NLAS4501

Single SPDT Analog Switch

The NLAS4501 is an analog switch manufactured in sub-micron silicon-gate CMOS technology. It achieves very low RON while maintaining extremely low power dissipation. The device is a bilateral switch suitable for switching either analog or digital signals, which may vary from zero to full supply voltage.

The NLAS4501 is pin-for-pin compatible with the MAX4501. The NLAS4501 can be used as a direct replacement for the MAX4501 in all 2.0 V to 5.5 V applications where a R_{ON} performance improvement is required.

The Enable pin is compatible with standard CMOS outputs when supply voltage is nominal 5.0 Volts. It is also over-voltage tolerant, making it a very useful logic level translator.

- Guaranteed RON of 32Ω at 5.5 V
- Low Power Dissipation: ICC $=2 \mu \mathrm{~A}$
- Provides Voltage translation for many different voltage levels
3.3 to 5.0 Volts, Enable pin may go as high as +5.5 Volts 1.8 to 3.3 Volts
1.8 to 2.5 Volts
- Improved version of MAX4501 (at any voltage between 2 and 5.5 Volts)
- Chip Complexity: FETs 11

Figure 1. Pinout (Top View)

ON Semiconductor ${ }^{\text {T }}$

http://onsemi.com

$d=$ Date Code

PIN ASSIGNMENT	
1	COM
2	NO
3	GND
4	ENABLE
5	V CC

FUNCTION TABLE

On/Off Enable Input	State of Analog Switch
L	Off
H	On

ORDERING INFORMATION
See detailed ordering and shipping information on page 8 of this data sheet.

NLAS4501

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (Enable)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IS }}$	Analog Output Voltage (V_{NO} or $\mathrm{V}_{\mathrm{COM}}$)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	DC Current, Into or Out of Any Pin	± 20	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
ӨJA	Thermal Resistance SC70-5/SC-88A (Note 1) TSOP-5	$\begin{aligned} & 350 \\ & 230 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD	Power Dissipation in Still Air at $85^{\circ} \mathrm{C} \quad \begin{array}{r}\text { SC70-5/SC-88A } \\ \text { TSOP-5 }\end{array}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94-VO (0.125 in)	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >100 \\ N / A \end{gathered}$	V
'Latch-Up	Latch-Up Performance Above V CC and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 300	mA

Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
$V_{C C}$	Positive DC Supply Voltage		2.0	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (Enable)		GND	5.5	V
V_{10}	Static or Dynamic Voltage Across an Off Switch		GND	V_{CC}	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NO, COM)		GND	V_{CC}	V
T_{A}	Operating Temperature Range, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	Input Rise or Fall Time, (Enable Input)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns / V

device junction temperature versus time

 TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 2. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{Cc}	Guaranteed Max Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
VIL	Maximum Low-Level Input Voltage, Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
IIN	Maximum Input Leakage Current, Enable Inputs	V IN $=5.5 \mathrm{~V}$ or GND	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per package)	Enable and VIS = VCC or GND	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	VCC	Guaranteed Max Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
RON	Maximum ON Resistance (Figures 8-12)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & I_{I S} \mathrm{I}=\leq 10.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \\ & 35 \end{aligned}$	Ω
RFLAT(ON)	ON Resistance Flatness	$\begin{aligned} & \hline \mathrm{V}_{I N}=\mathrm{V}_{I H} \\ & I_{I S} \mathrm{I}=\leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{I S}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	4.5	4	4	5	Ω
INO(OFF)	Off Leakage Current, Pin 2 (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{NO}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA
ICOM(OFF)	Off Leakage Current, Pin 1 (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}$	Guaranteed Max Limit									Unit
				-55 to $25^{\circ} \mathrm{C}$			<85 ${ }^{\circ} \mathrm{C}$			$<125^{\circ} \mathrm{C}$			
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4, 5, and 13)	$\begin{array}{\|l\|} \hline 2.0 \\ 3.0 \\ 4.5 \\ 5.5 \end{array}$		$\begin{aligned} & \hline 7.0 \\ & 5.0 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 14 \\ 10 \\ 9 \\ 9 \end{gathered}$			$\begin{aligned} & 16 \\ & 12 \\ & 11 \\ & 11 \end{aligned}$			$\begin{aligned} & 16 \\ & 12 \\ & 11 \\ & 11 \end{aligned}$	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4, 5, and 13)	$\begin{array}{\|l\|} \hline 2.0 \\ 3.0 \\ 4.5 \\ 5.5 \end{array}$		11.0 7.0 5.0 5.0	$\begin{aligned} & 22 \\ & 14 \\ & 10 \\ & 10 \end{aligned}$			24 16 12 12			$\begin{aligned} & 24 \\ & 16 \\ & 12 \\ & 12 \end{aligned}$	ns

		Typical @ 25, VCC = 5.0 V	
CIN_{1}	Maximum Input Capacitance, Select Input	8	pF
$\mathrm{C}_{\mathrm{NOor}} \mathrm{CNC}^{\text {N }}$	Analog I/O (switch off)	10	
CCOM(OFF)	Common I/O (switch off)	10	
$\mathrm{C}_{\text {COM }}$ (ON)	Feedthrough (switch on)	20	

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ \mathrm{v} \end{gathered}$	Limit	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figures 6 and 14)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 190 \\ & 200 \\ & 220 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm} @ 10 \mathrm{kHz}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figure 6)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
VISO	Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz}$, VIS $=1 \mathrm{~V}$ RMS $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figures 6 and 15)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-93	dB
Q	Charge Injection Enable Input to Common I/O	$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{FIS}=20 \mathrm{kHz} \\ & \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \mathrm{~ns} \\ & \mathrm{RIS}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}^{*} \Delta \mathrm{~V}_{\mathrm{OUT}} \\ & \text { (Figures } 7 \text { and 16) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 3.0 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	FIS $=20 \mathrm{~Hz}$ to 1 MHz , $\begin{aligned} \mathrm{R}_{\mathrm{L}}=\text { Rgen } & =600 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IS}} & =3.0 \mathrm{~V} \text { PP sine wave } \\ \mathrm{V}_{\mathrm{IS}} & =5.0 \mathrm{~V} \mathrm{PP} \text { sine wave } \end{aligned}$ (Figure 17)	$\begin{aligned} & 3.3 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.3 \\ 0.15 \end{gathered}$	\%

Figure 3. Switch Leakage vs. Temperature

Figure 4. ton/toff

Figure 5. ton/tofF

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. VISO, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL

Figure 7. Charge Injection: (Q)

Figure 8. RON vs. $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 25^{\circ} \mathrm{C}\right.$)

Figure 10. RoN vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 12. RON vs. VCOM and Temperature, $V_{C C}=4.5 \mathrm{~V}$

Figure 9. RON vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 11. RON vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 13. Switching Time vs. Supply Voltage, $\mathrm{T}=25^{\circ} \mathrm{C}$

Figure 14. ON Channel Bandwidth and Phase Shift Over Frequency

Figure 15. Off Channel Isolation

Figure 16. Charge Injection vs. VCOM

Figure 17. THD vs. Frequency

DEVICE ORDERING INFORMATION

	Device Nomenclature					Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size
Device Order Number	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAS4501DFT2	NL	AS	4501	DF	T2	$\begin{gathered} \hline \text { SC-88A / } \\ \text { SOT-353/ } \\ \text { SC70-5 } \end{gathered}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$
NLAS4501DTT1	NL	AS	4501	DT	T1	$\begin{aligned} & \hline \text { TSOP-5 / } \\ & \text { SOT23-5 / } \\ & \text { SC59-5 } \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$

Figure 18. Tape Ends for Finished Goods

Figure 19. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

Figure 20. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	\mathbf{G}	t Max
8 mm	$\mathrm{~T} 1, \mathrm{~T} 2$	178 mm	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$	14.4 mm
		$(7 \mathrm{in})$	$(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	$(0.56 \mathrm{in})$

Figure 21. Reel Winding Direction

PACKAGE DIMENSIONS

SC70-6/SC-88/SOT-363
 DF SUFFIX
 CASE 419B-02
 ISSUE H

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

			MILLII	TERS
DIM	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	---	0.004	---	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20

NLAS4501

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

