
 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991254 Issue 2

PM5313

SPECTRA-622
SONET/SDH PAYLOAD

EXTRACTOR/ALIGNER
FOR 622 MBIT/S

DRIVER MANUAL

DOCUMENT ISSUE 2
ISSUED NOVEMBER, 2000

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID PMC-1991254 Issue 2

ABOUT THIS MANUAL AND SPECTRA-622

This manual describes the SPECTRA-622 device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s interfaces
to your application, real-time operating system, and the devices. It also describes in
general terms how to modify and port the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

• Evaluate and test the SPECTRA-622 devices

• Modify and add to the SPECTRA-622 driver’s functions

• Port the SPECTRA-622 driver to a particular platform.

References

For more information about the SPECTRA-622 driver, see the driver’s release notes. For
more information about the SPECTRA-622 device, see the documents listed in Table 1
and any related errata documents.

Table 1: Related Documents

Document Name Document Number

SPECTRA-622 Telecom Standard Product Data
Sheet

PMC-1981162

PM5313 SPECTRA-622 SONET/SDH Payload
Extractor/Aligner for 622 Mbit/s Interfaces Short
Form Data Sheet

PMC-1981271

Note: Ensure that you use the document that PMC-Sierra issued for your version of the
device and driver.

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID PMC-1991254 Issue 2

Revision History

Issue No. Issue Date Details of Change

Issue 1 December 1999 Document created

Issue 2 November
2000

1) Modified the alarm, status and statistics architecture
(structures and APIs):
a) removed MSB and DSB structures as well as
spectraClearStats() API since statistics are no longer
accumulated inside the driver.
b) Added SPE_STATUS_XX and SPE_CNT_XX structures to add
granularity.
c) replaced spectraGetStats() API with
spectraGetCntXX() and spectraGetStatusXX() APIs.

2) Modified “normal mode” initialization profile in section 4.2:
a) replaced serialMode, stm1Mode and ds3Mode fields with 3
new fields: lineSideMode, sysSideMode and clock77 to
allow for a better initialization of the IO interface.
b) replaced master[4][3] field with sts12c and sts3c[4]
for easier configuration of concatenated payloads.

3) Added spectraTOCReadS1 to read the received S1 byte.

4) Removed spectraRPPSDiagPJ and spectraTPPSDiagPJ
APIs since the feature is not available in hardware.

5) Fixed incorrect descriptions throughout the document:
a) added missing cfgCnt field in DDB structure.
b) added missing tppsIllreq[4][3] in ISR mask structure.
c) removed rppsCdiff[4][3] and tppsBlkBip[4][3] from
CFG_CNT.
d) added missing au3 parameter description in
spectraDPGMGenRegen.
e) fixed function table description of spectraISR.
f) valid states for spectraDiagTestReg now show as
PRESENT only.

6) Fixed various typos and formatting issues.

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID PMC-1991254 Issue 2

Legal Issues

None of the information contained in this document constitutes an express or implied
warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular
purpose of any such information or the fitness, or suitability for a particular purpose,
merchantability, performance, compatibility with other parts or systems, of any of the
products of PMC-Sierra, Inc., or any portion thereof, referred to in this document.
PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind
regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost
data resulting from any use of or reliance upon the information, whether or not
PMC-Sierra, Inc. has been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its
customers’ internal use. In any event, no part of this document may be reproduced in any
form without the express written consent of PMC-Sierra, Inc.

© 2000 PMC-Sierra, Inc.

PMC-1991254 (R2), ref 990876 (R3)

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID PMC-1991254 Issue 2

TABLE OF CONTENTS

About this Manual and SPECTRA-622 ...2

Table of Contents...5

List of Figures .. 11

List of Tables..12

1 Driver Porting Quick Start ...13

2 Driver Functions and Features ...14

3 Software Architecture..16

3.1 Driver External Interfaces..16
Application Programming Interface ..16
Real-Time OS Interface..17
Driver Hardware Interface ..17

3.2 Main Components ...17
Alarms, Status and Statistics ..19
Input / Output (IO)...19
Transport Overhead Controller (TOC)..19
Receive / Transmit Section Overhead Processor (RSOP/TSOP)20
SONET / SDH Section Trace Buffer (SSTB) ..20
Receive / Transmit Line Overhead Processor (RLOP/TLOP)20
Receive Path Processing Slice (RPPS) ...20
Transmit Path Processing Slice (TPPS)...20
Ring Control Ports (RING)..20
WAN Synchronization Controller (WANS)..20
DROP Bus PRBS Generator and Monitor (DPGM)....................................21
ADD Bus PRBS Generator and Monitor (APGM).......................................21
Module Data Block (MDB) ..21
Device Data Blocks (DDB) ...21
Interrupt Service Routine..21
Deferred Processing Routine ...21

3.3 Software States ...22
Module States ...22
Device States..23

3.4 Processing Flows ..24
Module Management..24
Device Management...25

3.5 Interrupt Servicing ...26
Calling spectraISR..26
Calling spectraDPR ..27
Calling spectraPoll ..28

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID PMC-1991254 Issue 2

4 Data Structures ...29

4.1 Constants ..29

4.2 Structures Passed by the Application..29
Module Initialization Vector: MIV ..29
Device Initialization Vector: DIV..30
Initialization Profile: INIT_PROF...31
Diagnostic Profile: DIAG_PROF...35
ISR Enable/Disable Mask...37

4.3 Structures in the Driver’s Allocated Memory ...41
Module Data Block: MDB ...41
Device Data Block: DDB...42
Statistic Counter Configuration (CFG_CNT) ..50
Statistic Counters (CNT)...51

4.4 Structures Passed Through RTOS Buffers ...54
Interrupt Service Vector: ISV ..54
Deferred Processing Vector: DPV ..54

4.5 Global Variable..55

5 Application Programming Interface...56

5.1 Module Initialization...56
Opening the Driver Module: spectraModuleOpen......................................56
Closing the Driver Module: spectraModuleClose56

5.2 Module Activation ..57
Starting the Driver Module: spectraModuleStart...57
Stopping the Driver Module: spectraModuleStop57

5.3 Profile Management ..58
Initialization Profile..58
Creating an Initialization Profile: spectraAddInitProfile...............................58
Retrieving an Initialization Profile: spectraGetInitProfile.............................59
Deleting an Initialization Profile: spectraDeleteInitProfile...........................59
Diagnostic Profile..60
Creating a Diagnostic Profile: spectraAddDiagProfile60
Retrieving a Diagnostic Profile: spectraGetDiagProfile60
Deleting a Diagnostic Profile: spectraDeleteDiagProfile61

5.4 Device Addition and Deletion ..61
Adding a Device: spectraAdd ...61
Deleting a Device: spectraDelete ...62

5.5 Device Initialization ...63
Initializing a Device: spectraInit ..63
Updating the Configuration of a Device: spectraUpdate63
Resetting a Device: spectraReset ..64

5.6 Device Activation and De-Activation ...64

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID PMC-1991254 Issue 2

Activating a Device: spectraActivate ..64
DeActivating a Device: spectraDeActivate ...65

5.7 Device Reading and Writing..66
Reading from a Device Register: spectraRead ..66
Writing to a Device: spectraWrite ...66
Reading a Block of Registers: spectraReadBlock.....................................67
Writing a Block of Registers: spectraWriteBlock ..68

5.8 Transport Overhead Controller (TOC) ..68
Modifying the Z0 Byte: spectraTOCWriteZ0...68
Modifying the S1 Byte: spectraTOCWriteS1 ..69
Reading the S1 Byte: spectraTOCReadS1 ..69

5.9 Receive / Transmit Section Overhead Processor (RSOP/TSOP).....................70
Forcing Out-of-Frame: spectraSOPForceOOF ..70
Inserting Line AIS: spectraSOPInsertLineAIS ..71
Forcing Errors in the A1 Byte: spectraSOPDiagFB....................................71
Forcing Errors in the B1 Byte: spectraSOPDiagB1....................................72
Forcing Loss-Of-Signal: spectraSOPDiagLOS...72

5.10 SONET / SDH Section Trace Buffer (SSTB)...73
Retrieving and Setting the Section Trace Messages:

spectraSectionTraceMsg ...73

5.11 Receive / Transmit Line Overhead Processor (RLOP/TLOP)...........................73
Inserting Line Remote Defect Indication: spectraLOPInsertLineRDI73
Forcing Errors in the B2: spectraLOPDiagB2...74
Reading the Received K1 and K2 Bytes: spectraLOPReadK1K2..............75
Writing the Transmitted K1 and K2 Bytes: spectraLOPWriteK1K275

5.12 Receive Path Processing Slice (RPPS)..76
Retrieving and Setting the Path Trace Messages: spectraPathTraceMsg.76
Forcing Loss-Of-Pointer: spectraRPPSDiagLOP.......................................76
Forcing Errors in the H4 Byte: spectraRPPSDiagH477
Forcing Tributary Path AIS: spectraRPPSInsertTUAIS78
Forcing DS3 AIS: spectraRPPSDs3AisGen ...78

5.13 Transmit Path Processing Slice (TPPS) ...79
Forcing Path AIS: spectraTPPSInsertPAIS ..79
Forcing Errors in the B3 Byte: spectraTPPSDiagB380
Forcing a Pointer Value: spectraTPPSForceTxPtr80
Writing the New Data Flag Bits: spectraTPPSInsertNDF...........................81
Writing the Path Remote Error Indication Count: spectraTPPSInsertPREI81
Forcing Errors in the H4 Byte: spectraTPPSDiagH4..................................82
Forcing Tributary Path AIS: spectraRPPSInsertTUAIS83
Forcing DS3 AIS: spectraTPPSDs3AisGen ...83
Writing the J1 Byte: spectraTPPSWriteJ1..84
Writing the C2 Byte: spectraTPPSWriteC2 ..84
Writing the F2 Byte: spectraTPPSWriteF2 ...85
Writing the Z3 Byte: spectraTPPSWriteZ3 ...86
Writing the Z4 Byte: spectraTPPSWriteZ4 ...86
Writing the Z5 Byte: spectraTPPSWriteZ5 ...87

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID PMC-1991254 Issue 2

5.14 Ring Control Ports (RING) ..87
Sending Line AIS Maintenance Signal: spectraRINGLineAISControl87
Sending Line RDI Maintenance Signal: spectraRINGLineRDIControl88

5.15 WAN Synchronization Controller (WANS) ..88
Forcing Phase Reacquisitions: spectraWANSForceReac..........................88

5.16 DROP Bus and ADD Bus PRBS Monitor and Generator (DPGM & APGM)89
Configuring Diagnostics: spectraDiagCfg...89

5.17 DPGM Functions...90
Forcing Generation of a New PRBS: spectraDPGMGenRegen90
Forcing Bit Errors: spectraDPGMGenForceErr ..90
Forcing a Resynchronization: spectraDPGMonResync91

5.18 APGM Functions ...92
Forcing Generation of a New PRBS: spectraAPGMGenRegen.................92
Forcing Bit Errors: spectraAPGMGenForceErr ..92
Forcing a Resynchronization: spectraAPGMonResync93

5.19 Interrupt Service Functions ...93
Getting the Interrupt Mask: spectraGetMask..93
Setting the Interrupt Mask: spectraSetMask ..94
Clearing the Interrupt Mask: spectraClearMask ...95
Polling Interrupt Status Registers: spectraPoll ...95
Interrupt Service Routine: spectraISR..96
Deferred Processing Routine: spectraDPR..96

5.20 Alarm, Status and Statistics Functions..97
Configuring Statistical Counts: spectraCfgStats ...97
Statistics Collection Routine: spectraGetCnt..97
Retrieving Counter for SOP Block: spectraGetCntSOP.............................98
Retrieving Counter for LOP Block: spectraGetCntLOP..............................98
Retrieving Counter for RPPS Block: spectraGetCntRPPS.........................99
Retrieving Counter for TPPS Block: spectraGetCntTPPS100
Retrieving Counter for Pointer Justifications: spectraGetCntPJ...............100
Retrieving Alarm Status: spectraGetStatus ..101
Retrieving Alarm Status for IO block: spectraGetStatusIO102
Retrieving Alarm Status for SOP block: spectraGetStatusSOP................102
Retrieving Alarm Status for LOP block: spectraGetStatusLOP103
Retrieving Alarm Status for RPPS block: spectraGetStatusRPPS104
Retrieving Alarm Status for TPPS block: spectraGetStatusTPPS............104

5.21 Device Diagnostics..105
Verifying Register Access: spectraTestReg..105
Clearing and Setting a Line Loopback: spectraLoopLine.........................105
Clearing and Setting a Serial Loopback: spectraLoopSerialDiag106
Clearing and Setting a Parallel Loopback: spectraLoopParaDiag107
Clearing and Setting a System-Side Loopback: spectraLoopSysSideLine107
Clearing and Setting a DS3 Line Loopback: spectraLoopDS3Line..........108

5.22 Callback Functions..109
Callbacks Due to IO Events: cbackSpectraIO ..109

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID PMC-1991254 Issue 2

Callbacks Due to TOC Events: cbackSpectraTOC................................... 110
Callbacks Due to SOP Events: cbackSpectraSOP 110
Callbacks Due to SSTB Events: cbackSpectraSSTB............................... 111
Callbacks Due to LOP Events: cbackSpectraLOP 111
Callbacks Due to RPPS Events: cbackSpectraRPPS.............................. 112
Callbacks due to TPPS events: cbackSpectraTPPS................................ 113
Callbacks Due to WANS Events: cbackSpectraWANS 113
Callbacks Due to DPGM Events: cbackSpectraDPGM............................ 114
Callbacks Due to APGM Events: cbackSpectraAPGM............................. 114

6 Hardware Interface ... 116

6.1 Device I/O.. 116
Reading Registers: sysSpectraRead.. 116
Writing Values: sysSpectraWrite... 116

6.2 Interrupt Servicing ... 117
Installing the ISR Handler: sysSpectraISRHandlerInstall 117
ISR Handler: sysSpectraISRHandler.. 118
Removing Handlers: sysSpectraISRHandlerRemove 118
DPR Task: sysSpectraDPRTask ... 119

7 RTOS Interface ...120

7.1 Memory Allocation / De-Allocation ..120
Allocating Memory: sysSpectraMemAlloc ..120
Freeing Memory: sysSpectraMemFree ..120

7.2 Buffer Management...121
Starting Buffer Management: sysSpectraBufferStart121
Getting DPV Buffers: sysSpectraDPVBufferGet.......................................121
Getting ISV Buffers: sysSpectraISVBufferGet..122
Returning DPV Buffers: sysSpectraDPVBufferRtn...................................122
Returning ISV Buffers: sysSpectraISVBufferRtn123
Stopping Buffer Management: sysSpectraBufferStop123

7.3 Preemption..124
Disabling Preemption: sysSpectraPreemptDisable..................................124
Re-Enabling Preemption: sysSpectraPreemptEnable..............................124

7.4 Timers ...125
Suspending a Task Execution: sysSpectraTimerSleep125

8 Porting Drivers ..126

8.1 Driver Source Files..126

8.2 Driver Porting Procedures...127
Step 1: Porting the RTOS interface ..127
Step 2: Porting the Hardware Interface ..129
Step 3: Porting the Application-Specific Elements....................................130
Step 4: Building the Driver ..130

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID PMC-1991254 Issue 2

Appendix A: Driver Return Codes ...131

Appendix B: Coding Conventions..132
Macros ..133
Constants..133
Structures..133
Functions ..134
Variables ...134
API Files ...135
Hardware Dependent Files...135
Other Driver Files..136

List of Terms ..137

Acronyms...138

INDEX..139

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID PMC-1991254 Issue 2

LIST OF FIGURES

Figure 1: Driver Interfaces...16

Figure 2: Driver Architecture..19

Figure 3: Driver Software States ...22

Figure 4: Module Management Flow Diagram ..24

Figure 5: Device Management Flow Diagram...25

Figure 6: Interrupt Service Model ..26

Figure 7: Polling Service Model...28

 Spectra-622 (PM5313) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID PMC-1991254 Issue 2

LIST OF TABLES

Table 1: Driver Functions and Features ..14

Table 2: Module Initialization Vector: sSPE_MIV ..30

Table 3: Device Initialization Vector: sSPE_DIV..30

Table 4: Initialization Profile: sSPE_INIT_PROF...32

Table 5: Initialization Data: sSPE_INIT_DATA_NORM ...33

Table 6: Initialization Data: sSPE_INIT_DATA_COMP..34

Table 7: Initialization Data: sSPE_INIT_DATA_FRM...34

Table 8: Diagnostic Profile: sSPE_DIAG_PROF...35

Table 9: Diagnostic Data: sSPE_DIAG_DATA_NORM ...36

Table 10: Diagnostic Data: sSPE_DIAG_DATA_COMP..36

Table 11: Diagnostic Data: sSPE_DIAG_DATA_FRM...37

Table 12: ISR Mask: sSPE_MASK..37

Table 13: Module Data Block: sSPE_MDB..41

Table 14: Device Data Block: sSPE_DDB...42

Table 15: Input/Output Status: sSPE_STATUS_IO ...44

Table 16: Counters Config: sSPE_CFG_CNT...50

Table 17: Statistic Counters: sSPE_STAT_CNT ...52

Table 18: Section Overhead Statistics Counters: sSPE_STAT_CNT_SOP52

Table 19: Line Overhead Statistic Counters: sSPE_STAT_CNT_LOP52

Table 20: SPECTRA-622 Receive Path Processing Statistics Counters:
sSPE_STAT_CNT_RPPS ...53

Table 21: Transmit Path Processing Statistics Counters: STAT_CNT_TPPS53

Table 22: Pointer Justification Statistics Counters: STAT_CNT_PJ54

Table 23: Interrupt Service Vector: sSPE_ISV ..54

Table 24: Deferred Processing Vector: sSPE_DPV ..55

Table 25: Return Codes...131

Table 26: Variable Type Definitions ...132

Table 27: Naming Conventions ...132

Table 28: File Naming Conventions...135

 Spectra-622 (PM5313) Driver Manual
Driver Porting Quick Start

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID PMC-1991254 Issue 2

1 DRIVER PORTING QUICK START

This section summarizes how to port the SPECTRA-622 device driver to your hardware
and operating system (OS) platform. For more information about porting the SPECTRA-
622 driver, see section 8 (page 126).

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the SPECTRA-622 driver.

The code for the SPECTRA-622 driver is organized into C source files. You may need to
modify the code or develop additional code. The code is in the form of constants, macros,
and functions. For the ease of porting, the code is grouped into source files (src) and
include files (inc). The source files contain the functions and the include files contain the
constants and macros.

To port the SPECTRA-622 driver to your platform:

Step 1: Port the driver’s RTOS interface (page 127):

° Data types
° OS-specific services
° Utilities and interrupt services that use OS-specific services

Step 2: Port the driver’s hardware interface (page 129)

° Port low-level device read-and-write macros.
° Define hardware system-configuration constants.

Step 3: Port the driver’s application-specific elements (page 130):

° Define the task-related constants.
° Code the callback functions.

Step 4: Build the driver (page 130).

 Spectra-622 (PM5313) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID PMC-1991254 Issue 2

2 DRIVER FUNCTIONS AND FEATURES

This section describes the main functions and features supported by the SPECTRA-622
driver.

Table 1: Driver Functions and Features

Function Description

Open / Close
Driver Module

(page 56)

Opening the Driver Module allocates all the memory needed by the
driver and initializes all Module level data structures.

Closing the Driver Module shuts down the driver module gracefully
after deleting all devices that are currently registered with the driver,
and releases all the memory allocated by the driver.

Start / Stop
Driver Module

(page 57)

Starting the Driver Module involves allocating all RTOS resources
needed by the driver such as timers and semaphores (except for
memory, which is allocated during the Open call).

Closing the Driver Module involves de-allocating all RTOS
resources allocated by the driver without changing the amount of
memory allocated to it.

Add / Delete
Device

(page 61)

Adding a device involves verifying that the device exists, associating
a device Handle to the device, and storing context information about
it. The driver uses this context information to control and monitor the
device.

Deleting a device involves shutting down the device and clearing the
memory used for storing context information about this device.

Device
Initialization

(page 63)

The initialization function resets then initializes the device and any
associated context information about it. The driver uses this context
information to control and monitor the SPECTRA-622 device.

Activate / De-
Activate Device

(page 64)

Activating a device puts it into its normal mode of operation by
enabling interrupts and other global registers. A successful device
activation also enables other API invocations.

On the contrary, de-activating a device removes it from its operating
state, disables interrupts and other global registers.

 Spectra-622 (PM5313) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID PMC-1991254 Issue 2

Read / Write
Device Registers

(page 66)

These functions provide a ‘raw’ interface to the device. Device
registers that are both directly and indirectly accessible are available
for both inspection and modification via these functions. If
applicable, block reads and writes are also available.

Interrupt
Servicing /
Polling

(page 93)

Interrupt Servicing is an optional feature. The user can disable device
interrupts and instead poll the device periodically to monitor status
and check for alarm/error conditions.

Both polling and interrupt driven approaches detect a change in
device status and report the status to a Deferred Processing Routine
(DPR). The DPR then invokes application callback functions based
on the status information retrieved. This allows the driver to report
significant events that occur within the device to the application.

Statistics
Collection

(page 97)

Functions are provided to retrieve a snapshot of the various counts
that are accumulated by the SPECTRA-622 device. Routines should
be invoked often enough to avoid letting the counters to rollover.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID PMC-1991254 Issue 2

3 SOFTWARE ARCHITECTURE

This section describes the software architecture of the SPECTRA-622 device driver. This
includes a discussion of the driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the SPECTRA-622 device driver.

Figure 1: Driver Interfaces

RTOS

 Function Calls Application Callbacks

Hardware
Interrupts

Service Callbacks

Application

SPECTRA-622 Device Driver

SPECTRA-622 Devices

Service Calls

Register
Accesses

Application Programming Interface

The driver’s API is a collection of high level functions that can be called by application
programmers to configure, control, and monitor the SPECTRA-622 device, such as:

• Initializing the device

• Validating device configuration

• Retrieving device status and statistics information.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID PMC-1991254 Issue 2

• Diagnosing the device

The driver API functions use the driver library functions as building blocks to provide
this system level functionality to the application programmer (see below).

The driver API also consists of callback functions that notify the application of
significant events that take place within the device and driver, including alarms reporting.

Real-Time OS Interface

The driver’s RTOS interface module provides functions that let the driver use RTOS
services. The SPECTRA-622 driver requires the memory, interrupt, and preemption
services from the RTOS. The RTOS interface functions perform the following tasks for
the SPECTRA-622 device and driver:

• Allocate and de-allocate memory

• Manage buffers for the ISR and DPR

• Disable and enable preemption

The RTOS interface also includes service callbacks. These are functions installed by the
driver using RTOS service calls, such as installing the ISR handler and the DPR task.
These service callbacks are invoked when an interrupt occurs or the DPR is scheduled.

Note: You must modify RTOS interface code to suit your RTOS.

Driver Hardware Interface

The SPECTRA-622 hardware interface provides functions that read from and write to
device-registers. The hardware interface also provides a template for an ISR that the
driver calls when the device raises a hardware interrupt. You must modify this function
based on the interrupt configuration of your system.

3.2 Main Components

Figure 2 illustrates the top-level architectural components of the SPECTRA-622 device
driver. This applies in both polled and interrupt driven operation. In polled operation the
ISR is called periodically. In interrupt operation the interrupt directly triggers the ISR.

The driver includes the following main components:

• Module and Device(s) Data-Blocks

• Interrupt-Processing Routine

• Deferred-Processing Routine

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID PMC-1991254 Issue 2

• Alarm, Status and Statistics

• Input/Output

• Transport Overhead Controller

• Section Overhead Processor

• SONET/SDH Section Trace Buffer

• Line Overhead Processor

• Receive Path Processing Slice

• Transmit Path Processing Slice

• Ring Control Ports

• WAN Synchronization Controller

• DROP Bus PRBS Generator and Monitor

• ADD Bus PRBS Generator and Monitor

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID PMC-1991254 Issue 2

Figure 2: Driver Architecture

 Function
Calls

Register
Accesses

Hardware
Interrupts

Application

SPECTRA-622 Devices

Deferred
Processing

Routine

Interrupt
Service
Routine

Interrupt
Context

 R
TO

S
In

te
rfa

ce

Hardware Interface

Application
Callbacks Driver API

Alarm, Status &
Statistics

Line Overhead
Processor

Section Overhead
Processor

Transport Overhead
Controller

Module
Data Block

Device Data Blocks

.......

Receive Path
Processing Slice

SONET/SDH Section
Trace Buffer

Input/Output (IO)

RING WANS

DPGM APGM

Transmit Path
Processing Slice

Se
rv

ic
e

C
al

ls

R
TO

S

Se
rv

ic
e

C
al

lb
ac

ks

Alarms, Status and Statistics

The Alarms, Status and Statistics is responsible for monitoring alarms, tracking devices
status information and retrieving statistical counts for each device registered with (added
to) the driver.

Input / Output (IO)

The Input / Output section is responsible for configuring the line-side and system-side
device interfaces. On the line-side, functions are provided to control the 622.08 Mbps
clock/data interface. On the system-side, in Telecom Bus mode functions are provided to
control the Add/Drop Telecom Bus data interfaces and the Time Slot Interchange (TSI).
In DS3 mode, functions are provided to control the DS3 data interface.

Transport Overhead Controller (TOC)

The Transport Overhead Controller is responsible for configuring the transport overhead
processing on both receive and transmit sides. Functions are provided to directly write the
Z0 and S1 bytes.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID PMC-1991254 Issue 2

Receive / Transmit Section Overhead Processor (RSOP/TSOP)

The Receive / Transmit Section Overhead Processor is responsible for configuring and
monitoring the processing of the section overhead on both receive and transmit sides.
Functions are provided to monitor the received section overhead, to enable/disable Line
AIS insertion and to enable/disable insertion of section errors for diagnostics.

SONET / SDH Section Trace Buffer (SSTB)

The SONET / SDH Section Trace Buffer is responsible for configuring and monitoring
the section trace message (J0). Functions are provided to monitor the received section
trace message and set the transmit section message,

Receive / Transmit Line Overhead Processor (RLOP/TLOP)

The Receive / Transmit Line Overhead Processor is responsible for configuring and
monitoring the processing of the line overhead on both receive and transmit sides.
Functions are provided to monitor the received line overhead, to configure and monitor
the RASE (Receive APS Synchronization Extractor), and enable/disable the insertion of
line errors for diagnostics. Functions are provided to directly read/write the K1 and K2
bytes.

Receive Path Processing Slice (RPPS)

The Receive Path Processing Slice functions are provided to configure and monitor the
RTAL (Receive Telecombus Aligner) and tandem connection, to monitor the received
path overhead and path trace message (J1), and to configure the DS3 mapper (D3MD) in
DS3 mode.

Transmit Path Processing Slice (TPPS)

The Transmit Path Processing Slice functions are provided to configure and monitor the
TTAL (Transmit Telecombus Aligner) and tandem connection, to configure the path
overhead, to enable/disable the insertion of path overhead (J1) errors for diagnostics, and
to configure the DS3 mapper (D3MA) in DS3 mode. Functions are provided to directly
write the J1, C2, F2, Z3, Z4 and Z5 bytes.

Ring Control Ports (RING)

Ring Control Ports functions are provided to enable/disable the generation of the rx/tx
ring control port signals.

WAN Synchronization Controller (WANS)

The WAN Synchronization Controller functions are provided to enable/disable the
generation of the WAN synchronization signals.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID PMC-1991254 Issue 2

DROP Bus PRBS Generator and Monitor (DPGM)

The DROP Bus PRBS Generator and Monitor functions are provided to enable / disable
the insertion of a pseudo random byte sequence inside the payload.

ADD Bus PRBS Generator and Monitor (APGM)

The ADD bus PRBS Generator and Monitor functions are provided to enable / disable the
insertion of a pseudo random byte sequence inside the payload.

Module Data Block (MDB)

The Module Data Block (MDB) is the top-layer data structure, created by the SPECTRA-
622 device driver to keep track of its initialization and operating parameters, modes and
dynamic data. The MDB is allocated via an RTOS call, when the driver module is opened
and contains all the device structures

Device Data Blocks (DDB)

The Device Data Blocks (DDB) are contained in the MDB and they are allocated when
the module is opened. They are initialized by the SPECTRA-622 device driver for each
device that is registered, to keep track of that device’s initialization and operating
parameters, modes and dynamic data. There is a limit on the number of devices that can
be registered with the driver module. This number is set when the driver module is
opened.

Interrupt Service Routine

The SPECTRA-622 driver provides an ISR called spectraISR that checks if there are
any valid interrupt conditions present for the device. This function can be used by a
system-specific interrupt-handler function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls
spectraISR is system and RTOS dependent. Therefore, it is outside the scope of the
driver. Example implementations of an interrupt handler and functions that install and
remove it are provided as a reference on page 117. You can customize these example
implementations to suit your specific needs.

Deferred Processing Routine

The DPR provided by the SPECTRA-622 driver (spectraDPR) clears and processes
interrupt conditions for the device. Typically, a system specific function, which runs as a
separate task within the RTOS, executes the DPR.

See page 26 for a detailed explanation of the DPR and interrupt-servicing model.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID PMC-1991254 Issue 2

3.3 Software States

Figure 3 shows the software state diagram for the SPECTRA-622 driver. State transitions
occur on the successful execution of the corresponding transition functions shown. State
information helps maintain the integrity of the MDB and DDB(s) by controlling the set of
operations allowed in each state.

Figure 3: Driver Software States

Idle

Present

Inactive
spectraActivate

spectraDeActivate

Start

spectraAdd spectraDelete

Ready

spectraModuleClosespectraModuleStart

spectraModuleOpen

spectraModuleClose

spectraModuleStop

Start

PER-DEVICE STATES

MODULE STATES

spectraReset

spectraInit

spectraReset

Active

Module States

The following is a description of the SPECTRA-622 module states. See sections 5.1 and
5.2 for a detailed description of the API functions that are used to change the module
state.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID PMC-1991254 Issue 2

Start

The driver Module has not been initialized. In this state the driver does not hold any
RTOS resources (memory, timers, etc); has no running tasks, and performs no actions.

Idle

The driver Module has been initialized successfully. The Module Initialization Vector
(MIV) has been validated, the Module Data Block (MDB) has been allocated and loaded
with current data, the per-device data structures have been allocated, and the RTOS has
responded without error to all the requests sent to it by the driver.

Ready

This is the normal operating state for the driver Module. This means that all RTOS
resources have been allocated and the driver is ready for Devices to be added. The driver
Module remains in this state while Devices are in operation.

Device States

The following is a description of the SPECTRA-622 per-device states. The state that is
mentioned here is the software state as maintained by the driver, and not as maintained
inside the device itself. See sections 5.4, 5.5 and 5.6 for a detailed description of the API
functions that are used to change the per-device state.

Start

The Device has not been initialized. In this state the device is unknown by the driver and
performs no actions. There is a separate flow for each device that can be added, and they
all start here.

Present

The Device has been successfully added. A Device Data Block (DDB) has been
associated to the Device and updated with the user context, and a device handle has been
given to the USER. In this state, the device performs no actions.

Inactive

In this state the Device is configured but all data functions are de-activated including
interrupts and alarms, status and statistics functions.

Active

This is the normal operating state for the Device. In this state, interrupt servicing or
polling is enabled.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID PMC-1991254 Issue 2

3.4 Processing Flows

This section describes the main processing flows of the SPECTRA-622 driver modules.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application
programmer by illustrating the sequence in which the application must invoke the driver
API.

Module Management

The following diagram illustrates the typical function call sequences that occur when
initializing or shutting down the SPECTRA-622 driver module.

Figure 4: Module Management Flow Diagram

De-register an initialization or diagnostic profile previously registered with
the driver.

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores as
well as removing the ISR handler and DPR task.

Performs module level shutdown of the driver. De-allocates all the driver's
memory.

Perform all device level functions here (add, init, activate, de-activate,
reset, delete,...)

Register an initialization or diagnostic profile. This allows the user to store
pre-defined parameter vectors that are validated ahead of time. When the
device-initialization function is invoked only a profile number need to be
passed. This method simplifies and expedites the above operations.

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers and installing the ISR handler
and DPR task.

Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
the contents of the MDB with the validated MIV.

spectraAddInitProfile
spectraAddDiagProfile

spectraModuleStart

spectraModuleOpen

spectraDeleteInitProfile
spectraDeleteDiagPrfile

spectraModuleStop

spectraModuleClose

END

START

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID PMC-1991254 Issue 2

Device Management

The following diagram shows the functions and process that the driver uses to add,
initialize, re-initialize, and delete the SPECTRA-622 device.

Figure 5: Device Management Flow Diagram

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. ISR routines for this device are
removed using sysSpectraISRHandlerRemove w hen the module is
closed.

Applies a softw are reset to the device to put it in its default startup state.

Removes the device from the list of devices being controlled by the
SPECTRA-622 driver. This function de-allocates the device context
information for the device being deleted.

In order to re-initialize the device, reset the device using spectraReset
and go through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables. ISR routines are installed w hen the module is started
using sysSpectraISRHandlerInstall. The device is now operational and all
other API can be invoked.

Applies a reset to the device and initializes the device registers and
associated RAMs based on the DIV passed by the user. The user may
only pass a profile number, w hich corresponds to a previously saved &
validated set of configurations (by using spectraAddInitProfile).

Detects the new device in hardw are, assigns a DDB to the new device
and stores the user's context for the device. Returns a device handle to
the user.

spectraInit

spectraAdd

spectraActivate

spectraReset

spectraDeActivate

spectraReset

spectraDelete

END

START

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID PMC-1991254 Issue 2

3.5 Interrupt Servicing

The SPECTRA-622 driver services device interrupts using an interrupt service routine
(ISR) that traps interrupts and a deferred processing routine (DPR) that actually processes
the interrupt conditions and clears them. This lets the ISR execute quickly and exit. Most
of the time-consuming processing of the interrupt conditions is deferred to the DPR by
queuing the necessary interrupt-context information to the DPR task. The DPR function
runs in the context of a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should
set the DPR task’s priority higher than the application task interacting with the
SPECTRA-622 driver.

The driver provides the system-independent functions, spectraISR and spectraDPR.
You must fill in the corresponding system-specific functions, sysSpectraISRHandler
and sysSpectraDPRTask. The system-specific functions isolate the system-specific
communication mechanism (between the ISR and DPR) from the system-independent
functions, spectraISR and spectraDPR.

Figure 6 illustrates the interrupt service model used in the SPECTRA-622 driver design.

Figure 6: Interrupt Service Model

spectraISR

sysSpectraISRHandler

spectraDPR

Interrupt
Context

Information
sysSpectraDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service model in
the SPECTRA-622 driver to process the device’s event-indication registers (see page 28).

Calling spectraISR

An interrupt handler function, which is system dependent, must call spectraISR. But
first, the low-level interrupt-handler function must trap the device interrupts. You must
implement this function to fit your own system. As a reference, an example
implementation of the interrupt handler (sysSpectraISRHandler) appears on page
118. You can customize this example implementation to suit your needs.

The interrupt handler that you implement (sysSpectraISRHandler) is installed in the
interrupt vector table of the system processor. It is called when one or more SPECTRA-
622 devices interrupt the processor. The interrupt handler then calls spectraISR for
each device in the active state that has interrupt processing enabled.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID PMC-1991254 Issue 2

The spectraISR function reads from the master interrupt-status registers and the
miscellaneous interrupt-status registers of the SPECTRA-622. If at least one valid
interrupt condition is found then spectraISR fills an Interrupt Service Vector (ISV)
with this status information as well as the current device Handle. The spectraISR
function also clears and disables all the device’s interrupts detected. The
sysSpectraISRHandler function is then responsible to send this ISV buffer to the
DPR task.

Note: Normally you should save the status information for deferred interrupt processing
by implementing a message queue.

Calling spectraDPR

The sysSpectraDPRTask function is a system specific function that runs as a separate
task within the RTOS. You should set the DPR task’s priority higher than the application
task(s) interacting with the SPECTRA-622 driver. In the message-queue implementation
model, this task has an associated message queue. The task waits for messages from the
ISR on this message queue. When a message arrives, sysSpectraDPRTask calls the
DPR (spectraDPR) with the received ISV.

Then spectraDPR processes the status information and takes appropriate action based
on the specific interrupt condition detected. The nature of this processing can differ from
system to system. Therefore, spectraDPR calls different indication callbacks for
different interrupt conditions.

Typically, you should implement these callback functions as simple message posting
functions that post messages to an application task. However, you can implement the
indication callback to perform processing within the DPR task context and return without
sending any messages. In this case, ensure that the indication function does not call any
API functions that change the driver’s state, such as spectraDelete. Also, ensure that
the indication function is non-blocking because the DPR task executes while SPECTRA-
622 interrupts are disabled. You can customize these callbacks to suit your system. See
page 109 for example implementations of the callback functions.

Note: Since the spectraISR and spectraDPR routines themselves do not specify a
communication mechanism, you have full flexibility in choosing a communication
mechanism between the two. A convenient way to implement this communication
mechanism is to use a message queue, which is a service that most RTOSs provide.

You must implement the two system specific functions, sysSpectraISRHandler and
sysSpectraDPRTask. When the driver calls sysSpectraISRHandlerInstall, the
application installs sysSpectraISRHandler in the interrupt vector table of the
processor. The sysSpectraDPRTask function is spawned as a task by the application.
The sysSpectraISRHandler Install function also creates the communication
channel between sysSpectraISRHandler and sysSpectraDPRTask. This
communication channel is most commonly a message queue associated with the
sysSpectraDPRTask.

 Spectra-622 (PM5313) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID PMC-1991254 Issue 2

Similarly, during removal of interrupts, the driver removes sysSpectraISRHandler
from the microprocessor’s interrupt vector table and deletes the task associated with
sysSpectraDPRTask.

As a reference, this manual provides example implementations of the interrupt
installation and removal functions on page 117. You can customize these prototypes to
suit your specific needs.

Calling spectraPoll

Instead of using an interrupt service model, you can use a polling service model in the
SPECTRA-622 driver to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the SPECTRA-622 driver design.

Figure 7: Polling Service Model

spectraISR

spectraPoll

spectraDPR

Interrupt
Context

Information
Indication
Callbacks

Application

In polling mode, the application is responsible for calling spectraPoll often enough to
service any pending error or alarm conditions. When spectraPoll is called, the
spectraISR function is called internally.

The spectraISR function reads from the master interrupt-status registers and the
miscellaneous interrupt-status registers of the SPECTRA-622. If at least one valid
interrupt condition is found then spectraISR fills an Interrupt Service Vector (ISV)
with this status information as well as the current device Handle. The spectraISR
function also clears and disables all the device’s interrupts detected. In polling mode, this
ISV buffer is passed to the DPR task by calling spectraDPR internally.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID PMC-1991254 Issue 2

4 DATA STRUCTURES

4.1 Constants

The following Constants are used throughout the driver code:

• <SPECTRA-622 ERROR CODES> error codes used throughout the driver code,
returned by the API functions and used in the global error number field of the MDB
and DDB. See Appendix A on page 131.

• SPE_MAX_DEVS defines the maximum number of devices that can be supported by
this driver. This constant must not be changed without a thorough analysis of the
consequences to the driver code.

• SPE_MOD_START, SPE_MOD_IDLE, SPE_MOD_READY are the three possible Module
states (stored in stateModule).

• SPE_START, SPE_PRESENT, SPE_ACTIVE, SPE_INACTIVE are the four possible
Device states (stored in stateDevice).

4.2 Structures Passed by the Application

These structures are defined for use by the application and are passed as argument to
functions within the driver. These structures are the Module Initialization Vector (MIV),
the Device Initialization Vector (DIV) and the ISR mask.

Module Initialization Vector: MIV

Passed via the spectraModuleOpen call, this structure contains all the information
needed by the driver to initialize and connect to the RTOS.

• maxDevs is used to inform the Driver how many Devices will be operating
concurrently during this session. The number is used to calculate the amount of
memory that will be allocated to the driver. The maximum value that can be passed is
SPE_MAX_DEVS.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID PMC-1991254 Issue 2

Table 2: Module Initialization Vector: sSPE_MIV

Field Name Field Type Field Description
pmdb sSPE_MDB * (pointer to) MDB
maxDevs UINT2 Maximum number of devices supported

during this session
maxInitProfs UINT2 Maximum number of initialization profiles
maxDiagProfs UINT2 Maximum number of diagnostic profiles

Device Initialization Vector: DIV

Passed via the spectraInit call, this structure contains all the information needed by
the driver to initialize a SPECTRA-622 device. This structure is also passed via the
spectraAddInitProfile call when used as an initialization profile.

• valid indicates that this initialization profile has been properly initialized and may
be used by the USER. This field should be ignored when the DIV is passed directly.

• pollISR is a flag that indicates the type of interrupt servicing the driver is to use.
The choices are ‘polling’ (SPE_POLL_MODE), and ‘interrupt driven’
(SPE_ISR_MODE). When configured in polling the Interrupt capability of the Device
is NOT used, and the USER is responsible for calling devicePoll periodically. The
actual processing of the event information is the same for both modes.

• cbackIO, cbackTOC, cbackSOP, cbackSSTB, cbackLOP, cbackRPPS,
cbackTPPS, cbackWANS, cbackDPGM and cbackAPGM are used to pass the address
of application functions that will be used by the DPR to inform the application code
of pending events. If these fields are set as NULL, then any events that might cause
the DPR to ‘call back’ the application will be processed during ISR processing but
ignored by the DPR.

Table 3: Device Initialization Vector: sSPE_DIV

Field Name Field Type Field Description
valid UINT2 Indicates that this profile is valid
initMode SPE_MODE Mode used for Initialization: SPE_NORM,

SPE_COMP or SPE_FRM

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
pinitData UINT1* (pointer to) initialization data. Depending on the

specified mode of initialization, this is in fact a
pointer to sSPE_INIT_DATA_NORM,
sSPE_INIT_DATA_COMP or
sSPE_INIT_DATA_FRM.

pollISR sSPE_POLL Indicates the type of ISR / polling to do
cbackIO sSPE_CBACK Address for the callback function for IO Events
cbackTOC sSPE_CBACK Address for the callback function for TOC

Events
cbackSOP sSPE_CBACK Address for the callback function for SOP

Events
cbackSSTB sSPE_CBACK Address for the callback function for SSTB

Events
cbackLOP sSPE_CBACK Address for the callback function for LOP

Events
cbackRPPS sSPE_CBACK Address for the callback function for RPPS

Events
cbackTPPS sSPE_CBACK Address for the callback function for TPPS

Events
cbackWANS sSPE_CBACK Address for the callback function for WANS

Events
cbackDPGM sSPE_CBACK Address for the callback function for DPGM

Events
cbackAPGM sSPE_CBACK Address for the callback function for APGM

Events

Initialization Profile: INIT_PROF

Initialization Profile Top-Level Structure

Passed via the spectraAddInitProfile call, this structure contains all the
information needed by the driver to initialize and activate a SPECTRA-622 device. This
is in fact the same structure as sSPE_DIV.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID PMC-1991254 Issue 2

Table 4: Initialization Profile: sSPE_INIT_PROF

Field Name Field Type Field Description
valid UINT2 Indicates that this profile is valid
initMode SPE_MODE Mode used for Initialization: SPE_NORM,

SPE_COMP or SPE_FRM
pinitData UINT1* (pointer to) initialization data. Depending on the

specified mode of initialization, this is in fact a
pointer to sSPE_INIT_DATA_NORM,
sSPE_INIT_DATA_COMP or
sSPE_INIT_DATA_FRM.

pollISR sSPE_POLL Indicates the type of ISR / polling to do
cbackIO sSPE_CBACK Address for the callback function for IO Events
cbackTOC sSPE_CBACK Address for the callback function for TOC

Events
cbackSOP sSPE_CBACK Address for the callback function for SOP

Events
cbackSSTB sSPE_CBACK Address for the callback function for SSTB

Events
cbackLOP sSPE_CBACK Address for the callback function for LOP

Events
cbackRPPS sSPE_CBACK Address for the callback function for RPPS

Events
cbackTPPS sSPE_CBACK Address for the callback function for TPPS

Events
cbackWANS sSPE_CBACK Address for the callback function for WANS

Events
cbackDPGM sSPE_CBACK Address for the callback function for DPGM

Events
cbackAPGM sSPE_CBACK Address for the callback function for APGM

Events

Initialization Data in Normal Mode (SPE_NORM)

In Normal mode (NORM), the user only specifies the main modes of operation of the
device. Most of the device’s register bits are left in their default state (after a software
reset). This structure is pointed to by pinitData inside the initialization profile.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID PMC-1991254 Issue 2

Table 5: Initialization Data: sSPE_INIT_DATA_NORM

Field Name Field Type Field Description

lineSideMode UINT2 selects between serial mode, parallel
mode, dual mode with serial input, and
dual mode with parallel input on the line
side

sysSideMode UINT2 selects between mode selected via
DMODE[1:0] inputs, telecom mode,
ds3 mode, dual mode w/ telecom bus
input, and dual mode w/ds3 input.

clock77 UINT2 selects between stm4 and stm1 telecom
bus mode on the system side

sts12c UINT2 selects the master/slave slices for
sts-12/12c mode

sts3c[4] UINT2 selects the master/slave slices for
sts-3/3c mode

ringEna UINT2 enables the ring control ports
wansEna UINT2 enables the phase comparison in the

wan synchronization controller

Initialization Data in Compatibility Mode (SPE_COMP)

In Compatibility mode (COMP), the user provides a list of data blocks to write directly to
the device registers. There are numBlocks blocks provided by the USER. The block
number [i] is fully defined by:

• ppblock[i], which points to the data to write to the device’s registers

• ppmask[i], which points to a data mask to specify which bits are to be modified

• psize[i], the block size

• pstartReg[i], which is the register number at which the driver should start writing
the data.

This structure is pointed to by pinitData inside the initialization profile.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID PMC-1991254 Issue 2

Table 6: Initialization Data: sSPE_INIT_DATA_COMP

Field Name Field Type Field Description
numBlocks UINT2 Number of provided blocks
ppblk[] UINT1* (pointer to) an array of pointer to a data

block
ppmask[] UINT1* (pointer to) an array of pointer to a mask
pblkSize[] UINT2 (pointer to) an array of block size
pstartReg[] UINT2 array of register numbers

Initialization Data in Flat Register Mode (SPE_FRM)

In Flat Register Mode (FRM), for each of the hardware blocks (IO, TOC, SOP, SSTB,
LOP, RPPS, TPPS, RING and WANS), the user needs to fill a structure that holds a
mapping of all the configuration bits for this hardware block. They are used to fully
configure the SPECRTA-622 device. This structure is pointed to by pinitData inside
the initialization profile. The reader is referred to the code for the definitions of the
configuration blocks (sSPE_CFG_XXX).

Table 7: Initialization Data: sSPE_INIT_DATA_FRM

Field Name Field Type Field Description
cfgIO sSPE_CFG_IO Input / Output (IO) configuration block
cfgTOC sSPE_CFG_TOC Receive / Transmit Transport Overhead

Controller (TOC) configuration block
cfgSOP sSPE_CFG_SOP Receive / Transmit Section Overhead

Processor (RSOP/TSOP) configuration
block

cfgSSTB sSPE_CFG_SSTB Sonet/SDH Section Trace Buffer
(SSTB) configuration block

cfgLOP sSPE_CFG_LOP Receive / Transmit Line Overhead
Processor (RLOP/TLOP) configuration
block

cfgRPPS[4][3] sSPE_CFG_RPPS Receive Path Processing Slice (RPPS)
configuration block

cfgTPPS[4][3] sSPE_CFG_TPPS Transmit Path Processing Slice (TPPS)
configuration block

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
cfgRING sSPE_CFG_RING Ring Control Port (RING)

configuration block
cfgWANS sSPE_CFG_WANS WAN Synchronization controller

(WANS) configuration block

Diagnostic Profile: DIAG_PROF

Diagnostic Profile Top-Level Structure

Passed via the spectraAddDiagProfile call, this structure contains all the
information needed by the driver to initiate a specific diagnostic on the SPECTRA-622
device.

• diagMode is a flag that tells the Driver which diagnostic mode is used to configure
the device. There are three different ways to configure a device for diagnostics, each
corresponding to a different mode:

° Normal Mode (SPE_NORM): the user only specifies the main modes of operation
of the DPGM and APGM. Most of the device’s register bits are left in their
default state (after a software reset).

° Compatibility mode (SPE_COMP): the user provides a list of data blocks to write
directly to the APGM and DPGM registers.

° Flat Register Mode (SPE_FRM): for each of the 12 DPGM and APGM hardware
blocks, the user needs to fill a structure (sSPE_CFG_DPGM and sSPE_CFG_APGM)
that holds a mapping of all the configuration bits for this hardware block.

Table 8: Diagnostic Profile: sSPE_DIAG_PROF

Field Name Field Type Field Description
valid UINT2 Indicates that this profile is valid
diagMode SPE_MODE Mode used for diagnostic: SPE_NORM,

SPE_COMP or SPE_FRM
pdiagData UINT1* (pointer to) diagnostic data. Depending on the

specified mode of diagnostic, this is in fact a
pointer to sSPE_INIT_DATA_NORM,
sSPE_INIT_DATA_COMP or
sSPE_INIT_DATA_FRM.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID PMC-1991254 Issue 2

Diagnostic Data in Normal Mode: SPE_NORM

In Normal mode (NORM), the user only specifies the main modes of operation of the
DPGM and APGM. Most of the register bits are left in their default state (after a software
reset). This structure is pointed to by pdiagData inside the diagnostic profile.

Table 9: Diagnostic Data: sSPE_DIAG_DATA_NORM

Field Name Field Type Field Description
dpgmGenEna[4][3] UINT1 Enables the Generator of the DROP Bus

PRBS Generator and Monitor (DPGM)
dpgmMonEna[4][3] UINT1 Enables the Monitor of the DROP Bus

PRBS Generator and Monitor (DPGM)
apgmGenEna[4][3] UINT1 Enables the Generator of the ADD Bus

PRBS Generator and Monitor (APGM)
apgmMonEna[4][3] UINT1 Enables the Monitor of the ADD Bus

PRBS Generator and Monitor (APGM)

Diagnostic Data in Compatibility: Mode SPE_COMP

In Compatibility mode (COMP), the user provides a list of data blocks to write directly to
the DPGM and APGM registers. There are numBlocks blocks provided by the USER.
The block number [i] is fully defined by:

• ppblock[i], which points to the data to write to the device’s registers

• ppmask[i], which points to a data mask to specify which bits are to be modified

• psize[i], the block size

• pstartReg[i], which is the register number at which the driver should start writing
the data.

This structure is pointed to by pdiagData inside the diagnostic profile.

Table 10: Diagnostic Data: sSPE_DIAG_DATA_COMP

Field Name Field Type Field Description
numBlocks UINT2 number of provided blocks
ppblk[] UINT1* array of pointer to a data block
ppmask[] UINT1* array of pointer to a mask
pblkSize[] UINT2 array of block size

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
pstartReg[] UINT2 array of register numbers

Diagnostic Data in FRM Mode: SPE_FRM

In Flat Register Mode (FRM), for each of the 12 DPGM and APGM hardware blocks, the
user needs to fill a structure that holds a mapping of all the configuration bits for this
hardware block. They are used to fully configure the DPGM and APGM. This structure is
pointed to by pdiagData inside the diagnostic profile. The reader is referred to the code
for the definitions of the configuration blocks (sSPE_CFG_XXX).

Table 11: Diagnostic Data: sSPE_DIAG_DATA_FRM

Field Name Field Type Field Description
cfgDPGM[4][3] sSPE_CFG_DPGM DROP Bus PRBS Generator and

Monitor (DPGM) configuration block
cfgAPGM[4][3] sSPE_CFG_APGM ADD Bus PRBS Generator and

Monitor (APGM) configuration block

ISR Enable/Disable Mask

Passed via the spectraSetMask, spectraGetMask and spectraClearMask calls,
this structure contains all the information needed by the driver to enable and disable any
of the interrupts in the SPECTRA-622.

Table 12: ISR Mask: sSPE_MASK

Field Name Field
Type

Field Description

ioScpife[4] UINT1 Serial control port falling edge
ioScpire[4] UINT1 Serial control port raising edge
ioDool UINT1 Data out of lock (DOOL)
ioCrsiRool UINT1 Reference out of lock (ROOL)
ioLos UINT1 Loss of signal (LOS)
ioCspiRool UINT1 Reference out of lock
ioApe[4] UINT1 Add bus parity error

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

tocLos UINT1 Loss of signal (LOS)
tocLof UINT1 Loss of frame (LOF)
tocLais UINT1 Line alarm indication signal (LAIS)
tocLrdi UINT1 Line remote defect indication (LRDI)
tocOof UINT1 Out of frame (OOF)
tocRdool UINT1 Receive data out of lock (RDOOL)
tocTrool UINT1 Transmit reference out of lock (TROOL)
sopOof UINT1 Out of frame
sopLof UINT1 Loss of frame
sopLos UINT1 Loss of signal
sopBipe UINT1 Bip-8 (B1) error
sstbRtim UINT1 Receive section trace identifier (Mode1)

mismatch
sstbRtiu UINT1 Receive section trace identifier (Mode 1)

unstable
lopSf UINT1 Signal fail (SF)
lopSd UINT1 Signal degrade (SD)
lopLrdi UINT1 Line remote defect indication
lopLais UINT1 Line alarm indication signal
lopBipe UINT1 Bip-8 (B2) error
lopLrei UINT1 Line remote error indication
lopSdber UINT1 Signal degrade threshold
lopSfber UINT1 Signal fail threshold
lopZ1S1 UINT1 Change in the received synchronization

status
lopCoaps UINT1 Change in the receive APS code
lopPsbf UINT1 Protection switch byte failure
rppsTim[4][3] UINT1 Path trace identifier (Mode 1) mismatch
rppsTiu[4][3] UINT1 Path trace identifier (Mode 1) unstable
rppsLom1[4][3] UINT1 Loss of multiframe
rppsLop1[4][3] UINT1 Loss of pointer

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

rppsPslm[4][3] UINT1 Path signal label mismatch
rppsPslu[4][3] UINT1 Path signal label unstable
rppsPais1[4][3] UINT1 Path alarm indication signal
rppsPrdi1[4][3] UINT1 Path remote defect indication
rppsPerdi[4][3] UINT1 Path enhanced remote defect indication
rppsTiu2[4][3] UINT1 Path trace identifier mode 2 unstable
rppsPaisCon[4][3] UINT1 Path alarm indication signal concatenation
rppsLopCon[4][3] UINT1 Loss of pointer concatenation
rppsNewPtr[4][3] UINT1 Reception of new_point
rppsPrei[4][3] UINT1 Path remote error indication
rppsBipe[4][3] UINT1 Bip-8 error
rppsPrdi2[4][3] UINT1 Path remote defect indication
rppsPais2[4][3] UINT1 Path alarm indication signal
rppsAu3PaisCon[4][3] UINT1 AU3 concatenation path AIS
rppsLop2[4][3] UINT1 Loss of pointer
rppsAu3LopCon[4][3] UINT1 AU3 concatenation Loss of pointer
rppsErdi[4][3] UINT1 Path enhanced remote defect indication
rppsNdf[4][3] UINT1 Detection of an NDF_enable
rppsPse[4][3] UINT1 Positive pointer adjustment event
rppsNse[4][3] UINT1 Negative pointer adjustment event
rppsInvNdf[4][3] UINT1 Invalid NDF code
rppsDiscopa[4][3] UINT1 Change of pointer alignment event
rppsIllreq[4][3] UINT1 Illegal pointer justification request
rppsComa[4][3] UINT1 Change of multiframe alignment
rppsLom2[4][3] UINT1 Loss of multiframe
rppsDpje[4][3] UINT1 DROP bus pointer justification event
rppsEse[4][3] UINT1 Elastic store error
rppsIsf[4][3] UINT1 Incoming signal failure
rppsRtim[4][3] UINT1 Receive path trace identifier (Mode 1)

mismatch

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

rppsRtiu[4][3] UINT1 Receive path trace identifier (Mode 1)
unstable

rppsRpslm[4][3] UINT1 Receive path signal label mismatch
rppsRpslu[4][3] UINT1 Receive path signal label unstable
rppsUfl[4][3] UINT1 Elastic store underflow
rppsOfl[4][3] UINT1 Elastic store overflow
tppsLom1[4][3] UINT1 Loss of multiframe
tppsLop1[4][3] UINT1 Loss of pointer
tppsPais1[4][3] UINT1 Path alarm indication signal
tppsPaisCon[4][3] UINT1 Path alarm indication signal concatenation
tppsLopCon[4][3] UINT1 Loss of pointer concatenation
tppsPje[4][3] UINT1 Pointer justification event
tppsEse[4][3] UINT1 Elastic store error
tppsIsf[4][3] UINT1 Incoming signal failure
tppsNewPtr[4][3] UINT1 Reception of a new_point indication
tppsPrei[4][3] UINT1 Path remote error indication
tppsBipe[4][3] UINT1 Bip-8 error
tppsPais2[4][3] UINT1 Path alarm indication signal
tppsAu3PaisCon[4][3] UINT1 AU3 concatenation path alarm indication

signal
tppsLop2[4][3] UINT1 Loss of pointer
tppsAu3LopCon[4][3] UINT1 AU3 concatenation loss of pointer
tppsNdf[4][3] UINT1 Detection of an NDF_enable indication
tppsPse[4][3] UINT1 Positive pointer adjustment event
tppsNse[4][3] UINT1 Negative pointer adjustment event
tppsInvNdf[4][3] UINT1 Invalid NDF code
tppsDiscopa[4][3] UINT1 Change of pointer alignment event
tppsIllreq[4][3] UINT1 Illegal pointer justification request
tppsComa[4][3] UINT1 Change of multiframe alignment
tppsLom2[4][3] UINT1 Loss of multiframe

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

tppsUfl[4][3] UINT1 Elastic store underflow
tppsOfl[4][3] UINT1 Elastic store overflow
wansInt UINT1 Beginning of a phase averaging period
dpgmGenSig[4][3] UINT1 DROP generator signal
dpgmMonSig[4][3] UINT1 DROP monitor signal
dpgmMonErr[4][3] UINT1 DROP monitor byte error
dpgmMonSync[4][3] UINT1 DROP monitor synchronize
apgmGenSig[4][3] UINT1 ADD generator signal
apgmMonSig[4][3] UINT1 ADD monitor signal
apgmMonErr[4][3] UINT1 ADD monitor byte error
apgmMonSync[4][3] UINT1 ADD monitor synchronize

4.3 Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory
allocated when the driver is opened.

Module Data Block: MDB

The MDB is the top-level structure for the Module. It contains configuration data about
the Module level code and pointers to configuration data about the Device level codes.

Table 13: Module Data Block: sSPE_MDB

Field Name Field Type Field Description
errModule INT4 Global error Indicator for module calls
valid UINT2 Indicates that this structure has been

initialized
maxDevs UINT2 Maximum number of devices supported
numDevs UINT2 Number of devices currently registered
maxInitProfs UINT2 Maximum number of initialization profiles
maxDiagProfs UINT2 Maximum number of diagnostic profiles

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
stateModule SPE_MOD_STATE Module state; can be one of the following:

SPE_MOD_START, SPE_MOD_IDLE or
SPE_MOD_READY

pddb sSPE_DDB * (array of) Device Data Blocks (DDB) in
context memory

pinitProfs sSPE_INIT_PROF * (array of) initialization profiles
pdiagProfs sSPE_DIAG_PROF * (array of) diagnostic profiles

Device Data Block: DDB

The DDB is the top-level structure for each Device. It contains configuration data about
the Device level code and pointers to configuration data about Device level sub-blocks.

Table 14: Device Data Block: sSPE_DDB

Field Name Field Type Field Description
errDevice INT4 Global error indicator for device

calls
valid UINT2 Indicates that this structure has been

initialized
baseAddr UINT1* Base address of the Device
usrCtxt sSPE_USR_CTXT Stores the user’s context for the

device. It is passed as an input
parameter when the driver invokes
an application callback

profileNum UINT2 Profile number used at initialization
stateDevice SPE_DEV_STATE Device State; can be one of the

following: SPE_START,
SPE_PRESENT, SPE_INACTIVE or
SPE_ACTIVE

cfgIO sSPE_CFG_IO Input / Output (IO) configuration
block

cfgTOC sSPE_CFG_TOC Receive / Transmit Transport
Overhead Controller (TOC)
configuration block

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
cfgSOP sSPE_CFG_SOP Receive / Transmit Section Overhead

Processor (RSOP/TSOP)
configuration block

cfgSSTB sSPE_CFG_SSTB Sonet/SDH Section Trace Buffer
(SSTB) configuration block

cfgLOP sSPE_CFG_LOP Receive / Transmit Line Overhead
Processor (RLOP/TLOP)
configuration block

cfgRPPS[4][3] sSPE_CFG_RPPS Receive Path Processing Slice
(RPPS) configuration block

cfgTPPS[4][3] sSPE_CFG_TPPS Transmit Path Processing Slice
(TPPS) configuration block

cfgRING sSPE_CFG_RING Ring Control Port (RING)
configuration block

cfgWANS sSPE_CFG_WANS WAN Synchronization controller
(WANS) configuration block

cfgDPGM[4][3] sSPE_CFG_DPGM DROP Bus PRBS Generator and
Monitor (DPGM) configuration
block

cfgAPGM[4][3] sSPE_CFG_APGM ADD Bus PRBS Generator and
Monitor (APGM) configuration
block

cfgCnt sSPE_CFG_CNT Counter configuration structure
pollISR SPE_POLL Indicates the current type of ISR /

polling
cbackIO sSPE_CBACK Address for the callback function for

IO Events
cbackTOC sSPE_CBACK Address for the callback function for

TOC Events
cbackSOP sSPE_CBACK Address for the callback function for

SOP Events
cbackSSTB sSPE_CBACK Address for the callback function for

SSTB Events
cbackLOP sSPE_CBACK Address for the callback function for

LOP Events
cbackRPPS sSPE_CBACK Address for the callback function for

RPPS Events

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description
cbackTPPS sSPE_CBACK Address for the callback function for

TPPS Events
cbackWANS sSPE_CBACK Address for the callback function for

WANS Events
cbackDPGM sSPE_CBACK Address for the callback function for

DPGM Events
cbackAPGM sSPE_CBACK Address for the callback function for

APGM Events

mask sSPE_MASK Interrupt Enable Mask

Input / Output (IO) Status

Table 15: Input/Output Status: sSPE_STATUS_IO

Field Name Field
Type

Field Description

refclkActive UINT1 Monitors for low to high transitions on the
REFCLK reference clock input.

rool UINT1 Monitors the transmit reference out of lock
status to report if the synthesis phase lock
loop is unable to lock to the reference
clock on REFLCK.

dckAct UINT1 Monitors for low to high transitions on the
DCK input.

ackActiv UINT1 Monitors for low to high transitions on the
ACK input.

insLRDI UINT1 Reports the value of the SENDLRDI bit
position in the transmit ring control port.

insLAIS UINT1 Reports the value of the SENDLAIS bit
position in the transmit ring control port.

rlos UINT1 The loss of transition status indicates the
receive power is lost or at least 95
consecutive ones or zeros have been
received.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

rrool UINT1 Monitors the recovered reference out of
lock status to report if the clock recovery
phase locked loop is unable to lock to the
reference clock on REFCLK.

rdool UINT1 Monitors the recovered data out of lock
status to report if the clock recovery phase
locked loop is unable to recover and lock
to the input data stream.

ds3tdatAct UINT1 Monitors for low to high transitions on the
sampled DS3TDAT input for the TPPS.

ds3tiClkAct UINT1 Monitors for low to high transitions on the
DS3TICLK input for the TPPS.

addControlAct[4] UINT1 Monitors for low to high transitions on the
corresponding APL[n], AC1J1V1[n] and
ADP[n] inputs.addControlActiv[n] is
non-zero when rising edges have been
observed on all these signals.

addDataAct[4] UINT1 Monitors for low to high transitions on the
corresponding AD[7:0] (#1), AD[15:8]
(#2), AD[23:16] (#3) or AD[31:24] (#4)
bus when configured for byte Telecom
ADD bus mode. addDataActiv[n] is non-
zero when rising edges have been observed
on all the required signals in the
corresponding Telecom ADD bus.

scpi[4] UINT1 Status of the associated SCPI[3:0] input
pins.

Section Overhead Processor (SOP) Status

Table 14: Section Overhead Processor Status: sSPE_STATUS_SOP

Field Name Field Type Field Description

los UINT1 The LOSV bit is set high when loss of signal is
declared. LOS is removed when two valid
framing words (A1, A2) are detected, and during
the intervening time (125 µs), no violating period
of all zeros patterns is observed.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description

lof UINT1 The LOFV bit is set high when loss of frame is
declared. LOFV is set high and loss of frame
declared when an out-of-frame state persists for 3
ms. LOF is removed when an in frame state
persists for 3 ms.

oof UINT1 The OOFV bit is set high when out of frame is
declared. OOFV is set high and out-of frame
declared while the SPECTRA-622 is unable to
find a valid framing pattern (A1, A2) in the
incoming stream. OOF is removed when a valid
framing pattern is detected.

tiu UINT1 Monitors the receive section trace identifier
unstable status, which is dependent on the Trace
Identifier Mode. In Mode 1, the bit is set high
when 8 trace messages mismatching against their
immediate predecessor message have been
received without a persistent message being
detected. In Mode 2, RTIUV is set low during the
stable state which is declared after having
received the same 16 byte trace message 3
consecutive times.

tim UINT1 Monitors the receive section trace identifier
mismatch status to report if the accepted
message differs from the expected message.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID PMC-1991254 Issue 2

Line Overhead Processor (LOP) Status

Table 15: Line Overhead Status: sSPE_STATUS_LOP

Field Name Field Type Field Description

sfber UINT1 Indicate the signal failure threshold crossing
alarm state.

sdber UINT1 Indicates the signal degrade threshold crossing
alarm state.

psbf UINT1 Indicates the protection switching byte failure
alarm state.

lrdi UINT1 Indicates when the line Remote Defect Indication
(RDI) is detected.

lais UINT1 Indicates when the line Alarm Indication Signal
(AIS) is detected.

Receive Path Processing Slice (RPPS) Status

Table 16: Receive Path Status: sSPE_STATUS_RPPS

Field Name Field Type Field Description

ptiu UINT1 Monitors the receive path trace identifier
unstable status bit (RTIUV), which is
dependent on the Trace Identifier Mode. In
Mode 1, the bit is set high when 8 trace
messages mismatching against their immediate
predecessor message have been received
without a persistent message being detected. In
Mode 2, RTIUV is set low during the stable
state which is declared after having received the
same 16 byte trace message 3 consecutive times.

ptim UINT1 Monitors the receive path trace identifier
mismatch status bit (RTIMV) in Trace Identifier
Mode 1 to report if the accepted message
differs from the expected message.

au3paisc UINT1 Indicates reception of path AIS alarm in the
concatenation indication in the receive STS-1
(STM-0/AU3) or equivalent stream.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description

au3plopc UINT1 Indicates entry to LOPCON_state for the
receive STS-1 (STM-0/AU3) or equivalent
stream in the RPOP pointer interpreter.

pais UINT1 Indicates reception of path AIS alarm in the
receive stream.

lop UINT1 Indicates entry to the LOP_state in the RPOP
pointer interpreter state machine.

prdi UINT1 Indicates reception of path RDI alarm in the
receive stream.

erdiv UINT1 Reflect the current filtered value of the
enhanced RDI codepoint (G1 bits 5, 6, & 7) for
the receive SONET/SDH stream. Filtering is
controlled using rdi10 in the RPPS
configuration block.

lom UINT1 Reports the current state of the multiframe
framer monitoring the receive stream.

isf UINT1 Reports an incoming signal fail alarm.

uneq UINT1 Monitors the unequipped status bit (UNEQV),
which is dependent on the PSL Mode. In Mode
1, this bit is set high when the accepted path
signal label indicates that the path connection is
unequipped. When in PSL Mode 2, the UNEQV
is set high upon the reception of five
consecutive frames with an unequipped (00h)
label.

pslm UINT1 Monitors the receive path signal label mismatch
status bit (RPSLMV), which is dependent on the
PSL Mode. In Mode 1, this bit reports the
match/mismatch status between the expected
and the accepted path signal label. In Mode 2,
this bit reports the match/mismatch status
between the expected and the received path
signal label.

pslu UINT1 Monitors the receive path signal label unstable
status bit (RPSLUV) and is independent on the
PSL Mode. This bit reports the stable/unstable
status of the path signal label in the receive
stream.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID PMC-1991254 Issue 2

Field Name Field Type Field Description

dropGenSig UINT1 Indicates if the partial pseudo random sequence
(PRBS) begin generated is correctly aligned
with the partial PRBS begin generated in the
master generator.

dropMonSig UINT1 Indicates if the partial pseudo random sequence
(PRBS) being monitored for is correctly aligned
with the partial PRBS being monitored for by
the master generator.

dropMonSync UINT1 Reports when the monitor is out of
synchronization

Transmit Path Processing Slice (TPPS) Status

Table17: Transmit Path Status: sSPE_STATUS_TPPS

Field Name Field
Type

Field Description

isf UINT1 Reports an incoming signal failure detected.

au3lopc UINT1 Indicates entry to LOPCON_state for the
transmit STS-1 (STM-0/AU3) or equivalent
stream in the TPIP pointer interpreter.

au3paisc UINT1 Indicates reception of path AIS alarm in the
concatenation indication in the transmit STS-1
(STM-0/AU3) or equivalent stream.

lop UINT1 Indicates entry to the LOP_state in the TPIP
pointer interpreter state machine.

pais UINT Indicates reception of path AIS alarm in the
receive stream.

rdi UINT1 Indicates remote defect indication detected in
transmit stream.

lom UINT1 Reports the current state of the multiframe
framer monitoring the receive stream.

addGenSig UINT1 Indicates if the partial pseudo random sequence
(PRBS) begin generated is correctly aligned with
the partial PRBS begin generated in the master
generator.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

addMonSig UINT1 Indicates if the partial pseudo random sequence
(PRBS) being monitored for is correctly aligned
with the partial PRBS being monitored for by the
master generator

addMonSync UINT1 Reports when the monitor is out of
synchronization

addMonSync UINT1 Reports when the monitor is out of
synchronization

Statistic Counter Configuration (CFG_CNT)

This structure contains all the fields needed to configure the device counters. It is also
passed via the spectraCfgStats function call.

Table 16: Counters Config: sSPE_CFG_CNT

Field Name Field
Type

Field Description

sopBlkBip UINT1 Enables the accumulating of section block BIP
errors.

When non-zero, one or more errors in the
section BIP-8 byte (B1) results in a single error
accumulated in the B1 error counter.

When zero, all errors in the B1 byte are
accumulated in the B1 error counter.

lopBlkRei UINT1 Controls the accumulation of REI's.

When non-zero, and the REI has a value
between 1 and 4, the REI event counter is
incremented for each set REI bit. If the REI has
value greater than 4, and is valid, the REI
counter is only incremented by 4.

When zero, the REI event counter is
incremented for each and every REI bit that
occurs during that frame. The counter may be
incremented up to 96 times. The REI counter is
not incremented for invalid REI codewords.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID PMC-1991254 Issue 2

Field Name Field
Type

Field Description

lopBlkBip UINT1 Controls the accumulation of B2 errors.

When non-zero, the B2 error event counter is
incremented only once per frame whenever one
or more B2 bit errors occur during that frame.

When zero, the B2 error event counter is
incremented for each B2 bit error that occurs
during that frame (the counter can be
incremented up to 96 times per frame).

rppsMonrs[4][3] UINT1 When non-zero, selects the receive side pointer
justification events counters to monitor the
receive stream directly.

When zero, the counters accumulates pointer
justification events on the DROP bus.

rppsBlkBip[4][3] UINT1 When non-zero, indicates that path BIP-8
errors are to be reported and accumulated on a
block basis. A single BIP error is accumulated
and reported to the return transmit path
overhead processor if any of the BIP-8 results
indicates a mismatch.

When zero, BIP-8 errors are accumulated on a
bit basis.

rppsBlkRei[4][3] UINT1 When non-zero, block REI indicates that path
REI counts are to be reported and accumulated
on a block basis. A single REI error is
accumulated if the received REI code is
between 1 and 8 inclusive.

When zero, REI errors are accumulated
literally.

Statistic Counters (CNT)

This structure, as well as its component structures, is being used by the statistics
collection APIs to retrieve the device counts. The user can either collect all statistics at
once by using spectraGetCnt, or collect statistics from individual blocks using
spectraGetCntSOP, spectraGetCntLOP, spectraGetCntRPPS,
spectraGetCntTPPS, and/or spectraGetCntPJ.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID PMC-1991254 Issue 2

Table 17: Statistic Counters: sSPE_STAT_CNT

Field Name Field Type Field Description

cntSOP sSPE_STAT_CNT_SOP Statistics counters of the Section
Overhead (SOH)

cntLOP sSPE_STAT_CNT_LOP Statistics counters of the Line
Overhead (LOH)

cntRPPS[4][3] sSPE_STAT_CNT_RPPS Statistics counters of the Receive Path
Overhead (RPOH)

cntTPPS[4][3] sSPE_STAT_CNT_TPPS Statistics counters of the Transmit Path
Overhead (TPOH)

cntPJ[4][3] sSPE_STAT_CNT_PJ Statistics counters of the Pointer
Justifications

Section Overhead (SOP) Statistics Counters

Table 18: Section Overhead Statistics Counters: sSPE_STAT_CNT_SOP

Field Name Field Type Field Description

sopBip UINT4 Section BIP errors counter

Line Overhead (LOP) Statistics Counters

Table 19: Line Overhead Statistic Counters: sSPE_STAT_CNT_LOP

Field Name Field Type Field Description

lopBip UINT4 Line BIP errors counter

lopRei UINT4 Line REI error counter

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID PMC-1991254 Issue 2

Receive Path Overhead (RPOH) Statistics Counters

Table 20: SPECTRA-622 Receive Path Processing Statistics Counters:
sSPE_STAT_CNT_RPPS

Field Name Field Type Field Description

rppsBip UINT4 Path BIP error counter

rppsRei UINT4 Path REI error counter

rppsDPGMPrse UINT4 Number of PRBS byte errors detected since
the last accumulation interval. Errors are
only accumulated in the synchronized state
and each PRBS data byte can have a
maximum of 1 errors.

Transmit Path Overhead (TPOH) Statistics Counters

Table 21: Transmit Path Processing Statistics Counters: STAT_CNT_TPPS

Field Name Field Type Field Description

tppsAPGMPrse UINT4 Number of PRBS byte errors detected since
the last accumulation interval. Errors are
only accumulated in the synchronized state
and each PRBS data byte can have a
maximum of 1 errors.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID PMC-1991254 Issue 2

Pointer Justification Statistics Counters

Table 22: Pointer Justification Statistics Counters: STAT_CNT_PJ

Field Name Field Type Field Description

rppsPosJust UINT4 Positive RPPS pointer justification event
counter

rppsNegJust UINT4 Negative RPPS pointer justification event
counter

tppsPosJust UINT4 Positive TPPS pointer justification event
counter

tppsNegJust UINT4 Negative TPPS pointer justification event
counter

4.4 Structures Passed Through RTOS Buffers

Interrupt Service Vector: ISV

This block is used in two ways. First it is used to determine the size of buffer required by
the RTOS for use in the driver. Second it is the template for data that is captured during
ISR processing and sent to the Deferred Processing Routine (DPR).

Table 23: Interrupt Service Vector: sSPE_ISV

Field Name Field Type Field Description
deviceHandle sSPE_HNDL Handle to the device in cause
mask sSPE_MASK sSPE_MASK

Deferred Processing Vector: DPV

This block is used in two ways. First it is used to determine the size of buffer required by
the RTOS for use in the driver. Second it is the template for data that is assembled by the
DPR and sent to the application code.

Note: the application code is responsible for returning this buffer to the RTOS buffer
pool.

 Spectra-622 (PM5313) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID PMC-1991254 Issue 2

Table 24: Deferred Processing Vector: sSPE_DPV

Field Name Field Type Field Description
event SPE_DPR_EVENT Event being reported
cause UINT2 Reason for the Event

4.5 Global Variable

Most variables within the driver are not meant to be used by the application code. There
is one, however, that can be of great use to the application code:

spectraMdb: A global pointer to the Module Data Block (MDB). This global variable is
to be considered read only by the application.

• errModule: This structure element is used to store an error code that specifies the
reason for an API function’s failure. The field is only valid when the function in
question returns a SPE_FAILURE value.

• stateModule: This structure element is used to store the Module state.

• pddb[]: An array of pointers to the individual Device Data Blocks. The USER is
cautioned that a DDB is only valid if the ‘valid’ flag is set. Note that the DDBs are
in no particular order.

° errDevice: This structure element is used to store an error code that specifies
the reason for an API function’s failure. The field is only valid when the function
in question returns a SPE_FAILURE value.

° stateDevice: This structure element is used to store the Device state.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID PMC-1991254 Issue 2

5 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
SPECTRA-622 driver Application Programming Interface (API).

5.1 Module Initialization

Opening the Driver Module: spectraModuleOpen

This function performs module level initialization of the device driver. This involves
allocating all of the memory needed by the driver and initializing the Module Data Block
(MDB) with the passed Module Initialization Vector (MIV).

Prototypes INT4 spectraModuleOpen(sSPE_MIV *pmiv, sSPE_MDB** ppmdb)

Inputs pmiv : (pointer to) Module Initialization Vector
ppmdb : (pointer to) pointer to the Module Data Block

Outputs ppmdb : pointer to the Module Data Block

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States START

Side Effects Changes MODULE state to IDLE

Closing the Driver Module: spectraModuleClose

This function performs module level shutdown of the driver. This involves deleting all
devices being controlled by the driver (by calling spectraDelete for each device) and
de-allocating the MDB.

Prototype INT4 spectraModuleClose(void)

Inputs None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ALL STATES

Side Effects Changes MODULE state to START

5.2 Module Activation

Starting the Driver Module: spectraModuleStart

This function performs module level startup of the driver. This involves allocating
semaphores and timers, initializing buffers and installing the ISR handler and DPR task.
Upon successful return of this function the driver is ready to add devices.

Prototype INT4 spectraModuleStart(void)

Inputs None

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE

Side Effects Changes MODULE state to READY

Stopping the Driver Module: spectraModuleStop

This function performs module level shutdown of the driver. This involves deleting all
devices being controlled by the driver and removing the ISR handler and DPR task.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID PMC-1991254 Issue 2

Prototype INT4 spectraModuleStop(void)

Inputs None

Outputs None

Returns Success = SPE_SUCCESS
Failure = < SPECTRA-622 ERROR CODE>

Valid States READY

Side Effects Changes MODULE state to IDLE

5.3 Profile Management

Initialization Profile

Creating an Initialization Profile: spectraAddInitProfile

This function creates an initialization profile that is stored by the driver. A device can
now be initializaed by simply passing an initialization profile number.

Prototype INT4 spectraAddInitProfile(sSPE_INIT_PROF *pProfile, UINT2
*pProfileNum)

Inputs pProfile : (pointer to) initialization profile being added
pProfileNum : (pointer to) profile number to be assigned by

 the driver

Outputs pProfileNum : profile number assigned by the driver

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID PMC-1991254 Issue 2

Retrieving an Initialization Profile: spectraGetInitProfile

This function retrieves the contents of the initialization profile.

Prototype INT4 spectraGetInitProfile(UINT2 profileNum, sSPE_INIT_PROF
*pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

Deleting an Initialization Profile: spectraDeleteInitProfile

This function deletes an initialization profile given its profile number.

Prototype INT4 spectraDeleteInitProfile(UINT2 profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID PMC-1991254 Issue 2

Diagnostic Profile

Creating a Diagnostic Profile: spectraAddDiagProfile

This function creates a diagnostic profile that is stored by the driver. Passing the
diagnostic profile number starts a diagnostic.

Prototype INT4 spectraAddDiagProfile(sSPE_DIAG_PROF *pProfile, UINT2
*pProfileNum)

Inputs pProfile : (pointer to) diagnostic profile being added
pProfileNum : (pointer to) profile number

Outputs pProfileNum : profile number assigned by the driver

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

Retrieving a Diagnostic Profile: spectraGetDiagProfile

This function retrieves the contents of a diagnostic profile.

Prototype INT4 spectraGetDiagProfile(UINT2 profileNum, sSPE_DIAG_PROF
*pProfile)

Inputs profileNum : diagnostic profile number
pProfile : (pointer to) diagnostic profile

Outputs pProfile : contents of the corresponding profile

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID PMC-1991254 Issue 2

Valid States IDLE, READY

Side Effects None

Deleting a Diagnostic Profile: spectraDeleteDiagProfile

This function deletes a diagnostic profile.

Prototype INT4 spectraDeleteDiagProfile(UINT2 profileNum)

Inputs profileNum : diagnostic profile number

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

5.4 Device Addition and Deletion

Adding a Device: spectraAdd

Verifies the presence of a new device in the hardware then returns a handle back to the
user. The device handle is passed as a parameter of most of the Device API Functions. It
is used by the driver to identify the device on which the operation is to be performed.

Prototype sSPE_HNDL spectraAdd(void *usrCtxt, UINT1 *baseAddr, INT4
**pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pperrDevice : (pointer to) an area of memory

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID PMC-1991254 Issue 2

Outputs pperrDevice : (pointer to) errDevice (inside the DDB)

Returns Device handle (to be used as an argument to most of the SPECTRA-622
APIs) or NULL pointer in case of an error

Valid States READY

Side Effects Changes the DEVICE state to PRESENT

Deleting a Device: spectraDelete

This function is used to remove the specified device from the list of devices being
controlled by the SPECTRA-622 driver. Deleting a device involves clearing the DDB for
that device and releasing its associated device handle.

Prototype INT4 spectraDelete(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID PMC-1991254 Issue 2

5.5 Device Initialization

Initializing a Device: spectraInit

This function initializes the Device Data Block (DDB) that is associated with that device
during spectraAdd. It applies a reset to the device and configures it according to the
DIV passed by the Application. If the DIV is passed as a NULL the profile number is
used. A profile number of zero indicates that all the register bits are to be left in their
default state (after a soft reset). Note that the profile number is ignored UNLESS the
passed DIV is NULL.

Prototype INT4 spectraInit(sSPE_HNDL deviceHandle, sSPE_DIV *pdiv, UINT2
profileNum)

Inputs deviceHandle : device Handle (from spectraAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (ignored if pdiv is NULL)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States PRESENT

Side Effects Changes DEVICE state to INACTIVE

Updating the Configuration of a Device: spectraUpdate

Updates the configuration of the device as well as the Device Data Block (DDB)
associated with that device according to the DIV passed by the Application. The only
difference between spectraUpdate and spectraInit is that no soft reset will be
applied to the device.

Prototype INT4 spectraInit(sSPE_HNDL deviceHandle, sSPE_DIV *pdiv, UINT2
profileNum)

Inputs deviceHandle : device Handle (from spectraAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (ignored if pdiv is NULL)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States PRESENT

Side Effects Changes DEVICE state to INACTIVE

Resetting a Device: spectraReset

This function applies a software reset to the SPECTRA-622 device. It also resets all the
DDB contents (except for the user context). This function is typically called before re-
initializing the device.

Prototype void spectraReset(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns None

Valid States ACTIVE, INACTIVE

Side Effects Changes DEVICE state to PRESENT

5.6 Device Activation and De-Activation

Activating a Device: spectraActivate

This function restores the state of a device after it has been deactivated. Interrupts may be
re-enabled after deactivation.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID PMC-1991254 Issue 2

Prototype INT4 spectraActivate(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States Inactive

Side Effects Change the DEVICE state to ACTIVE

DeActivating a Device: spectraDeActivate

This function de-activates the device from operation. In the process, interrupts are
masked and the device is put into a quiet state via enable bits.

Prototype INT4 spectraDeActivate(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Changes the DEVICE state to INACTIVE

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID PMC-1991254 Issue 2

5.7 Device Reading and Writing

Reading from a Device Register: spectraRead

This function can be used to read a register of a specific SPECTRA-622 device by
providing the register number. This function derives the actual address location based on
the device handle and register number inputs. It then reads the contents of this address
location using the system specific macro, sysSpectraRead.

Note: A failure to read returns a zero and any error indication is written to the DDB.

Prototype UINT1 spectraRead(sSPE_HNDL deviceHandle, UINT2 regNum)

Inputs deviceHandle : device Handle (from spectraAdd)
regNum : register number

Outputs ERROR code written to the DDB

Returns Success = the register value
Failure = 0x00

Valid States ALL DEVICE STATES

Side Effects May affect registers that change after a read operation

Writing to a Device: spectraWrite

This function can be used to write to a register of a specific SPECTRA-622 device by
providing the register number. The function derives the actual address location based on
the device handle and register number inputs. It then writes the contents of this address
location using the system specific macro sysSpectraWrite.

Note: A failure to write returns a zero and any error indication is written to the DDB.

Prototype UINT1 spectraWrite(sSPE_HNDL deviceHandle, UINT2 regNum, UINT1 value)

Inputs deviceHandle : device Handle (from spectraAdd)
regNum : register number
value : value to be written

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID PMC-1991254 Issue 2

Outputs ERROR code written to the DDB

Returns Success = previous value
Failure = 0x00

Valid States ALL DEVICE STATES

Side Effects May change the configuration of the Device

Reading a Block of Registers: spectraReadBlock

This function can be used to read a register block of a specific SPECTRA-622 device by
providing the starting register number, and the size to read. The function derives the
actual start address location based on the device handle and starting register number
inputs. It then reads the contents of this data block using multiple calls to the system
specific macro and sysSpectraRead.

Note: Any error indication is written to the DDB. It is the USER’s responsibility to
allocate enough memory for the block read.

Prototype void spectraReadBlock(sSPE_HNDL deviceHandle, UINT2 startRegNum,
UINT2 size, UINT1 *pblock)

Inputs deviceHandle : device Handle (from spectraAdd)
startRegNum : starting register number
size : size of the block to read
pblock : (pointer to) the block to read

Outputs ERROR code written to the DDB
pblock : (pointer to) the block read

Returns None

Valid States ALL DEVICE STATES

Side Effects May affect registers that change after a read operation

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID PMC-1991254 Issue 2

Writing a Block of Registers: spectraWriteBlock

This function can be used to write to a register block of a specific SPECTRA-622 device
by providing the starting register number and the block size. The function derives the
actual starting address location based on the device handle and starting register number
inputs. It then writes the contents of this data block using multiple calls to the system
specific macro and sysSpectraWrite. A bit from the passed block is only modified in
the device’s registers if the corresponding bit is set in the passed mask.

Note: Any error indication is written to the DDB

Prototype void spectraWriteBlock(sSPE_HNDL deviceHandle, UINT2 startRegNum,
UINT2 size, UINT1 *pblock, UINT1 *pmask)

Inputs deviceHandle : device Handle (from spectraAdd)
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs ERROR code written to the DDB

Returns None

Valid States ALL DEVICE STATES

Side Effects May change the configuration of the Device

5.8 Transport Overhead Controller (TOC)

Modifying the Z0 Byte: spectraTOCWriteZ0

This function writes the Z0 byte into the transmit transport overhead.

Prototype INT4 spectraTOCWriteZ0(sSPE_HNDL deviceHandle, UINT1 Z0)

Inputs deviceHandle : device Handle (from spectraAdd)
Z0 : Z0 byte to write

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Modifying the S1 Byte: spectraTOCWriteS1

This function writes the S1 byte into the transmit transport overhead.

Prototype INT4 spectraTOCWriteS1(sSPE_HNDL deviceHandle, UINT1 S1)

Inputs deviceHandle : device Handle (from spectraAdd)
S1 : S1 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Reading the S1 Byte: spectraTOCReadS1

This function reads the S1 byte received in the transport overhead of the received stream.

Prototype INT4 spectraTOCReadS1(sSPE_HNDL deviceHandle, UINT1
*pS1)

Inputs deviceHandle : device Handle (from spectraAdd)
pS1 : (pointer to) S1 byte

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID PMC-1991254 Issue 2

Outputs pS1 : S1 byte read

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.9 Receive / Transmit Section Overhead Processor (RSOP/TSOP)

Forcing Out-of-Frame: spectraSOPForceOOF

When the enable flag is set, this function forces the Receive section overhead processor
out-of-frame. When the enable flag is not set, the function resumes normal processing.

Prototype INT4 spectraSOPForceOOF(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop forcing OOF

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID PMC-1991254 Issue 2

Inserting Line AIS: spectraSOPInsertLineAIS

When the enable flag is set, this function forces a Line-AIS insertion. When the enable
flag is not set, the function resumes normal processing.

Prototype INT4 spectraSOPInsertLineAIS(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop Line-AIS insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the A1 Byte: spectraSOPDiagFB

This function enables the insertion of a single bit error continuously in the most
significant bit (bit 1) of the A1 section overhead framing byte. A1 bytes are set to 76H
instead of F6H.

Prototype INT4 spectraSOPDiagFB(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID PMC-1991254 Issue 2

Forcing Errors in the B1 Byte: spectraSOPDiagB1

This function enables insertion of bit errors continuously in the B1 section overhead byte.
The B1 byte value is inverted.

Prototype INT4 spectraSOPDiagB1(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Loss-Of-Signal: spectraSOPDiagLOS

This function enables the insertion of zeros in the transmit outgoing stream.

Prototype INT4 spectraSOPDiagLOS(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID PMC-1991254 Issue 2

5.10 SONET / SDH Section Trace Buffer (SSTB)

Retrieving and Setting the Section Trace Messages:
spectraSectionTraceMsg

This function retrieves and sets the section trace message (J0) in the Sonet/SDH Section
Trace Buffer.

Note: It is the USER’s responsibility to ensure that the message pointer points to an area
of memory large enough to hold the returned data.

Prototype INT4 spectraSectionTraceMsg(sSPE_HNDL deviceHandle, UINT2 type,
UINT1* pJ0)

Inputs deviceHandle : device Handle (from spectraAdd)
type : type of access

0 = write tx section trace
1 = read rx accepted section trace
2 = read rx captured section trace
3 = write rx expected section trace

pJ0 : (pointer to) the section trace message

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.11 Receive / Transmit Line Overhead Processor (RLOP/TLOP)

Inserting Line Remote Defect Indication: spectraLOPInsertLineRDI

This function enables the insertion of a transmit line remote defect indication (RDI). The
Line RDI is inserted by transmitting the code 110 in bit positions 6, 7, and 8 of the K2
byte.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID PMC-1991254 Issue 2

Prototype INT4 spectraLOPInsertLineRDI(sSPE_HNDL deviceHandle, UINT2
enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop Line RDI insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the B2: spectraLOPDiagB2

This function enables the insertion of bit errors continuously in each of the line BIP-8
bytes (B2 bytes). Each bit of every B2 is inverted.

Prototype INT4 spectraLOPDiagB2(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop B2 error insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID PMC-1991254 Issue 2

Reading the Received K1 and K2 Bytes: spectraLOPReadK1K2

This function reads the K1 and K2 bytes from the received line overhead.

Prototype INT4 spectraLOPReadK1K2(sSPE_HNDL deviceHandle, UINT1 *pK1, UINT1
*pK2)

Inputs deviceHandle : device Handle (from spectraAdd)
pK1 : (pointer to) K1 byte
pK2 : (pointer to) K2 byte

Outputs pK1 : K1 byte read
pK2 : K2 byte read

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Transmitted K1 and K2 Bytes: spectraLOPWriteK1K2

This function writes the K1 and K2 bytes into the transmit line overhead.

Prototype INT4 spectraLOPWriteK1K2(sSPE_HNDL deviceHandle, UINT1 K1,
UINT1 K2)

Inputs deviceHandle : device Handle (from spectraAdd)
K1 : K1 byte to write
K2 : K2 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID PMC-1991254 Issue 2

Side Effects None

5.12 Receive Path Processing Slice (RPPS)

Retrieving and Setting the Path Trace Messages:
spectraPathTraceMsg

This function retrieves and sets the current path trace message (J1) in the Sonet/SDH Path
Trace Buffer. Note: It is the USER’s responsibility to make sure that the message pointer
points to an area of memory large enough to hold the returned data.

Prototype INT4 spectraPathTraceMsg(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 type, UINT1* pJ1)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
type : type of access

0 = write tx path trace
1 = read rx accepted path trace
2 = read rx captured path trace
3 = write rx expected path trace

pJ1 : (pointer to) the path trace message

Outputs pJ1 : updated path trace message

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Loss-Of-Pointer: spectraRPPSDiagLOP

This function forces the downstream pointer processing to enter the Loss of Pointer
(LOP) state. It does so by inverting the new data flag (NDF) field of the payload pointer
that is inserted in the DROP bus.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID PMC-1991254 Issue 2

Prototype INT4 spectraRPPSDiagLOP(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop NDF inversion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the H4 Byte: spectraRPPSDiagH4

This function enables the inversion of the multiframe indicator (H4) byte in the DROP
bus. An inversion forces an out-of-multiframe alarm in the downstream circuitry. This
can only occur when the SPE (VC) is used to carry virtual tributary (VT) or tributary unit
(TU) based payloads.

Prototype INT4 spectraRPPSDiagH4(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop H4 inversion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID PMC-1991254 Issue 2

Side Effects None

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS

This function enables the insertion of tributary path AIS on the DROP bus for VT1.5
(TU11), VT2 (TU12), VT3 and VT6 (TU2) payloads. Columns in the DROP bus carrying
tributary traffic are set to all ones. The pointer bytes (H1, H2, and H3), the path overhead
column, and the fixed stuff columns remain unaffected. Note: This is not applicable for
TU3 tributary payloads.

Prototype INT4 spectraRPPSInsertTUAIS(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop TUAIS

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing DS3 AIS: spectraRPPSDs3AisGen

Forces generation of DS3 AIS. Note: Any data on the STS-1 (STM-0/AU3) SPE is then
lost.

Prototype INT4 spectraRPPSDs3AisGen(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID PMC-1991254 Issue 2

enable : flag to start/stop DS3 AIS generation

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.13 Transmit Path Processing Slice (TPPS)

Forcing Path AIS: spectraTPPSInsertPAIS

This function enables the insertion of the path alarm indication signal (PAIS) in the
transmit stream. The synchronous payload envelope and the pointer bytes (H1 – H3) are
set to all ones.

Prototype INT4 spectraTPPSInsertPAIS(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop PAIS insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID PMC-1991254 Issue 2

Forcing Errors in the B3 Byte: spectraTPPSDiagB3

This function enables the inversion of the path BIP-8 byte (B3) in the transmit stream.
The B3 byte is inverted causing the insertion of eight path BIP-8 errors per frame.

Prototype INT4 spectraTPPSDiagB3(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop B3 inversion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing a Pointer Value: spectraTPPSForceTxPtr

This function enables the insertion of the pointer value passed in argument into the H1
and H2 bytes of the transmit stream. As a result, the upstream payload mapping circuitry
and a valid SPE can continue functioning and generating normally.

Prototype INT4 spectraTPPSForceTxPtr(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable, UINT2 aptr)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop generation
aptr : pointer value to insert in (H1,H2)

Outputs None

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the New Data Flag Bits: spectraTPPSInsertNDF

This function enables the insertion of the passed new data flag bits (NDF[3:0]) in the
NDF bit positions.

Prototype INT4 spectraTPPSInsertNDF(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable, UINT1 ndf)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop NDF insertion
ndf : NDF value

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Path Remote Error Indication Count:
spectraTPPSInsertPREI

This function inserts the path remote error indication count passed in argument inside the
path status byte.

Prototype INT4 spectraTPPSInsertPREI(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 PREI)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID PMC-1991254 Issue 2

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
prei : PREI value

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Errors in the H4 Byte: spectraTPPSDiagH4

This function enables the inversion of the multiframe indicator (H4) byte in the
TRANSMIT stream. This forces an out of multiframe alarm in the downstream circuitry
when the SPE (VC) is used to carry virtual tributary (VT) or tributary unit (TU) based
payloads.

Prototype INT4 spectraTPPSDiagH4(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop H4 inversion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID PMC-1991254 Issue 2

Forcing Tributary Path AIS: spectraRPPSInsertTUAIS

This function enables the insertion of tributary path AIS in the transmit stream for VT1.5
(TU11), VT2 (TU12), VT3 and VT6 (TU2) payloads. Columns in the transmit stream
carrying tributary traffic are set to all ones. The pointer bytes (H1, H2, and H3); the path
overhead column; and the fixed stuff columns are unaffected. Note: This is not applicable
for TU3 tributary payloads.

Prototype INT4 spectraTPPSInsertTUAIS(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop TUAIS insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing DS3 AIS: spectraTPPSDs3AisGen

This function forces the generation of a DS3 AIS. Note: Any data on the STS-1 (STM-
0/AU3) SPE is then lost.

Prototype INT4 spectraTPPSDs3AisGen(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : flag to start/stop DS3 AIS generation

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the J1 Byte: spectraTPPSWriteJ1

This function writes the J1 byte into the transmit path overhead

Prototype INT4 spectraTPPSWriteJ1(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 J1)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
J1 : J1 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the C2 Byte: spectraTPPSWriteC2

This function writes the C2 byte into the transmit path overhead.

Prototype INT4 spectraTPPSWriteC2(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 C2)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID PMC-1991254 Issue 2

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
C2 : C2 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the F2 Byte: spectraTPPSWriteF2

This function writes the F2 byte into the transmit path overhead.

Prototype INT4 spectraTPPSWriteF2(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 F2)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
F2 : F2 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID PMC-1991254 Issue 2

Writing the Z3 Byte: spectraTPPSWriteZ3

This function writes the Z3 byte into the transmit path overhead.

Prototype INT4 spectraTPPSWriteZ3(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 Z3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
Z3 : Z3 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Writing the Z4 Byte: spectraTPPSWriteZ4

This function writes the Z4 byte into the transmit path overhead.

Prototype INT4 spectraTPPSWriteZ4(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3, UINT1 Z4)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
Z4 : Z4 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID PMC-1991254 Issue 2

Side Effects None

Writing the Z5 Byte: spectraTPPSWriteZ5

This function writes the Z5 byte into the transmit path overhead.

Prototype INT4 spectraTPPSWriteZ5(sSPE_HNDL deviceHandle UINT2 stm1, UINT2
au3, UINT1 Z5)

Inputs deviceHandle : device Handle(from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
Z5 : Z5 byte to write

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.14 Ring Control Ports (RING)

Sending Line AIS Maintenance Signal: spectraRINGLineAISControl

This function forces a mate SPECTRA-622 to send the line AIS maintenance signal.

Prototype INT4 spectraRINGLineAISControl(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop Line-AIS insertion

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Sending Line RDI Maintenance Signal: spectraRINGLineRDIControl

This function forces a mate SPECTRA-622 to send the line RDI maintenance signal.

Prototype INT4 spectraRINGLineRDIControl(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : flag to start/stop Line-RDI insertion

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.15 WAN Synchronization Controller (WANS)

Forcing Phase Reacquisitions: spectraWANSForceReac

This function forces a phase reacquisition of the Phase Detector.

Prototype INT4 spectraWANSForceReac(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID PMC-1991254 Issue 2

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.16 DROP Bus and ADD Bus PRBS Monitor and Generator (DPGM &
APGM)

Configuring Diagnostics: spectraDiagCfg

This function configures the DPGM and APGM for diagnostics in accordance with the
profile passed by the Application. Note: The DPGM and APGM are both disabled by
default unless this function is called. A profile number of zero indicates a NULL profile.
All register bits are left unchanged.

Prototype INT4 spectraDiagCfg(sSPE_HNDL deviceHandle, UINT2 profileNum)

Inputs deviceHandle : device Handle (from spectraAdd)
profileNum : profile number

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May insert a pseudo random byte sequence inside the payload.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID PMC-1991254 Issue 2

5.17 DPGM Functions

Forcing Generation of a New PRBS: spectraDPGMGenRegen

This function reinitializes the generator LFSR and regenerates the pseudo random bit
sequence (PRBS) from the known reset state. The LFSR is dependent on the sequence
number. This automatically forces all slaves to reset at the same time.

Prototype INT4 spectraDPGMGenRegen(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Bit Errors: spectraDPGMGenForceErr

This function forces bit errors in the inserted pseudo random bit sequence (PRBS).
Thereafter, the MSB of the PRBS is inverted, inducing a single bit error.

Prototype INT4 spectraDPGMGenForceErr(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing a Resynchronization: spectraDPGMonResync

This function forces the resynchronization of the monitor to the incoming pseudo random
bit sequence (PRBS). The monitor will go out of synchronization and begin re-
synchronizing the incoming PRBS payload. This will automatically force all slaves to
resynchronize at the same time.

Prototype INT4 spectraDPGMMonResync(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID PMC-1991254 Issue 2

5.18 APGM Functions

Forcing Generation of a New PRBS: spectraAPGMGenRegen

This function re-initializes the generator LFSR and begins regenerating the pseudo
random bit sequence (PRBS) from the known reset state. The LFSR is dependent on the
sequence number. This automatically forces all slave to reset at the same time.

Prototype INT4 spectraAPGMGenRegen(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Bit Errors: spectraAPGMGenForceErr

This function forces bit errors in the inserted pseudo random bit sequence (PRBS).
Thereafter, the MSB of the PRBS is inverted, inducing a single bit error.

Prototype INT4 spectraAPGMGenForceErr(sSPE_HNDL deviceHandle, UINT2 stm1,
UINT2 au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing a Resynchronization: spectraAPGMonResync

This function forces resynchronization of the monitor to the incoming pseudo random bit
sequence (PRBS). This process will automatically force all slaves to resynchronize at the
same time.

Prototype INT4 spectraAPGMMonResync(sSPE_HNDL deviceHandle, UINT2 stm1, UINT2
au3)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.19 Interrupt Service Functions

Getting the Interrupt Mask: spectraGetMask

This function returns the contents of the interrupt mask registers of the SPECTRA-622
device.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID PMC-1991254 Issue 2

Prototype INT4 spectraGetMask(sSPE_HNDL deviceHandle, sSPE_MASK *pmask)

Inputs deviceHandle : device Handle (from spectraAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Setting the Interrupt Mask: spectraSetMask

This function sets the contents of the interrupt mask registers of the SPECTRA-622
device.

Prototype INT4 spectraSetMask(sSPE_HNDL deviceHandle, sSPE_MASK *pmask)

Inputs deviceHandle : device Handle (from spectraAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May change the operation of the ISR / DPR

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID PMC-1991254 Issue 2

Clearing the Interrupt Mask: spectraClearMask

This function clears the individual interrupt bits and registers in the SPECTRA-622
device. Any bits that are set in the passed structure are cleared in the associated registers.

Prototype INT4 spectraClearMask(sSPE_HNDL deviceHandle, sSPE_MASK *pmask)

Inputs deviceHandle : device Handle (from spectraAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May change the operation of the ISR / DPR

Polling Interrupt Status Registers: spectraPoll

Commands the Driver to poll the interrupt registers in the Device. The call will fail unless
the device is initialized in polling mode.

Prototype INT4 spectraPoll(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States SPE_ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID PMC-1991254 Issue 2

Interrupt Service Routine: spectraISR

This function reads the state of the interrupt registers in the SPECTRA-622 and stores
them into an ISV. It performs whatever functions are needed to clear the interrupt. This
routine is called by the application code from within sysSpectraISRHandler.

Prototype void *spectraISR(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns (pointer to) ISV buffer (to send to the DPR) or NULL (pointer)

Valid States ACTIVE

Side Effects None

Deferred Processing Routine: spectraDPR

This function acts on data contained in an ISV. It creates a DPV that invokes application
code callbacks (if defined and enabled), and possibly other performing linked actions.
This function is called from within the application function sysSpectraDPRTask.

Prototype void spectraDPR(sSPE_ISV *pisv)

Inputs pisv : (pointer to) ISV buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID PMC-1991254 Issue 2

5.20 Alarm, Status and Statistics Functions

Configuring Statistical Counts: spectraCfgStats

This function configures all the statistical counts.

Prototype INT4 spectraCfgStats(sSPE_HNDL deviceHandle,
sSPE_CFG_CNT cfgCnt)

Inputs deviceHandle : device Handle (from spectraAdd)
cfgCnt : counters configuration block

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Statistics Collection Routine: spectraGetCnt

This function retrieves all the device counts.Note: It is the USER’s responsibility to
ensure that the structure points to an area of memory large enough to hold a copy of the
counter structure.

Prototype INT4 spectraGetCnt(sSPE_HNDL deviceHandle,
sSPE_STAT_CNT *pcnt)

Inputs deviceHandle : device Handle (from spectraAdd)
pcnt : (pointer to) allocated memory

Outputs pcnt : current device counts

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Counter for SOP Block: spectraGetCntSOP

This function retrieves the specified device counts block.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetCntSOP(sSPE_HNDL deviceHandle,
sSPE_STAT_CNT_SOP *pcntSOP)

Inputs deviceHandle : device Handle (from spectraAdd)
pcntSOP : (pointer to) allocated memory

Outputs pcntSOP : current device counts

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Counter for LOP Block: spectraGetCntLOP

This function retrieves the specified device counts block.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID PMC-1991254 Issue 2

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetCntLOP(SPE_HNDL deviceHandle,
sSPE_STAT_CNT_LOP *pcntLOP)

Inputs deviceHandle : device Handle (from spectraAdd)
pcntLOP : (pointer to) allocated memory

Outputs pcntLOP : current device counts

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Counter for RPPS Block: spectraGetCntRPPS

This function retrieves the specified device counts block.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetCntRPPS(sSPE_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, sSPE_STAT_CNT_RPPS *pcntRPPS)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
pcntRPPS : (pointer to) allocated memory

Outputs pcntRPPS : current device counts

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Counter for TPPS Block: spectraGetCntTPPS

This function retrieves the specified device counts block.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetCntTPPS(sSPE_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, sSPE_STAT_CNT_TPPS *pcntTPPS)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
pcntTPPS : (pointer to) allocated memory

Outputs pcntTPPS : current device counts

Returns Success = SPE_SUCCESS
Failure = <SPECTRA- 622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Counter for Pointer Justifications: spectraGetCntPJ

This function retrieves the specified device counts block.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID PMC-1991254 Issue 2

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetCntTPPS(sSPE_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, sSPE_STAT_CNT_PJ *pcntPJ)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
pcntPJ : (pointer to) allocated memory

Outputs pcntPJ : current device counts

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Alarm Status: spectraGetStatus

This function retrieves the current alarm status by reading all the alarm status registers.

Note: It is the USER’s responsibility to ensure that the structure points to an area of
memory large enough to hold a copy of the counter structure.

Prototype INT4 spectraGetStatus(sSPE_HNDL deviceHandle,
sSPE_STATUS *palm)

Inputs deviceHandle : device Handle (from spectraAdd)
palm : (pointer to) allocated memory

Outputs palm : current alarm status

Returns Success = SPE_SUCCESS

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID PMC-1991254 Issue 2

Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Retrieving Alarm Status for IO block: spectraGetStatusIO

This function reads a given alarm status from the alarm status registers.

Prototype INT4 spectraGetStatusIO(sSPE_HNDL deviceHandle,
sSPE_STATUS_IO *palmIO)

Inputs deviceHandle : device Handle (from spectraAdd)
palmIO : (pointer to) allocated memory

Outputs palmIO : current alarm status

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects None

Retrieving Alarm Status for SOP block: spectraGetStatusSOP

This function reads a given alarm status from the alarm status registers.

Prototype INT4 spectraGetStatusSOP(sSPE_HNDL deviceHandle,
sSPE_STATUS_SOP *palmSOP)

Inputs deviceHandle : device Handle (from spectraAdd)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID PMC-1991254 Issue 2

palmSOP : (pointer to) allocated memory

Outputs palmSOP : current alarm status

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects None

Retrieving Alarm Status for LOP block: spectraGetStatusLOP

This function reads a given alarm status from the alarm status registers.

Prototype INT4 spectraGetStatusLOP(sSPE_HNDL deviceHandle,
sSPE_STATUS_LOP *palmLOP)

Inputs deviceHandle : device Handle (from spectraAdd)
palmLOP : (pointer to) allocated memory

Outputs palmLOP : current alarm status

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID PMC-1991254 Issue 2

Retrieving Alarm Status for RPPS block: spectraGetStatusRPPS

This function reads a given alarm status from the alarm status registers.

Prototype INT4 spectraGetStatusRPPSP(sSPE_HNDL deviceHandle,
sSPE_STATUS_RPPS *palmRPPS)

Inputs deviceHandle : device Handle (from spectraAdd)
palmRPPS : (pointer to) allocated memory

Outputs palmRPPS : current alarm status

Returns Success = SPE_SUCCESS
Failure = < SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects None

Retrieving Alarm Status for TPPS block: spectraGetStatusTPPS

This function reads a given alarm status from the alarm status registers.

Prototype INT4 spectraGetStatusTPPS(sSPE_HNDL deviceHandle,
sSPE_STATUS_TPPS *palmTPPS)

Inputs deviceHandle : device Handle (from spectraAdd)
palmTPPS : (pointer to) allocated memory

Outputs palmTPPS : current alarm status

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID PMC-1991254 Issue 2

Side Effects None

5.21 Device Diagnostics

Verifying Register Access: spectraTestReg

This function verifies the hardware access to the device registers by writing and reading
back values.

Prototype INT4 spectraTestReg(sSPE_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from spectraAdd)

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States PRESENT

Side Effects None

Clearing and Setting a Line Loopback: spectraLoopLine

This function clears and sets a Line Loopback (SLLE=1). The spectraLoopLine connects
the high speed receive data and clock to the high speed transmit data and clock, and can
be used for line side investigations (including clock recovery and clock synthesis). While
in this mode, the entire receive path is operating normally. Note: It is up to the USER to
perform any tests on the looped data.

Prototype INT4 spectraLoopLine(sSPE_HNDL deviceHandle, UINT2
enable)

Inputs deviceHandle : device Handle (from spectraAdd)

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID PMC-1991254 Issue 2

enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Clearing and Setting a Serial Loopback: spectraLoopSerialDiag

This function clears and sets a Serial Diagnostic Loopback (SDLE=1). It connects the
high speed transmit data and clock to the high speed receive data and clock. While in this
mode, the entire transmit path is operating normally and data is transmitted on the
TXD+/- outputs. Note: It is up to the USER to perform any tests on the looped data.

Prototype INT4 spectraLoopSerialDiag(sSPE_HNDL deviceHandle, UINT2
enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID PMC-1991254 Issue 2

Clearing and Setting a Parallel Loopback: spectraLoopParaDiag

This function clears and sets a parallel diagnostic loopback (PDLE=1). It connects the
byte wide transmit data and clock to the byte wide receive data and clock. While in this
mode, the entire transmit path is operating normally and data is transmitted on the
TXD+/- outputs. Note: It is up to the USER to perform any tests on the looped data.

Prototype INT4 spectraLoopParaDiag(sSPE_HNDL deviceHandle, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Clearing and Setting a System-Side Loopback:
spectraLoopSysSideLine

This function clears and sets a system-side line loopback (SLLBEN=1). It connects the
STS-1 (STM-0/AU3) or equivalent receive stream from the Receive Telecom bus Aligner
(RTAL) of the associated RPPS to the Transmit Telecom bus Aligner (TTAL) of the
corresponding TPPS. This mode can be used for line side investigations (including clock
recovery and clock synthesis) as well as path processing investigations. While in this
mode, the entire receive path is operating normally. The SPECTRA-622 may be
configured to support the system-side line loopback of up to twelve STS-1 (STM-0/AU3)
or equivalent receive streams. Note: It is up to the USER to perform any tests on the
looped data.

Prototype INT4 spectraLoopSysSideLine(sSPE_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID PMC-1991254 Issue 2

enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

Clearing and Setting a DS3 Line Loopback: spectraLoopDS3Line

This function clears and sets a DS3 line loopback (DS3LLBEN=1). It connects the DS3
receive stream from the DS3 Mapper DROP side (D3MD) of the associated RPPS to the
DS3 Mapper ADD side (D3MA) of the corresponding TPPS. The DS3ADDSEL bit in the
SPECTRA-622 TPPS Path and DS3 Configuration register of the TPPS must be set high.
This mode can be used for line side investigations (including clock recovery and clock
synthesis) as well as DS3 stream processing investigations. While in this mode, the entire
receive (DS3) path is operating normally. The SPECTRA-622 may be configured to
support the DS3 line loopback of up to twelve DS3 receive streams. Note: It is up to the
USER to perform any tests on the looped data.

Prototype INT4 spectraLoopDS3Line(sSPE_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from spectraAdd)
stm1 : STM-1 index
au3 : AU-3 index
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Valid States ACTIVE

Side Effects Will inhibit the flow of active data

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID PMC-1991254 Issue 2

5.22 Callback Functions

The SPECTRA-622 driver has the capability to callback to functions within the USER
code when certain events occur. These events and their associated callback routine
declarations are detailed below. There is no USER code action that is required by the
driver for these callbacks – the USER is free to implement these callbacks in any manner
or else they can be deleted from the driver.

The names given to the callback functions are given as examples only. The addresses of
the callback functions invoked by the spectraDPR function are passed during the
spectraInit call (inside a DIV). However the USER shall use the exact same
prototype.

Note: The Application is left responsible for releasing the passed DPV as soon as possible
(to avoid running out of DPV buffers) by calling sysSpectraDPVBufferRtn either
within the callback function or later inside the Application code.

Callbacks Due to IO Events: cbackSpectraIO

This callback function is provided by the USER and is used by the DPR to report
significant IO section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraIO(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID PMC-1991254 Issue 2

 Callbacks Due to TOC Events: cbackSpectraTOC

This callback function is provided by the USER and is used by the DPR to report
significant TOC section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraTOC(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to SOP Events: cbackSpectraSOP

This callback function is provided by the USER and is used by the DPR to report
significant SOP section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraSOP(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID PMC-1991254 Issue 2

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to SSTB Events: cbackSpectraSSTB

This callback function is provided by the USER and is used by the DPR to report
significant SSTB section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraSSTB(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to LOP Events: cbackSpectraLOP

This callback function is provided by the USER and is used by the DPR to report
significant LOP section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID PMC-1991254 Issue 2

Prototype void cbackSpectraLOP(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to RPPS Events: cbackSpectraRPPS

This callback function is provided by the USER and is used by the DPR to report
significant RPPS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraRPPS(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID PMC-1991254 Issue 2

Callbacks due to TPPS events: cbackSpectraTPPS

This callback function is provided by the USER and is used by the DPR to report
significant TPPS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraTPPS(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to WANS Events: cbackSpectraWANS

This callback function is provided by the USER and is used by the DPR to report
significant WANS section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraWANS(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID PMC-1991254 Issue 2

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to DPGM Events: cbackSpectraDPGM

This callback function is provided by the USER and is used by the DPR to report
significant DPGM section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

Note: The USER should free the DPV buffer.

Prototype void cbackSpectraDPGM(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Callbacks Due to APGM Events: cbackSpectraAPGM

This callback function is provided by the USER and is used by the DPR to report
significant APGM section events back to the application. This function should be non-
blocking. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then
process this information according to the system requirements.

 Spectra-622 (PM5313) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID PMC-1991254 Issue 2

Note: the USER should free the DPV buffer.

Prototype void cbackSpectraAPGM(sSPE_USR_CTXT usrCtxt, sSPE_DPV *pdpv)

Inputs usrCtxt : user context (from spectraAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

 Spectra-622 (PM5313) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID PMC-1991254 Issue 2

6 HARDWARE INTERFACE

The SPECRTA-622 driver interfaces directly with the USER’s hardware. In this section, a
listing of each point of interface is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the hardware, either by defining a macro or by writing a function for each item listed.
Care should be taken when matching parameters and return values.

6.1 Device I/O

Reading Registers: sysSpectraRead

This function serves as the most basic hardware connection by reading the contents of a
specific register location. This Macro should be UINT1 oriented, and should be defined
by the user to reflect the target system’s addressing logic. There is no need for error
recovery in this function.

Prototype UINT1 sysSpectraRead(UINT1 *addr)

Inputs addr : register location to be read

Outputs None

Returns value read from the addressed register location

Format #define sysSpectraRead(addr)

Writing Values: sysSpectraWrite

This function serves as the most basic hardware connection by writing the supplied value
to the specific register location. This macro should be UINT1 oriented and should be
defined by the user to reflect the target system’s addressing logic. There is no need for
error recovery in this function.

Prototype void sysSpectraWrite(UINT1 *addr, UINT value)

Inputs addr : register location to be read

 Spectra-622 (PM5313) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID PMC-1991254 Issue 2

Outputs None

Returns value read from the addressed register location

Format #define sysSpectraWrite(addr, value)

6.2 Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many
different implementations of these hardware level routines. In this driver, the USER is
responsible for installing an interrupt handler (sysSpectraISRHandler) in the
interrupt vector table of the system processor. This handler shall call spectraISR for
each device that has interrupt servicing enabled, to perform the ISR related housekeeping
required by each device.

During execution of the API function spectraModuleStart / spectraModuleStop
the driver informs the application that it is time to install / uninstall this shell via
sysSpectraISRHandlerInstall / sysSpectraISRHandlerRemove, that needs to
be supplied by the USER.

Note: A device can be initialized with ISR disabled. In that mode, the USER should
periodically invoke a provided ‘polling’ routine (spectraPoll) that in turn calls
spectraISR.

Installing the ISR Handler: sysSpectraISRHandlerInstall

This function installs the USER-supplied Interrupt Service Routine (ISR),
sysSpectraISRHandler, into the processor’s interrupt vector table.

Prototype void sysSpectraISRHandlerInstall(void *func)

Inputs func : (pointer to) the function spectraISR

Outputs None

Returns None

Valid States None

 Spectra-622 (PM5313) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID PMC-1991254 Issue 2

Format #define sysSpectraISRHandlerInstall(func)

ISR Handler: sysSpectraISRHandler

This routine is invoked when one or more SPECTRA-622 devices raise the interrupt line
to the microprocessor. This routine invokes the driver-provided routine (spectraISR)
for each device registered with the driver.

Prototype void sysSpectraISRHandler(void)

Inputs None

Outputs None

Returns None

Format #define sysSpectraISRHandler()

Removing Handlers: sysSpectraISRHandlerRemove

This function disables Interrupt processing for this device. It removes the USER-supplied
Interrupt Service routine (ISR), sysSpectraISRHandler, from the processor’s
interrupt vector table.

Prototype void sysSpectraISRHandlerRemove(void)

Inputs None

Outputs None

Returns None

Format #define sysSpectraISRHandlerRemove()

 Spectra-622 (PM5313) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID PMC-1991254 Issue 2

DPR Task: sysSpectraDPRTask

This routine is installed as a separate task within the RTOS. It runs periodically and
retrieves the interrupt status information sent to it by the spectraISRHandler routine,
thereafter invoking the spectraDPR routine for the appropriate device.

Prototype void sysSpectraDPRTask(void)

Inputs None

Outputs None

Returns None

Format #define sysSpectraDPRTask()

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID PMC-1991254 Issue 2

7 RTOS INTERFACE

The SPECTRA-622 driver requires the use of some RTOS resources. In this section, a
listing of each required resource is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the RTOS, either by defining a macro or writing a function for each item listed. Care
should be taken when matching parameters and return values.

7.1 Memory Allocation / De-Allocation

Allocating Memory: sysSpectraMemAlloc

This function allocates specified number of bytes of memory.

Prototype UINT1 *sysSpectraMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Format #define sysSpectraMemAlloc(numBytes)

Freeing Memory: sysSpectraMemFree

This function frees the memory allocated when using the sysSpectraMemAlloc.

Prototype void sysSpectraMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region
 being de-allocated

Outputs None

Returns None

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID PMC-1991254 Issue 2

Format #define sysSpectraMemFree(pfirstByte)

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending
and receiving messages. The following calls, provided by the USER, allow the Driver to
Get and Return buffers from the RTOS. It is the USER’s responsibility to create any
special resources or pools to handle buffers of these sizes during the
sysSpectraBufferStart call.

Starting Buffer Management: sysSpectraBufferStart

This function alerts the RTOS that the ISV buffers and DPV buffers are available and
should be sized correctly. This may or may not involve the creation of new buffer pools,
depending on the RTOS.

Prototype INT4 sysSpectraBufferStart(void)

Inputs None

Outputs None

Returns Success = SPE_SUCCESS
Failure = <SPECTRA-622 ERROR CODE>

Format #define sysSpectraBufferStart()

Getting DPV Buffers: sysSpectraDPVBufferGet

This function retrieves a buffer from the RTOS. The buffer is used by the DPR code to
create a Deferred Processing Vector (DPV). The DPV contains information about the
state of the device. This information is passed on to the USER via a callback function.

Prototype sSPE_DPV *sysSpectraDPVBufferGet(void)

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID PMC-1991254 Issue 2

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Format #define sysSpectraDPVBufferGet()

Getting ISV Buffers: sysSpectraISVBufferGet

This function retrieves a buffer from the RTOS. The buffer is used by the ISR code to
create a Interrupt Service Vector (ISV). The ISV contains data transferred from the
devices interrupt status registers.

Prototype sSPE_ISV *sysSpectraISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

Format #define sysSpectraISVBufferGet()

Returning DPV Buffers: sysSpectraDPVBufferRtn

This device returns a DPV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype void sysSpectraDPVBufferRtn(sSPE_DPV *pdpv)

Inputs pdpv : (pointer to) a DPV buffer

Outputs None

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID PMC-1991254 Issue 2

Returns None

Format #define sysSpectraDPVBufferRtn(pdpv)

Returning ISV Buffers: sysSpectraISVBufferRtn

This device returns a ISV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype void sysSpectraISVBufferRtn(sSPE_ISV *pisv)

Inputs pisv : (pointer to) a ISV buffer

Outputs None

Returns None

Format #define sysSpectraISVBufferRtn(pisv)

Stopping Buffer Management: sysSpectraBufferStop

This function alerts the RTOS that the Driver no longer needs the ISV buffers or DPV
buffers. If any special resources were created to handle these buffers, they can be deleted
at this time.

Prototype void sysSpectraBufferStop(void)

Inputs None

Outputs None

Returns None

Format #define sysSpectraBufferStop()

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID PMC-1991254 Issue 2

7.3 Preemption

Disabling Preemption: sysSpectraPreemptDisable

This routine prevents the calling task from being preempted. If the driver is in interrupt
mode, this routine locks out all interrupts as well as other tasks in the system. If the driver
is in polling mode, this routine locks out other tasks only.

Prototype INT4 sysSpectraPreemptDisable(void)

Inputs None

Outputs None

Returns Preemption key (passed back as an argument in
sysSpectraPreemptEnable)

Format #define sysSpectraPreemptDisable()

Re-Enabling Preemption: sysSpectraPreemptEnable

This routine allows the calling task to be preempted. If the driver is in interrupt mode,
this routine unlocks all interrupts and other tasks in the system. If the driver is in polling
mode, this routine unlocks other tasks only.

Prototype void sysSpectraPreemptEnable(INT4 key)

Inputs key : preemption key (returned by sysSpectraPreemptDisable)

Outputs None

Returns None

Format #define sysSpectraPreemptEnable(key)

 Spectra-622 (PM5313) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID PMC-1991254 Issue 2

7.4 Timers

Suspending a Task Execution: sysSpectraTimerSleep

This function suspends the execution of a driver task for a specified number of
milliseconds.

Prototype void sysSpectraTimerSleep(UINT4 msec)

Inputs msec : sleep time in milliseconds

Outputs None

Returns None

Format #define sysSpectraTimerSleep(msec)

 Spectra-622 (PM5313) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID PMC-1991254 Issue 2

8 PORTING DRIVERS

This section outlines how to port the SPECTRA-622 device driver to your hardware and
OS platform. However, this manual can offer only guidelines for porting the SPECTRA-
622 driver because each platform and application is unique.

8.1 Driver Source Files

The C files listed in the following table contain the code for the SPECTRA-622 driver.
You may need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped into source
files (src) and include files (inc). The source files contain the functions and the include
files contain the structures, constants and macros.

Directory File Description

spe_api1.c All the API functions that take care of module,
device and profile management

spe_api2.c All the SPECTRA-622 specific API functions.
spe_hw.c Hardware interface functions
spe_isr.c Internal functions that deal with interrupt servicing
spe_prof.c Internal functions that deal with profiles
spe_rtos.c RTOS interface functions
spe_stat.c Internal functions that deal with statistics

src

spe_util.c All the remaining internal functions
spe_api.h All API headers
spe_defs.h Driver macros, constants and definitions (such as

register mapping and bit masks)
spe_err.h SPECTRA-622 error codes
spe_fns.h Prototype of non-API functions
spe_hw.h HW interface macros and prototype
spe_rtos.h RTOS interface macros and prototypes
spe_strs.h driver structures

inc

spe_typs.h types definitions
spe_app.c Sample driver callback functions and example codeexample

spe_app.h Prototypes, macros and structures used inside the
example code

 Spectra-622 (PM5313) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID PMC-1991254 Issue 2

8.2 Driver Porting Procedures

The following procedures summarize how to port the SPECTRA-622 driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the SPECTRA-622 driver to your platform:

Step 1: Port the driver’s RTOS interface (page 127):

Step 2: Port the driver’s hardware interface (page 128):

Step 3: Port the driver’s application-specific elements (page 130):

Step 4: Build the driver (page 130).

Porting Assumptions

The following porting assumptions have been made:

• It is assumed that ram assigned to the Driver’s static variables is initialized to ZERO
before any Driver function is called.

• It is assumed that a ram stack of 4K is available to all of the Driver’s non-ISR
functions and that a ram stack of 1K is available to the Driver’s ISR functions.

• It is assumed that there is no memory management or MMU in the system or that all
accesses by the driver, to memory or hardware can be direct.

Step 1: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent and
needs to be modified as per your RTOS’s characteristics.

To port the driver’s OS extensions:

1. Redefine the following macros and functions in the spe_rtos.h file to the
corresponding system calls that your target system supports:

Service Type Macro Name Description

sysSpectraMemAlloc Allocates a memory block
sysSpectraMemFree Frees a memory block
sysSpectraMemCpy Copies the contents of one

memory block to another

Memory

sysSpectraMemSet Fills a memory block with a
specified value

 Spectra-622 (PM5313) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID PMC-1991254 Issue 2

Timer sysSpectraTimerSleep Delays the task execution for a
given number of milliseconds

sysSpectraPreemptDisable Disables pre-emption of the
currently executing task by any
other task or interrupt

Pre-emption
Lock/Unlock

sysSpectraPreemptEnable Re-enables pre-emption of a task
by other tasks and/or interrupts

2. Modify the example implementation of the buffer management routines provided in
the spe_rtos.h file with the corresponding system calls that your target system
supports:

Service Type Macro Name Description

sysSpectraBufferStart Starts buffer management
sysSpectraBufferStop Stops buffer management
sysSpectraISVBufferGet Gets an ISV buffer from the

ISV buffer queue
sysSpectraISVBufferRtn Returns an ISV buffer to the

ISV buffer queue
sysSpectraDPVBufferGet Gets a DPV buffer from the

DPV buffer queue

Buffer

sysSpectraDPVBufferRtn Returns a DPV buffer to the
DPV buffer queue

3. Define the following constants for your OS-specific services in spe_rtos.h:

Task Constant Description Default

SPE_DPR_TASK_PRIORITY Deferred Task (DPR) task priority 85
SPE_DPR_TASK_STACK_SZ DPR task stack size, in bytes 8192
SPE_MAX_ISV_BUF The queue message depth of the

queue used for pass interrupt context
between the ISR task and DPR task

50

SPE_MAX_DPV_BUF The queue message depth of the
queue used for pass interrupt context
between the ISR task and DPR task

950

 Spectra-622 (PM5313) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID PMC-1991254 Issue 2

Step 2: Porting the Hardware Interface

This section describes how to modify the SPECTRA-622 driver for your hardware
platform.

To port the driver to your hardware platform:

1. Modify the variable type definitions in spe_typs.h.

2. Modify the low-level hardware-dependent functions and macros in the spe_hw.h
file. You may need to modify the raw read/write access macros (sysSpectraRead
and sysSpectraWrite) to reflect your system’s addressing logic.

Service Type Function Name Description

sysSpectraRead Reads a device register given its
real address in memory

Register
Access

sysSpectraWrite Writes to a device register given
its real address in memory

sysSpectraISRHandlerInstall Installs the interrupt handler for
the OS

sysSpectraISRHandlerRemove Removes the interrupt handler
from the OS

sysSpectraISRHandler Interrupt handler for the
SPECTRA-622 device

Interrupt

sysSpectraDPRTask Task that calls the SPECTRA-622
DPR

3. Define the hardware system-configuration constants in the spe_hw.h file. Modify
the following constants to reflect your system’s hardware configuration:

Device Constant Description Default

SPE_MAX_DEVS The maximum number of SPECTRA-622 devices
that can be supported by the driver

5

SPE_MAX_DELAY Delay between two consecutive polls of a busy bit 100us
SPE_MAX_POLL Maximum number of times a busy bit will be polled

before the operation times out
100

 Spectra-622 (PM5313) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130
Document ID PMC-1991254 Issue 2

Step 3: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the application callback and
defining all the constants used by the API.

To port the driver’s application-specific elements:

1. Modify the base value of SPE_ERR_BASE (default = -300) in spe_err.h.

2. Define the following constants as required by your application in spe_rtos.h:

Task Constant Description Default

SPE_MAX_INIT_PROFS The maximum number of initialization
profiles that can be added to the driver

5

SPE_MAX_DIAG_PROFS The maximum number of diagnostic
profiles that can be added to the driver

5

3. Code the callback functions according to your application. Example implementations
of these callbacks are provided in app.c. The driver will call these callback
functions when an event occurs on the device. These functions must conform to the
following prototype:
void cbackXX(sSPE_USR_CTXT usrCtxt, void *pdpv)

Step 4: Building the Driver

This section describes how to build the SPECTRA-622 driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler and
compiler options.

2. Choose from among the different compile options supported by the driver as per your
requirements.

3. Compile the source files and build the SPECTRA-622 API driver library using your
make utility.

4. Link the SPECTRA-622 API driver library to your application code.

 Spectra-622 (PM5313) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID PMC-1991254 Issue 2

APPENDIX A: DRIVER RETURN CODES

Table 25 describes the driver’s return codes.

Table 25: Return Codes

Return Type Description

SPE_ERR_MEM_ALLOC Memory allocation failure
SPE_ERR_INVALID_ARG Invalid argument
SPE_ERR_INVALID_MODULE_STATE Invalid Module state
SPE_ERR_INVALID_MIV Invalid Module Initialization Vector
SPE_ERR_PROFILES_FULL Maximum number of profiles already added
SPE_ERR_INVALID_PROFILE Invalid profile
SPE_ERR_INVALID_PROFILE_MODE Invalid profile mode selected
SPE_ERR_INVALID_PROFILE_NUM Invalid profile number
SPE_ERR_INVALID_DEVICE_STATE Invalid Device state
SPE_ERR_DEVS_FULL Maximum number of devices already added
SPE_ERR_DEV_ALREADY_ADDED Device already added
SPE_ERR_INVALID_DEV Invalid device handle
SPE_ERR_INVALID_DIV Invalid Device Initialization Vector
SPE_ERR_INT_INSTALL Error while installing interrupts
SPE_ERR_INVALID_MODE Invalid ISR/polling mode
SPE_ERR_INVALID_REG Invalid register number
SPE_ERR_POLL_TIMEOUT Time-out while polling

 Spectra-622 (PM5313) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID PMC-1991254 Issue 2

APPENDIX B: CODING CONVENTIONS

This section describes the coding conventions used in the implementation of all PMC
driver software.

Variable Type Definitions

Table 26: Variable Type Definitions

Type Description
UINT1 unsigned integer – 1 byte
UINT2 unsigned integer – 2 bytes
UINT4 unsigned integer – 4 bytes
INT1 signed integer – 1 byte
INT2 signed integer – 2 bytes
INT4 signed integer – 4 bytes

Naming Conventions

Table 27 presents a summary of the naming conventions followed by all PMC driver
software. A detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This
makes the code more readable. Generally, the device’s name or abbreviation appears in
prefix.

Table 27: Naming Conventions

Type Case Naming convention Examples

Macros Uppercase prefix with “m” and
device abbreviation

mSPE_SLICE_OFFSET

Constants Uppercase prefix with device
abbreviation

SPE_MAX_REGS

Structures Hungarian
Notation

prefix with “s” and device
abbreviation

sSPE_DDB

 Spectra-622 (PM5313) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID PMC-1991254 Issue 2

Type Case Naming convention Examples

API
Functions

Hungarian
Notation

prefix with device name spectraAdd()

Porting
Functions

Hungarian
Notation

prefix with “sys” and
device name

sysSpectraRead()

Other
Functions

Hungarian
Notation

myOwnFunction()

Variables Hungarian
Notation

maxDevs

Pointers to
variables

Hungarian
Notation

prefix variable name with
“p”

pmaxDevs

Global
variables

Hungarian
Notation

prefix with device name spectraMdb

Macros

The following list identifies the marcro conventions used in the driver code:

• Macro names can be uppercase.

• Words can be separated by an underscore.

• The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then the
device abbreviation appears.

• Example: mSPE_SLICE_OFFSET is a valid name for a macro.

Constants

The following list identifies the constants conventions used in the driver code:

• Constant names can be uppercase.

• Words can be separated by an underscore.

• The device abbreviation can appear as a prefix.

• Example: SPE_MAX_REGS is a valid name for a constant.

Structures

The following list identifies the structures conventions used in the driver code:

• Structure names can be uppercase.

• Words can be separated by an underscore.

 Spectra-622 (PM5313) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID PMC-1991254 Issue 2

• The letter ‘s’ in lowercase can be used as a prefix to specify that it is a structure, then
the device abbreviation appears.

• Example: sSPE_DDB is a valid name for a structure.

Functions

API Functions

• Naming of the API functions follows the hungarian notation.

• The device’s full name in all lowercase can be used as a prefix.

• Example: spectraAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependant.

• Naming of the porting functions follows the hungarian notation.

• The ‘sys’ prefix can be used to indicate a porting function.

• The device’s name starting with an uppercase can follow the prefix.

• Example: sysSpectraRead() is a hardware / RTOS specific.

Other Functions

• Other Functions are all the remaining functions that are part of the driver and have no
special naming convention. However, they can follow the hungarian notation.

• Example: myOwnFunction() is a valid name for such a function.

Variables

• Naming of variables follows the hungarian notation.

• A pointer to a variable shall use ‘p’ as a prefix followed by the variable name
unchanged. If the variable name already starts with a ‘p’, the first letter of the
variable name may be capitalized, but this is not a requirement. Double pointers
might be prefixed with ‘pp’, but this is not required.

• Global variables are identified with the device’s name in all lowercase as a prefix.

• Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a
pointer to maxDevs, and spectraMdb is a valid name for a global variable.

• Note: Both pprevBuf and pPrevBuf are accepted names for a pointer to the
prevBuf variable, and that both pmatrix and ppmatrix are accepted names for a
double pointer to the variable matrix.

 Spectra-622 (PM5313) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID PMC-1991254 Issue 2

File Organization

Table 28 presents a summary of the file naming conventions. All file names must start
with the device abbreviation, followed by an underscore and the actual file name. File
names should convey their purpose with a minimum amount of characters. If a file size is
getting too big one might separate it into two or more files, providing that a number is
added at the end of the file name (e.g. spe_api1.c or spe_api2.c).

There are 4 different types of files:

• The API file containing all the API functions

• The hardware file containing the hardware dependant functions

• The RTOS file containing the RTOS dependant functions

• The other files containing all the remaining functions of the driver

Table 28: File Naming Conventions

File Type File Name

API spe_api1.c, spe_api.h

Hardware Dependant spe_hw.c, spe_hw.h

RTOS Dependant spe_rtos.c, spe_rtos.h

Other spe_isr.c, spe_defs.h

API Files

• The name of the API files must start with the device abbreviation followed by an
underscore and ‘api’. Eventually a number might be added at the end of the name.

• Examples: spe_api1.c is the only valid name for the file that contains the first part
of the API functions, spe_api.h is the only valid name for the file that contains all
of the API functions headers.

Hardware Dependent Files

• The name of the hardware dependent files must start with the device abbreviation
followed by an underscore and ‘hw’. Eventually a number might be added at the end
of the file name.

• Examples: spe_hw.c is the only valid name for the file that contains all of the
hardware dependent functions, spe_hw.h is the only valid name for the file that
contains all of the hardware dependent functions headers.

• RTOS Dependant Files

 Spectra-622 (PM5313) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID PMC-1991254 Issue 2

• The name of the RTOS dependant files must start with the device abbreviation
followed by an underscore and ‘rtos’. Eventually a number might be added at the
end of the file name.

• Examples: spe_rtos.c is the only valid name for the file that contains all of the
RTOS dependent functions, spe_rtos.h is the only valid name for the file that
contains all of the RTOS dependent functions headers.

Other Driver Files

• The name of the remaining driver files must start with the device abbreviation
followed by an underscore and the file name itself, which should convey the purpose
of the functions within that file with a minimum amount of characters.

• Examples: spe_isr.c is a valid name for a file that would deal with interrupt
servicing, spe_defs.h is a valid name for the header file that conatins all the
driver’s definitions.

 Spectra-622 (PM5313) Driver Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID PMC-1991254 Issue 2

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation
software written to validate the SPECTRA-622 driver on a validation platform.

API (Application Programming Interface): Describes the connection between this
MODULE and the USER’s Application code.

ISR (Interrupt Service Routine): A common function for intercepting and servicing
DEVICE events. This function is kept as short as possible because an Interrupt preempts
every other function starting the moment it occurs and gives the service function the
highest priority while running. Data is collected, Interrupt indicators are cleared, and the
function ended.

DPR (Deferred Processing Routine): This function is installed as a task, at a USER
configurable priority, that serves as the next logical step in Interrupt processing. Data that
was collected by the ISR is analyzed and then calls are made into the Application to
inform it of the events that caused the ISR in the first place. Because this function is
operating at the task level, the USER can decide on its importance in the system, relative
to other functions.

DEVICE: A single SPECTRA-622 Integrated Circuit. There can be many Devices; all
served by this ONE Driver MODULE

• DIV (DEVICE Initialization Vector): A structure passed from the API to the DEVICE
during initialization; it contains parameters that identify the specific modes and
arrangements of the physical DEVICE being initialized.

• DDB (DEVICE Data Block): A structure that holds the Configuration Data for each
DEVICE.

MODULE: All of the code that is part of this driver; there is only ONE instance of this
MODULE connected to one or more SPECTRA-622 chips.

• MIV (MODULE Initialization Vector): Structure passed from the API to the
MODULE during initialization; it contains parameters that identify the specific
characteristics of the Driver MODULE being initialized.

• MDB (MODULE Data Block): A structure that holds the Configuration Data for this
MODULE.

RTOS (Real Time Operating System): The host for this driver

 Spectra-622 (PM5313) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID PMC-1991254 Issue 2

ACRONYMS

API: Application programming interface

APGM: Add bus PRBS Generator and Monitor

DDB: Device data block

DIV: Device initialization vector

DPGM: Drop bus PRBS Generator and Monitor

DPR: Deferred processing routine

DPV: Deferred processing (routine) vector

FIFO: First in, first out

IO: Input/Output

ISR: Interrupt service routine

ISV: Initialization service (routine) vector

LOP: Line overhead processor

MDB: Module data block

MIV: Module initialization vector

PRBS: Pseudo random byte sequence

RING: RING control ports

RPPS: Receive path processing slice

RTOS: Real-time operating system

SOP: Section overhead processor

SSTB: Sonet/SDH section trace buffer

TOC: Transport overhead controller

TPPS: Receive path processing slice

WANS: WAN synchronization controller

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID PMC-1991254 Issue 2

INDEX

A

ackActiv, 44
Activating a Device, 64
addControlActi, 45
addDataActiv, 45
Adding a Device, 61
addr, 116, 117
Alarm, Status and Statistics Functions,

97
Allocating Memory, 120
APGM … See Add Bus PRBS

Generator and Monitor, 21, 31,
32, 35, 36, 37, 43, 44, 89, 92,
114, 138

APGM Functions
apgmGenEna, 36
apgmGenSig, 41
apgmMonEna, 36
apgmMonErr, 41
apgmMonSig, 41
apgmMonSync, 41

API Files, 135
Application Programming Interface, 16,

56
aptr, 80
au3, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 90, 91, 92, 93, 107,
108

B

baseAddr, 42, 61
Buffer Management, 121
Building the Driver, 130

C

Callback Functions, 109
cbackAPGM, 30, 31, 32, 44
cbackDPGM, 30, 31, 32, 44
cbackIO, 30, 31, 32, 43
cbackLOP, 30, 31, 32, 43
cbackRPPS, 30, 31, 32, 43
cbackSOP, 30, 31, 32, 43

cbackSpectraAPGM, 114, 115
cbackSpectraDPGM, 114
cbackSpectraIO, 109
cbackSpectraLOP, 111, 112
cbackSpectraRPPS, 112
cbackSpectraSOP, 110
cbackSpectraSSTB, 111
cbackSpectraTOC, 110
cbackSpectraTPPS, 113
cbackSpectraWANS, 113
cbackSSTB, 30, 31, 32, 43
cbackTOC, 30, 31, 32, 43
cbackTPPS, 30, 31, 32, 44
cbackWANS, 30, 31, 32, 44
cbackXX, 130

Callbacks
Callbacks Due to APGM Events, 114
Callbacks Due to DPGM Events, 114
Callbacks Due to IO Events, 109
Callbacks Due to LOP Events, 111
Callbacks Due to RPPS Events, 112
Callbacks Due to SOP Events, 110
Callbacks Due to SSTB Events, 111
Callbacks Due to TOC Events, 110
Callbacks Due to WANS Events, 113

Calling spectraDPR, 27
Calling spectraPoll, 28
CFG_CNT, 50
cfgAPGM, 37, 43
cfgCnt, 43, 97
cfgDPGM, 37, 43
cfgIO, 34, 42
cfgLOP, 34, 43
cfgRING, 35, 43
cfgRPPS, 34, 43
cfgSOP, 34, 43
cfgSSTB, 34, 43
cfgTOC, 34, 42
cfgTPPS, 34, 43
cfgWANS, 35, 43
Clearing and Setting

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID PMC-1991254 Issue 2

DS3 Line Loopback, 108
Line Loopback, 105
Parallel Loopback, 107
Serial Loopback, 106
System-Side Loopback, 107

Clearing the Interrupt Mask, 95
clock77, 33
Closing the Driver Module, 14, 56
Coding Conventions, 132
Configuring Diagnostics, 89
Configuring Statistical Counts, 97
Constants, 29, 132, 133
Creating a Diagnostic Profile, 60
Creating an Initialization Profile, 58

D

Data Structures, 29
dckActiv, 44
DDB …See Device Data Block, 42
deferred processing

routine, 137
Deferred Processing Routine, 15, 21,

54, 96
Deferred Processing Vector, 54, 55, 121
Deleting a Device, 62
Deleting a Diagnostic Profile, 61
Deleting an Initialization Profile, 59
Device

Activation and De-Activation, 64
Addition and Deletion, 61
Diagnostics, 105
Initialization, 14, 29, 30, 63, 131
Management, 25
Reading and Writing, 66
States, 23, 66

deviceHandle, 54, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 101,
105, 106, 107, 108

devicePoll, 30
DIAG_PROF, 35
diagMode, 35
Diagnostic Profile, 35, 60

Disabling Preemption, 124
DPGM Functions

dpgmGenEna, 36
dpgmGenSig, 41
dpgmMonEna, 36
dpgmMonErr, 41
dpgmMonSig, 41
dpgmMonSync, 41

DPR …See Deferred Processing
Routine, 17

DPR Task, 119
DPV …See Deferred Processing

Routine Vector, 54, 55
Driver

External Interfaces, 16
Functions and Features, 14
Hardware Interface, 17
Porting Procedures, 127
Porting Quick Start, 13
Return Codes, 131
Software States, 22
Source Files, 126

driver library, 130
drv, 126
DS3, 19, 20, 78, 83, 108
ds3tdatActiv, 49
ds3ticlkActiv, 49

E

erdiv, 48
errDevice, 42, 55, 62
errModule, 41, 55

F

File Naming Conventions, 135
Forcing a Pointer Value, 80
Forcing a Resynchronization, 91, 93
Forcing Bit Errors, 90, 92
Forcing DS3 AIS, 78, 83
Forcing Errors in the A1 Byte, 71
Forcing Errors in the B1 Byte, 72
Forcing Errors in the B3 Byte, 80
Forcing Errors in the H4 Byte, 77, 82
Forcing Generation of a New PRBS, 90,

92

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID PMC-1991254 Issue 2

Forcing Loss-Of-Pointer, 76
Forcing Loss-Of-Signal, 72
Forcing Out-of-Frame, 70
Forcing Path AIS, 79
Forcing Phase Reacquisitions, 88
Forcing Tributary Path AIS, 78, 83
Freeing Memory, 120

G

Getting DPV Buffers, 121
Getting ISV Buffers, 122
Getting the Interrupt Mask, 93
Global Variable, 55

H

Hardware Dependent Files, 135
Hardware Interface, 116

I

inc, 13, 126
INIT_PROF, 31
Initialization Profile, 31, 32, 58
Initializing a Device, 63
initMode, 30, 32
Input/Output, 18, 138
Input/Output Status, 44
Inserting Line AIS, 71
Inserting Line Remote Defect Indication,

73
Installing the ISR Handler, 117
Interrupt Service

Functions, 93
Routine, 21, 96, 117
Vector, 27, 28, 54, 122

Interrupt service routine, 138
Interrupt Servicing, 15, 26, 117
interrupts

service routine, 137
IO … See Input/Output, 44
ioCrsiRool, 37
ioCspiRool, 37
ioDool, 37
ioLos, 37
ioScpife, 37
ioScpire, 37

ISR … see Interrupt Service Routine,
17, 21, 26, 27, 29, 30, 31, 32,
37, 43, 54, 57, 94, 95, 117, 118,
122, 127, 128, 131, 138

ISR Enable/Disable Mask, 37
ISR Handler, 118
ISR Mask, 37
ISV … See Initialization Service Routine

Vector, 54

L

Line Overhead Processor, 18
Line Overhead Status, 47
lineSideMode, 33
LOP … See Line Overhead Processor,

47
lopBipe, 38
lopBlkBip, 51
lopBlkRei, 50
lopCoaps, 38
lopLais, 38
lopLrdi, 38
lopLrei, 38
lopPsbf, 38
lopSd, 38
lopSdber, 38
lopSf, 38
lopSfber, 38
lopZ1S1, 38

M

Macros, 132, 133
Makefile, 130
maxDevs, 29, 30, 41
maxDiagProfs, 30, 41
maxInitProfs, 30, 41
MDB …See Module Data Block, 41
Memory Allocation / De-Allocation, 120
MIV … See Module Initialization Vector,

29
Modifying the S1 Byte, 69
Modifying the Z0 Byte, 68
Module

Activation, 57
Data Block, 21, 23, 41, 55, 56
Initialization, 23, 29, 30, 56, 131

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID PMC-1991254 Issue 2

Initialization Vector, 23, 29, 30, 56,
131

Management, 24
States, 22

msec, 125

N

Naming Conventions, 132
ndf, 81
NDF_enable, 39, 40
new_point, 39, 40
numBlocks, 33, 34, 36
numBytes, 120
numDevs, 41

O

Opening the Driver Module, 14, 56
Other Driver Files, 136

P

pblkSize, 34, 36
pblock, 67, 68
pddb, 42, 55
pdiagData, 35, 36, 37
pdiagProfs, 42
pdiv, 63
pdpv, 109, 110, 111, 112, 113, 114, 115,

122, 123, 130
pdsb, 101
perrDevice, 61
pfirstByte, 120, 121
piclkActiv, 45
pinActiv, 44
pinitData, 31, 32, 33, 34
pinitProfs, 42
pisv, 96, 123
pJ0, 73
pJ1, 76
pK1, 75
pK2, 75
pmask, 68, 94, 95
pmdb, 30
pmiv, 56
Polling Interrupt Status Registers, 95
pollISR, 30, 31, 32, 43
Porting

Application Interface, 130
Drivers, 126
Hardware Interface, 129
RTOS interface, 127

ppblk, 34, 36
ppblock, 33, 36
pperrDevice, 61, 62
ppmask, 33, 34, 36
ppmdb, 56
pProfile, 58, 59, 60
pProfileNum, 58, 60
Preemption, 124
prei, 82
Processing Flows, 24
Profile Management, 58
profileNum, 42, 58, 59, 60, 61, 63, 89
psize, 33, 36
pstartReg, 33, 34, 36, 37
ptr, 49

R

Reading from a Device Register, 66
Reading the Received K1 and K2 Bytes,

75
Reading the S1 Byte, 69
Receive / Transmit Line Overhead

Processor (RLOP/TLOP), 20,
34, 43, 73

Receive / Transmit Section Overhead
Processor (RSOP/TSOP), 20,
34, 43, 70

Receive Path Processing Slice, 18
Receive Path Processing Slice (RPPS),

20, 34, 43, 47, 76
Receive Path Status, 47
Re-Enabling Preemption, 124
refclkActiv, 44
regNum, 66
Removing Handlers, 118
Resetting a Device, 64
Retrieving

Alarm Status, 101
and Setting the Path Trace Messages,

76
and Setting the Section Trace

Messages, 73

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID PMC-1991254 Issue 2

Diagnostic Profile, 60
Initialization Profile, 59

Return Codes, 131
Returning

DPV Buffers, 122
ISV Buffers, 123

RING … See RING Control Ports, 45
Ring Control Ports (RING), 20, 45, 87
Ring Control Ports Status, 45
ringEna, 33
RPPS, 31, 32, 34, 43, 48, 107, 108, 112
rppsAu3LopCon, 39
rppsAu3PaisCon, 39
rppsBipe, 39
rppsBlkBip, 51
rppsBlkRei, 51
rppsComa, 39
rppsDiscopa, 39
rppsDpje, 39
rppsErdi, 39
rppsEse, 39
rppsIllreq, 39
rppsInvNdf, 39
rppsIsf, 39
rppsLom1, 38
rppsLom2, 39
rppsLop1, 38
rppsLop2, 39
rppsLopCon, 39
rppsMonrs, 51
rppsNdf, 39
rppsNewPtr, 39
rppsNse, 39
rppsOfl, 40
rppsPais1, 39
rppsPais2, 39
rppsPaisCon, 39
rppsPerdi, 39
rppsPrdi1, 39
rppsPrdi2, 39
rppsPrei, 39
rppsPse, 39
rppsPslm, 39
rppsPslu, 39
rppsRpslm, 40

rppsRpslu, 40
rppsRtim, 39
rppsRtiu, 40
rppsTim, 38
rppsTiu, 38
rppsTiu2, 39
rppsUfl, 40

S

scpi, 45
Section Overhead Processor, 18
Sending Line AIS Maintenance Signal,

87
Sending Line RDI Maintenance Signal,

88
Setting the Interrupt Mask, 94
Software Architecture, 16
Software States, 22
SONET / SDH Section Trace Buffer

(SSTB), 20, 73
sopBipe, 38
sopBlkBip, 50
sopLof, 38
sopLos, 38
sopOof, 38
source files, 130
SPE_ACTIVE, 29, 42
spe_api.h, 126
spe_api1.c, 126
spe_api2.c, 126
SPE_COMP, 30, 32, 33, 35, 36
spe_defs.h, 126
SPE_DEV_STATE, 42
SPE_DPR_EVENT, 55
SPE_DPR_TASK_PRIORITY, 128
SPE_DPR_TASK_STACK_SZ, 128
spe_err.h, 126, 130
SPE_ERR_BASE, 130
SPE_ERR_DEV_ALREADY_ADDED,

131
SPE_ERR_DEVS_FULL, 131
SPE_ERR_INT_INSTALL, 131
SPE_ERR_INVALID_ARG, 131
SPE_ERR_INVALID_DEV, 131
SPE_ERR_INVALID_DEVICE_STATE,

131

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID PMC-1991254 Issue 2

SPE_ERR_INVALID_DIV, 131
SPE_ERR_INVALID_MIV, 131
SPE_ERR_INVALID_MODE, 131
SPE_ERR_INVALID_MODULE_STATE,

131
SPE_ERR_INVALID_PROFILE, 131
SPE_ERR_INVALID_PROFILE_MODE,

131
SPE_ERR_INVALID_PROFILE_NUM,

131
SPE_ERR_INVALID_REG, 131
SPE_ERR_MEM_ALLOC, 131
SPE_ERR_POLL_TIMEOUT, 131
SPE_ERR_PROFILES_FULL, 131
SPE_FAILURE, 55
spe_fns.h, 126
SPE_FRM, 30, 32, 34, 35, 37
spe_hw.c, 126
spe_hw.h, 126, 129
SPE_INACTIVE, 29, 42
spe_isr.c, 126
SPE_ISR_MODE, 30
SPE_MAX_DELAY, 129
SPE_MAX_DEVS, 29, 129
SPE_MAX_DIAG_PROFS, 130
SPE_MAX_DPV_BUF, 128
SPE_MAX_INIT_PROFS, 130
SPE_MAX_ISV_BUF, 128
SPE_MAX_POLL, 129
SPE_MOD_IDLE, 29, 42
SPE_MOD_READY, 29, 42
SPE_MOD_START, 29, 42
SPE_MOD_STATE, 42
SPE_MODE, 30, 32, 35
SPE_NORM, 30, 32, 35, 36
SPE_POLL, 30, 43
SPE_POLL_MODE, 30
SPE_PRESENT, 29, 42
spe_prof.c, 126
spe_rtos.c, 126
spe_rtos.h, 126, 127, 128, 130
SPE_START, 29, 42
spe_stat.c, 126
spe_strs.h, 126

SPE_SUCCESS, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 97,
101, 105, 106, 107, 108, 121

spe_typs.h, 126, 129
spe_util.c, 126
spectraActivate, 64, 65
spectraAdd, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 101, 105,
106, 107, 108, 109, 110, 111,
112, 113, 114, 115

spectraAddDiagProfile, 35, 60
spectraAddInitProfile, 30, 31, 58
spectraAPGMGenForceErr, 92
spectraAPGMGenRegen, 92
spectraAPGMMonResync, 93
spectraAPGMonResync, 93
spectraCfgStats, 97
spectraClearMask, 37, 95
spectraDeActivate, 65
spectraDelete, 27, 56, 62
spectraDeleteDiagProfile, 61
spectraDeleteInitProfile, 59
spectraDiagCfg, 89
spectraDPGMGenForceErr, 90
spectraDPGMGenRegen, 90
spectraDPGMMonResync, 91
spectraDPGMonResync, 91
spectraDPR, 21, 26, 27, 28, 96, 109,

119
spectraGetDiagProfile, 60
spectraGetInitProfile, 59
spectraGetMask, 37, 93, 94
spectraGetStats, 101
spectraInit, 30, 63, 109
spectraISR, 21, 26, 27, 28, 96, 117, 118
spectraISRHandler, 119
spectraLoopDS3Line, 108
spectraLoopLine, 105
spectraLoopParaDiag, 107
spectraLoopSerialDiag, 106
spectraLoopSysSideLine, 107

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID PMC-1991254 Issue 2

spectraLOPDiagB2, 74
spectraLOPInsertLineRDI, 73, 74
spectraLOPReadK1K2, 75
spectraLOPWriteK1K2, 75
spectraMdb, 55
spectraModuleClose, 56
spectraModuleOpen, 29, 56
spectraModuleStart, 57, 117
spectraModuleStop, 57, 58, 117
spectraPathTraceMsg, 76
spectraPoll, 28, 95, 117
spectraRead, 66
spectraReadBlock, 67
spectraReset, 64
spectraRINGLineAISControl, 87
spectraRINGLineRDIControl, 88
spectraRPPSDiagH4, 77
spectraRPPSDiagLOP, 76, 77
spectraRPPSDs3AisGen, 78
spectraRPPSInsertTUAIS, 78, 83
spectraSectionTraceMsg, 73
spectraSetMask, 37, 94
spectraSOPDiagB1, 72
spectraSOPDiagFB, 71
spectraSOPDiagLOS, 72
spectraSOPForceOOF, 70
spectraSOPInsertLineAIS, 71
spectraTestReg, 105
spectraTOCReadS1, 69
spectraTOCWriteS1, 69
spectraTOCWriteZ0, 68
spectraTPPSDiagB3, 80
spectraTPPSDiagH4, 82
spectraTPPSDs3AisGen, 83
spectraTPPSForceTxPtr, 80
spectraTPPSInsertNDF, 81
spectraTPPSInsertPAIS, 79
spectraTPPSInsertPREI, 81
spectraTPPSInsertTUAIS, 83
spectraTPPSWriteC2, 84
spectraTPPSWriteF2, 85
spectraTPPSWriteJ1, 84
spectraTPPSWriteZ3, 86
spectraTPPSWriteZ4, 86
spectraTPPSWriteZ5, 87
spectraUpdate, 63

spectraWANSForceReac, 88
spectraWrite, 66
spectraWriteBlock, 68
src, 13, 126
sSPE_CBACK, 31, 32, 43, 44
sSPE_CFG_APGM, 35, 37, 43
sSPE_CFG_CNT, 43, 50, 97
sSPE_CFG_DPGM, 35, 37, 43
sSPE_CFG_IO, 34, 42
sSPE_CFG_LOP, 34, 43
sSPE_CFG_RING, 35, 43
sSPE_CFG_RPPS, 34, 43
sSPE_CFG_SOP, 34, 43
sSPE_CFG_SSTB, 34, 43
sSPE_CFG_TOC, 34, 42
sSPE_CFG_TPPS, 34, 43
sSPE_CFG_WANS, 35, 43
sSPE_CFG_XXX, 34, 37
sSPE_DDB, 42
sSPE_DIAG_DATA_COMP, 36
sSPE_DIAG_DATA_FRM, 37
sSPE_DIAG_DATA_NORM, 36
sSPE_DIAG_PROF, 35, 42, 60
sSPE_DIV, 30, 31, 63
sSPE_DPV, 55, 109, 110, 111, 112, 113,

114, 115, 121, 122
sSPE_HNDL, 54, 61, 62, 63, 64, 65, 66,

67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 101,
105, 106, 107, 108

sSPE_INIT_DATA_COMP, 31, 32, 34,
35

sSPE_INIT_DATA_FRM, 31, 32, 34, 35
sSPE_INIT_DATA_NORM, 31, 32, 33,

35
sSPE_INIT_PROF, 32, 42, 58, 59
sSPE_ISV, 54, 96, 122, 123
sSPE_MASK, 37, 54, 94, 95
sSPE_MDB, 41, 56
sSPE_MIV, 30, 56
sSPE_POLL, 31, 32
sSPE_STAT_CNT, 52
sSPE_STAT_IO, 44
sSPE_STAT_LOP, 47
sSPE_STAT_RPPS, 47

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID PMC-1991254 Issue 2

sSPE_STAT_TPPS, 49
sSPE_USR_CTXT, 42, 109, 110, 111,

112, 113, 114, 115, 130
SSTB, 31, 32, 34, 43, 111, 138
sstbRtim, 38
sstbRtiu, 38
Starting Buffer Management, 121
Starting the Driver Module, 14, 57
startRegNum, 67, 68
stateDevice, 29, 42, 55
stateModule, 29, 42, 55
Statistic Counters, 50, 51, 52
Stopping Buffer Management, 123
Stopping the Driver Module, 57
Structures

In the Driver’s Allocated Memory, 41
Passed by the Application, 29
Passed Through RTOS Buffers, 54

Suspending a Task Execution, 125
sysSideMode, 33
sysSpectraBufferStart, 121, 128
sysSpectraBufferStop, 123, 128
sysSpectraDPRTask, 26, 27, 28, 96,

119, 129
sysSpectraDPVBufferGet, 121, 122, 128
sysSpectraDPVBufferRtn, 109, 122,

123, 128
sysSpectraISRHandler, 26, 27, 28, 96,

117, 118, 129
sysSpectraISRHandlerInstall, 27, 117,

118, 129
sysSpectraISRHandlerRemove, 117,

118, 129
sysSpectraISVBufferGet, 122, 128
sysSpectraISVBufferRtn, 123, 128
sysSpectraMemAlloc, 120, 127
sysSpectraMemCpy, 127
sysSpectraMemFree, 120, 121, 127
sysSpectraMemSet, 127
sysSpectraPreemptDisable, 124, 128
sysSpectraPreemptEnable, 124, 128
sysSpectraRead, 66, 67, 116, 129
sysSpectraTimerSleep, 125, 128
sysSpectraWrite, 66, 68, 116, 117, 129

T

Timers, 125
TOC, 138
tocLais, 38
tocLof, 38
tocLos, 38
tocLrdi, 38
tocOof, 38
tocRdool, 38
tocTrool, 38
tpais, 49
TPPS, 138
tppsAu3LopCon, 40
tppsAu3PaisCon, 40
tppsBipe, 40
tppsComa, 40
tppsDiscopa, 40
tppsEse, 40
tppsInvNdf, 40
tppsIsf, 40
tppsLom1, 40
tppsLom2, 40
tppsLop1, 40
tppsLop2, 40
tppsLopCon, 40
tppsNdf, 40
tppsNewPtr, 40
tppsNse, 40
tppsOfl, 41
tppsPais1, 40
tppsPais2, 40
tppsPaisCon, 40
tppsPje, 40
tppsPrei, 40
tppsPse, 40
tppsUfl, 41
Transmit Path Processing Slice, 18, 20,

34, 43, 49, 79
Transmit Path Status, 49
Transport Overhead Controller, 18, 19,

34, 42, 68

U

Updating the Configuration of a Device,
63

 Spectra-622 (PM5313) Driver Manual
INDEX

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID PMC-1991254 Issue 2

usrCtxt, 42, 61, 109, 110, 111, 112, 113,
114, 115, 130

V

Variable Type Definitions, 132
Variables, 133, 134
Verifying Register Access, 105

W

WAN Synchronization Controller, 18, 20,
88

WANS, 138
wansEna, 33
wansInt, 41
Writing

a Block of Registers, 68
the C2 Byte, 84
the F2 Byte, 85
the J1 Byte, 84
the Path Remote Error Indication

Count, 81
the Z3 Byte, 86
the Z4 Byte, 86
the Z5 Byte, 87
to a Device, 66
to New Data Flag Bits, 81
to Transmitted K1 and K2 Bytes, 75
Values, 116

