spe_api 2. c).

There are 4 different types of files:

The API file containing all the API functions
The hardware file containing the hardware dependant functions
The RTOS file containing the RTOS dependant functions

The other files containing all the remaining functions of the driver

Table 28: File Naming Conventions

File Type File Name

API spe_api 1.c, spe_api.h

Hardware Dependant spe_hw c, spe hwh

RTOS Dependant spe_rtos.c, spe rtos.h

Other spe_isr.c, spe _defs.h
API Files

The name of the API files must start with the device abbreviation followed by an
underscore and “‘api ’ . Eventually a number might be added at the end of the name.

Examples: spe_api 1. c is the only valid name for the file that contains the first part
of the API functions, spe_api . h is the only valid name for the file that contains all
of the API functions headers.

Hardware Dependent Files

The name of the hardware dependent files must start with the device abbreviation
followed by an underscore and ‘hw’. Eventually a number might be added at the end
of the file name.

Examples: spe_hw. c is the only valid name for the file that contains all of the
hardware dependent functions, spe_hw. h is the only valid name for the file that
contains all of the hardware dependent functions headers.

RTOS Dependant Files

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID PMC-1991254 Issue 2

1 Y am | _ Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra Appendix B: Coding Conventions

e The name of the RTOS dependant files must start with the device abbreviation

followed by an underscore and ‘r t os’ . Eventually a number might be added at the
end of the file name.

* Examples: spe_rt os. c is the only valid name for the file that contains all of the
RTOS dependent functions, spe_rt os. h is the only valid name for the file that
contains all of the RTOS dependent functions headers.

Other Driver Files

» The name of the remaining driver files must start with the device abbreviation
followed by an underscore and the file name itself, which should convey the purpose
of the functions within that file with a minimum amount of characters.

e Examples: spe_i sr. ¢ is avalid name for a file that would deal with interrupt

servicing, spe_def s. h is a valid name for the header file that conatins all the
driver’s definitions.

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID PMC-1991254 Issue 2

1 Y am | _ Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra List of Terms

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation
software written to validate the SPECTRA-622 driver on a validation platform.

API (Application Programming Interface): Describes the connection between this
MODULE and the USER’s Application code.

ISR (Interrupt Service Routine): A common function for intercepting and servicing
DEVICE events. This function is kept as short as possible because an Interrupt preempts
every other function starting the moment it occurs and gives the service function the
highest priority while running. Data is collected, Interrupt indicators are cleared, and the
function ended.

DPR (Deferred Processing Routine): This function is installed as a task, at a USER
configurable priority, that serves as the next logical step in Interrupt processing. Data that
was collected by the ISR is analyzed and then calls are made into the Application to
inform it of the events that caused the ISR in the first place. Because this function is
operating at the task level, the USER can decide on its importance in the system, relative
to other functions.

DEVICE: Asingle SPECTRA-622 Integrated Circuit. There can be many Devices; all
served by this ONE Driver MODULE

« DIV (DEVICE Initialization Vector): A structure passed from the API to the DEVICE
during initialization; it contains parameters that identify the specific modes and
arrangements of the physical DEVICE being initialized.

» DDB (DEVICE Data Block): A structure that holds the Configuration Data for each
DEVICE.

MODULE: All of the code that is part of this driver; there is only ONE instance of this
MODULE connected to one or more SPECTRA-622 chips.

* MIV (MODULE Initialization Vector): Structure passed from the API to the
MODULE during initialization; it contains parameters that identify the specific
characteristics of the Driver MODULE being initialized.

« MDB (MODULE Data Block): A structure that holds the Configuration Data for this
MODULE.

RTOS (Real Time Operating System): The host for this driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra Acronyms

ACRONYMS

API: Application programming interface
APGM: Add bus PRBS Generator and Monitor
DDB: Device data block

DIV: Device initialization vector

DPGM: Drop bus PRBS Generator and Monitor
DPR: Deferred processing routine

DPV: Deferred processing (routine) vector
FIFO: First in, first out

10: Input/Output

ISR: Interrupt service routine

ISV: Initialization service (routine) vector
LOP: Line overhead processor

MDB: Module data block

MIV: Module initialization vector

PRBS: Pseudo random byte sequence
RING: RING control ports

RPPS: Receive path processing slice
RTOS: Real-time operating system

SOP: Section overhead processor

SSTB: Sonet/SDH section trace buffer
TOC: Transport overhead controller
TPPS: Receive path processing slice

WANS: WAN synchronization controller

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID PMC-1991254 Issue 2

PB A C PMC-Sierra

Spectra-622 (PM5313) Driver Manual
INDEX

INDEX

A

ackActiv, 44

Activating a Device, 64
addControlActi, 45
addDataActiv, 45
Adding a Device, 61
addr, 116, 117

Alarm, Status and Statistics Functions,
97

Allocating Memory, 120
APGM ... See Add Bus PRBS
Generator and Monitor, 21, 31,
32, 35, 36, 37, 43, 44, 89, 92,
114, 138
APGM Functions
apgmGenEna, 36
apgmGenSig, 41
apgmMonEna, 36
apgmMongErr, 41
apgmMonSig, 41
apgmMonSync, 41
API Files, 135

Application Programming Interface, 16,
56

aptr, 80

au3, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 90, 91, 92, 93, 107,
108

B

baseAddr, 42, 61
Buffer Management, 121
Building the Driver, 130

C

Callback Functions, 109
cbackAPGM, 30, 31, 32, 44
cbackDPGM, 30, 31, 32, 44
chacklO, 30, 31, 32, 43
cbackLOP, 30, 31, 32, 43
cbackRPPS, 30, 31, 32, 43
cbackSOP, 30, 31, 32, 43

cbackSpectraAPGM, 114, 115
cbackSpectraDPGM, 114
cbackSpectralO, 109
cbackSpectralLOP, 111, 112
cbackSpectraRPPS, 112
cbackSpectraSOP, 110
cbackSpectraSSTB, 111
cbackSpectraTOC, 110
cbackSpectraTPPS, 113
cbackSpectraWANS, 113
cbackSSTB, 30, 31, 32, 43
cbackTOC, 30, 31, 32, 43
cbackTPPS, 30, 31, 32, 44
cbackWANS, 30, 31, 32, 44
cbackXX, 130

Callbacks
Callbacks Due to APGM Events, 114
Callbacks Due to DPGM Events, 114
Callbacks Due to 10 Events, 109
Callbacks Due to LOP Events, 111
Callbacks Due to RPPS Events, 112
Callbacks Due to SOP Events, 110
Callbacks Due to SSTB Events, 111
Callbacks Due to TOC Events, 110
Callbacks Due to WANS Events, 113

Calling spectraDPR, 27

Calling spectraPoll, 28

CFG_CNT, 50

cfgAPGM, 37, 43

cfgCnt, 43, 97

cfgDPGM, 37, 43

cfglO, 34, 42

cfgLOP, 34, 43

cfgRING, 35, 43

cfgRPPS, 34, 43

cfgSOP, 34, 43

cfgSSTB, 34, 43

cfgTOC, 34, 42

cfgTPPS, 34, 43

cfgWANS, 35, 43

Clearing and Setting

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra INDEX

DS3 Line Loopback, 108 Disabling Preemption, 124
Line Loopback, 105 DPGM Functions
Parallel Loopback, 107 dpgmGenEna, 36
Serial Loopback, 106 dpgmGenSig, 41
System-Side Loopback, 107 dpgmMonEna, 36
Clearing the Interrupt Mask, 95 dpgmMonErr, 41
cl ock77,33 dpgmMonSig, 41
Closing the Driver Module, 14, 56 dpgmMonSync, 41
Coding Conventions, 132 DPR ...See Deferred Processing
Configuring Diagnostics, 89 Routine, 17
Configuring Statistical Counts, 97 DPR Task, 119
Constants, 29, 132, 133 DPV ...See Deferred Processing
Creating a Diagnostic Profile, 60 Routine Vector, 54, 55
Creating an Initialization Profile, 58 Driver

External Interfaces, 16

D Functions and Features, 14
Data Structures, 29 Hardware Interface, 17
dckActiv, 44 Porting Procedures, 127
DDB ...See Device Data Block, 42 Porting Quick Start, 13
deferred processing Return Codes, 131

routine, 137 . Software States, 22
DeferredSAPfrc;)%essmg Routine, 15, 21, Source Files, 126
Deferred Processing Vector, 54, 55, 121 driver library, 130

drv, 126

DS3, 19, 20, 78, 83, 108
ds3tdatActiv, 49
ds3ticlkActiv, 49

Deleting a Device, 62
Deleting a Diagnostic Profile, 61
Deleting an Initialization Profile, 59

Device
Activation and De-Activation, 64 E
Agldltlon.and Deletion, 61 erdiv, 48
Diagnostics, 105 errDevice, 42, 55, 62
Initialization, 14, 29, 30, 63, 131 errModu]e, 41, 55
Management, 25 =
Reading and Writing, 66
States. 23. 66 File Naming Conventions, 135
deviceHandle, 54, 62, 63, 64, 65, 66, Forcing a Pointer Value, 80
67, 68, 69, 70, 71, 72, 73, 74, Forcing a Resynchronization, 91, 93
75,76, 77,78, 79, 80, 81, 82, Forcing Bit Errors, 90, 92
83, 84, 85, 86, 87, 88, 89, 90, Forcing DS3 AIS, 78, 83

91, 92, 93, 94, 95, 96, 97, 101,

Forcing Errors in the Al Byte, 71
105, 106, 107, 108

Forcing Errors in the B1 Byte, 72

gfxgeiclilc’)ioss Forcing Errors in the B3 Byte, 80
- ’ Forcing Errors in the H4 Byte, 77, 82
diagMode, 35 . .
.) . Forcing Generation of a New PRBS, 90,
Diagnostic Profile, 35, 60 92
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140

Document ID PMC-1991254 Issue 2

Vi

P

3 PMC-Sierra

Spectra-622 (PM5313) Driver Manual
INDEX

Forcing Loss-Of-Pointer, 76
Forcing Loss-Of-Signal, 72
Forcing Out-of-Frame, 70

Forcing Path AIS, 79

Forcing Phase Reacquisitions, 88
Forcing Tributary Path AIS, 78, 83
Freeing Memory, 120

G

Getting DPV Buffers, 121
Getting ISV Buffers, 122
Getting the Interrupt Mask, 93
Global Variable, 55

H

Hardware Dependent Files, 135
Hardware Interface, 116

inc, 13, 126

INIT_PROF, 31

Initialization Profile, 31, 32, 58
Initializing a Device, 63
initMode, 30, 32

Input/Output, 18, 138
Input/Output Status, 44
Inserting Line AIS, 71

Inserting Line Remote Defect Indication,
73

Installing the ISR Handler, 117
Interrupt Service

Functions, 93

Routine, 21, 96, 117

Vector, 27, 28, 54, 122
Interrupt service routine, 138
Interrupt Servicing, 15, 26, 117
interrupts

service routine, 137
IO ... See Input/Output, 44

ISR ... see Interrupt Service Routine,
17, 21, 26, 27, 29, 30, 31, 32,
37,43, 54, 57,94, 95, 117, 118,
122,127,128, 131, 138

ISR Enable/Disable Mask, 37

ISR Handler, 118

ISR Mask, 37

ISV ... See Initialization Service Routine
Vector, 54

L

Line Overhead Processor, 18
Line Overhead Status, 47
| i neSi deMbde, 33

LOP ... See Line Overhead Processor,
47

lopBipe, 38
lopBIkBip, 51
lopBlkRei, 50
lopCoaps, 38
lopLais, 38
lopLrdi, 38
lopLrei, 38
lopPsbf, 38
lopSd, 38
lopSdber, 38
lopSf, 38
lopSfber, 38
lopZ1S1, 38

M

Macros, 132, 133

Makefile, 130

maxDevs, 29, 30, 41

maxDiagProfs, 30, 41

maxInitProfs, 30, 41

MDB ...See Module Data Block, 41
Memory Allocation / De-Allocation, 120

MIV ... See Module Initialization Vector,
29

ioCrsiRool, 37 Modifying the S1 Byte, 69

ioCspiRool, 37 Modifying the Z0 Byte, 68

ioDool, 37 Module

ioLos,_ 37 Activation, 57

!Oscpgfe, 37 Data Block, 21, 23, 41, 55, 56

ioScpire, 37 Initialization, 23, 29, 30, 56, 131
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141

Document ID PMC-1991254 Issue 2

Vi

P

3 PMC-Sierra

Spectra-622 (PM5313) Driver Manual
INDEX

Initialization Vector, 23, 29, 30, 56,
131
Management, 24
States, 22
msec, 125

N

Naming Conventions, 132
ndf, 81

NDF_enable, 39, 40
new_point, 39, 40
numBlocks, 33, 34, 36
numBytes, 120

numDevs, 41

@)

Opening the Driver Module, 14, 56
Other Driver Files, 136

P

pblkSize, 34, 36

pblock, 67, 68

pddb, 42, 55

pdiagData, 35, 36, 37

pdiagProfs, 42

pdiv, 63

pdpv, 109, 110, 111, 112, 113, 114, 115,
122,123,130

pdsb, 101

perrDevice, 61

pfirstByte, 120, 121

piclkActiv, 45

pinActiv, 44

pinitData, 31, 32, 33, 34

pinitProfs, 42

pisv, 96, 123

pJo, 73

pJi, 76

pK1, 75

pK2, 75

pmask, 68, 94, 95

pmdb, 30

pmiv, 56

Polling Interrupt Status Registers, 95

pollISR, 30, 31, 32, 43

Porting

Application Interface, 130
Drivers, 126
Hardware Interface, 129
RTOS interface, 127
ppblk, 34, 36
ppblock, 33, 36
pperrDevice, 61, 62
ppmask, 33, 34, 36
ppmdb, 56
pProfile, 58, 59, 60
pProfileNum, 58, 60
Preemption, 124
prei, 82
Processing Flows, 24
Profile Management, 58
profileNum, 42, 58, 59, 60, 61, 63, 89
psize, 33, 36
pstartReg, 33, 34, 36, 37
ptr, 49

R

Reading from a Device Register, 66

Reading the Received K1 and K2 Bytes,
75

Reading the S1 Byte, 69
Receive / Transmit Line Overhead
Processor (RLOP/TLOP), 20,
34,43,73
Receive / Transmit Section Overhead
Processor (RSOP/TSOP), 20,
34,43,70
Receive Path Processing Slice, 18
Receive Path Processing Slice (RPPS),
20, 34, 43, 47,76
Receive Path Status, 47
Re-Enabling Preemption, 124
refclkActiv, 44
regNum, 66
Removing Handlers, 118
Resetting a Device, 64
Retrieving
Alarm Status, 101
and Setting the Path Trace Messages,
76
and Setting the Section Trace
Messages, 73

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra INDEX

Diagnostic Profile, 60
Initialization Profile, 59
Return Codes, 131
Returning
DPV Buffers, 122
ISV Buffers, 123
RING ... See RING Control Ports, 45
Ring Control Ports (RING), 20, 45, 87
Ring Control Ports Status, 45
ringEna, 33
RPPS, 31, 32, 34, 43, 48, 107, 108, 112
rppsAu3LopCon, 39
rppsAu3PaisCon, 39
rppsBipe, 39
rppsBIkBip, 51
rppsBlkRei, 51
rppsComa, 39
rppsDiscopa, 39
rppsDpje, 39
rppsErdi, 39
rppsEse, 39
rppsllireq, 39
rppsinvNdf, 39
rppslsf, 39
rppsLom1, 38
rppsLomz2, 39
rppsLopl, 38
rppsLop2, 39
rppsLopCon, 39
rppsMonrs, 51
rppsNdf, 39
rppsNewPtr, 39
rppsNse, 39
rppsOfl, 40
rppsPaisl, 39
rppsPais2, 39
rppsPaisCon, 39
rppsPerdi, 39
rppsPrdil, 39
rppsPrdi2, 39
rppsPrei, 39
rppsPse, 39
rppsPsim, 39
rppsPslu, 39
rppsRpsim, 40

rppsRpslu, 40
rppsRtim, 39
rppsRtiu, 40
rppsTim, 38
rppsTiu, 38
rppsTiu2, 39
rppsUfl, 40

S

scpi, 45
Section Overhead Processor, 18

Sending Line AIS Maintenance Signal,
87

Sending Line RDI Maintenance Signal,
88

Setting the Interrupt Mask, 94

Software Architecture, 16

Software States, 22

SONET / SDH Section Trace Buffer
(SSTB), 20, 73

sopBipe, 38

sopBIkBip, 50

sopLof, 38

sopLos, 38

sopOof, 38

source files, 130

SPE_ACTIVE, 29, 42

spe_api.h, 126

spe_apil.c, 126

spe_api2.c, 126

SPE_COMP, 30, 32, 33, 35, 36

spe_defs.h, 126

SPE_DEV_STATE, 42

SPE_DPR_EVENT, 55

SPE_DPR_TASK_PRIORITY, 128

SPE_DPR_TASK_STACK_SZ, 128

spe_err.h, 126, 130

SPE_ERR_BASE, 130

SPE_ERR_DEV_ALREADY_ADDED,
131

SPE_ERR_DEVS_FULL, 131
SPE_ERR_INT_INSTALL, 131
SPE_ERR_INVALID_ARG, 131
SPE_ERR_INVALID_DEV, 131

SPE_ERR_INVALID_DEVICE_STATE,
131

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

143

Vi

P

3 PMC-Sierra

Spectra-622 (PM5313) Driver Manual
INDEX

SPE_ERR_INVALID_DIV, 131
SPE_ERR_INVALID_MIV, 131
SPE_ERR_INVALID_MODE, 131

SPE_ERR_INVALID_MODULE_STATE,
131

SPE_ERR_INVALID_PROFILE, 131

SPE_ERR_INVALID_PROFILE_MODE,
131

SPE_ERR_INVALID_PROFILE_NUM,
131

SPE_ERR_INVALID_REG, 131
SPE_ERR_MEM_ALLOC, 131
SPE_ERR_POLL_TIMEOUT, 131
SPE_ERR_PROFILES_FULL, 131
SPE_FAILURE, 55

spe_fns.h, 126

SPE_FRM, 30, 32, 34, 35, 37
spe_hw.c, 126

spe_hw.h, 126, 129
SPE_INACTIVE, 29, 42
spe_isr.c, 126
SPE_ISR_MODE, 30
SPE_MAX_DELAY, 129
SPE_MAX_DEVS, 29, 129
SPE_MAX_DIAG_PROFS, 130
SPE_MAX_DPV_BUF, 128
SPE_MAX_INIT_PROFS, 130
SPE_MAX_ISV_BUF, 128
SPE_MAX_POLL, 129
SPE_MOD_IDLE, 29, 42
SPE_MOD_READY, 29, 42
SPE_MOD_START, 29, 42
SPE_MOD_STATE, 42
SPE_MODE, 30, 32, 35
SPE_NORM, 30, 32, 35, 36
SPE_POLL, 30, 43
SPE_POLL_MODE, 30
SPE_PRESENT, 29, 42
spe_prof.c, 126

spe_rtos.c, 126

spe_rtos.h, 126, 127, 128, 130
SPE_START, 29, 42
spe_stat.c, 126

spe_strs.h, 126

SPE_SUCCESS, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 69, 70, 71, 72,
73,74,75,76, 77,78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 97,
101, 105, 106, 107, 108, 121

spe_typs.h, 126, 129

spe_util.c, 126

spectraActivate, 64, 65

spectraAdd, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75,
76, 77,78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 101, 105,
106, 107, 108, 109, 110, 111,
112, 113, 114, 115

spectraAddDiagProfile, 35, 60
spectraAddInitProfile, 30, 31, 58
spectraAPGMGenForceErr, 92
spectraAPGMGenRegen, 92
spectraAPGMMonResync, 93
spectraAPGMonResync, 93
spectraCfgStats, 97
spectraClearMask, 37, 95
spectraDeActivate, 65
spectraDelete, 27, 56, 62
spectraDeleteDiagProfile, 61
spectraDeletelnitProfile, 59
spectraDiagCfg, 89
spectraDPGMGenForceErr, 90
spectraDPGMGenRegen, 90
spectraDPGMMonResync, 91
spectraDPGMonResync, 91
spectraDPR, 21, 26, 27, 28, 96, 109,
119
spectraGetDiagProfile, 60
spectraGetlnitProfile, 59
spectraGetMask, 37, 93, 94
spectraGetStats, 101
spectralnit, 30, 63, 109
spectralSR, 21, 26, 27, 28, 96, 117, 118
spectralSRHandler, 119
spectraLoopDS3Line, 108
spectraLoopLine, 105
spectraLoopParaDiag, 107
spectraLoopSerialDiag, 106
spectraLoopSysSideLine, 107

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID PMC-1991254 Issue 2

Vi

P

3 PMC-Sierra

Spectra-622 (PM5313) Driver Manual
INDEX

spectraLOPDiagB2, 74
spectraLOPInsertLineRDI, 73, 74
spectraLOPReadK1K2, 75
spectraL OPWriteK1K2, 75
spectraMdb, 55
spectraModuleClose, 56
spectraModuleOpen, 29, 56
spectraModuleStart, 57, 117
spectraModuleStop, 57, 58, 117
spectraPathTraceMsg, 76
spectraPoll, 28, 95, 117
spectraRead, 66
spectraReadBlock, 67
spectraReset, 64
spectraRINGLineAlSControl, 87
spectraRINGLineRDIControl, 88
spectraRPPSDiagH4, 77
spectraRPPSDiagLOP, 76, 77
spectraRPPSDs3AisGen, 78
spectraRPPSInsertTUAIS, 78, 83
spectraSectionTraceMsg, 73
spectraSetMask, 37, 94
spectraSOPDiagB1, 72
spectraSOPDiagFB, 71
spectraSOPDiagLOS, 72
spectraSOPForceOOF, 70
spectraSOPInsertLineAlS, 71
spectraTestReg, 105
spectraTOCReadS1, 69
spectraTOCWriteS1, 69
spectraTOCWriteZ0, 68
spectraTPPSDiagB3, 80
spectraTPPSDiagH4, 82
spectraTPPSDs3AisGen, 83
spectraTPPSForceTxPtr, 80
spectraTPPSInsertNDF, 81
spectraTPPSInsertPAIS, 79
spectraTPPSInsertPREI, 81
spectraTPPSInsertTUAIS, 83
spectraTPPSWriteC2, 84
spectraTPPSWriteF2, 85
spectraTPPSWriteJ1, 84
spectraTPPSWriteZ3, 86
spectraTPPSWritez4, 86
spectraTPPSWriteZ5, 87
spectraUpdate, 63

spectraWANSForceReac, 88
spectraWrite, 66
spectraWriteBlock, 68

src, 13, 126

sSPE_CBACK, 31, 32, 43, 44
SSPE_CFG_APGM, 35, 37, 43
SSPE_CFG_CNT, 43, 50, 97
sSPE_CFG_DPGM, 35, 37, 43
sSPE_CFG_IO, 34, 42
SSPE_CFG_LOP, 34, 43
SSPE_CFG_RING, 35, 43
sSPE_CFG_RPPS, 34, 43
sSPE_CFG_SOP, 34, 43
SSPE_CFG_SSTB, 34, 43
SSPE_CFG_TOC, 34, 42
SSPE_CFG_TPPS, 34, 43
sSPE_CFG_WANS, 35, 43
SSPE_CFG_XXX, 34, 37
SSPE_DDB, 42
sSPE_DIAG_DATA_COMP, 36
sSPE_DIAG_DATA_FRM, 37
sSPE_DIAG_DATA_NORM, 36
SSPE_DIAG_PROF, 35, 42, 60
sSPE_DIV, 30, 31, 63

sSPE_DPV, 55, 109, 110, 111, 112, 113,
114, 115, 121, 122

sSPE_HNDL, 54, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74,
75,76,77,78,79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 101,
105, 106, 107, 108

SSPE_INIT_DATA_COMP, 31, 32, 34,
35

SSPE_INIT_DATA_FRM, 31, 32, 34, 35

SSPE_INIT_DATA_NORM, 31, 32, 33,
35

SSPE_INIT_PROF, 32, 42, 58, 59
SSPE_ISV, 54, 96, 122, 123
SSPE_MASK, 37, 54, 94, 95
SSPE_MDB, 41, 56

SSPE_MIV, 30, 56

SSPE_POLL, 31, 32
SSPE_STAT_CNT, 52
SSPE_STAT IO, 44
SSPE_STAT_LOP, 47
SSPE_STAT_RPPS, 47

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID PMC-1991254 Issue 2

Vi

P

Spectra-622 (PM5313) Driver Manual

sysSpectraPreemptDisable, 124, 128
sysSpectraPreemptEnable, 124, 128

h PMC-Sierra INDEX
sSPE_STAT_TPPS, 49 T
sSPE_USR_CTXT, 42, 109, 110, 111, Timers. 125

112, 113, 114, 115, 130 ’
SSTB, 31, 32, 34, 43, 111, 138 TOC, 138
sstbRtim, 38 tocLais, 38
sstbRtiu, 38 tocLof, 38
Starting Buffer Management, 121 tOCLOS_’ 38
Starting the Driver Module, 14, 57 tocLrdi, 38
startRegNum, 67, 68 tocOof, 38
stateDevice, 29, 42, 55 tocRdool, 38
stateModule, 29, 42, 55 tocTrool, 38
Statistic Counters, 50, 51, 52 tpais, 49
Stopping Buffer Management, 123 TPPS, 138
Stopping the Driver Module, 57 tppsAuBLopCon, 40
Structures tppsAu3PaisCon, 40
In the Driver’s Allocated Memory, 41 tppsi'pe’ 400
Passed by the Application, 29 :ES?D?S?;: 40
Passed Through RTOS Buffers, 54 tppsEse. 40
S;J:g(larécg:g c;’;le'l"asssk Execution, 125 :ng:g[:gf 40
sysSpectraBufferStart, 121, 128 tppsLo,m 1, 40
sysSpectraBufferStop, 123, 128 tppsLomz, 40
sysSpec;rlagDFiggask, 26, 27, 28, 96, tppsLop1l, 40
sysSpectraDPVBufferGet, 121, 122, 128 :ngtggéoio 40
sysSpectraDPVBufferRtn, 109, 122,
123, 128 tppsNdf, 40
sysSpectralSRHandler, 26, 27, 28, 96, tppsNewptr, 40
117, 118, 129 tppsNse, 40
sysSpectralSRHandlerInstall, 27, 117, tppsOfl, 41
118, 129 tppsPais1, 40
sysSpectralSRHandlerRemove, 117, tppsPais2, 40
118, 129 tppsPaisCon, 40
sysSpectralSVBufferGet, 122, 128 tppsPje, 40
sysSpectralSVBufferRtn, 123, 128 tppsPrei, 40
sysSpectraMemAlloc, 120, 127 tppsPse, 40
sysSpectraMemCpy, 127 tppsUfl, 41
sysSpectraMemFree, 120, 121, 127 Transmit Path Processing Slice, 18, 20,
sysSpectraMemSet, 127 34,43,49,79

Transmit Path Status, 49
Transport Overhead Controller, 18, 19,

sysSpectraRead, 66, 67, 116, 129 34,42, 68
sysSpectraTimerSleep, 125, 128 U
sysSpectraWrite, 66, 68, 116, 117, 129
Updating the Configuration of a Device,
63
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146

Document ID PMC-1991254 Issue 2

1 Y am | Spectra-622 (PM5313) Driver Manual
r 3 PMC-Sierra INDEX

usrCtxt, 42, 61, 109, 110, 111, 112, 113,
114, 115, 130

\

Variable Type Definitions, 132
Variables, 133, 134
Verifying Register Access, 105

W
WAN Synchronization Controller, 18, 20,

a Block of Registers, 68
the C2 Byte, 84
the F2 Byte, 85
the J1 Byte, 84

the Path Remote Error Indication
Count, 81

the Z3 Byte, 86
the Z4 Byte, 86
the Z5 Byte, 87

Document ID PMC-1991254 Issue 2

88 to a Device, 66
WANS, 138 to New Data Flag Bits, 81
wansEna, 33 to Transmitted K1 and K2 Bytes, 75
wansint, 41
Writing Values, 116
Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147

