
TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-2001251, Issue 3

PM5310

TBS

DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL
RELEASE

ISSUE 3: NOVEMBER, 2001

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-2001251, Issue 3

ABOUT THIS MANUAL AND TBS
This manual describes the TBS device driver. It describes the driver’s functions, data structures, and
architecture. This manual focuses on the driver’s interfaces to your application, real-time operating
system, and to the device. It also describes in general terms how to modify and port the driver to your
software and hardware platform.

Audience

This manual was written for people who need to:

�� Evaluate and test the TBS devices

�� Modify and add to the TBS driver’s functions

�� Port the TBS driver to a particular platform.

References

For more information about the TBS driver, see the driver’s release Notes. For more information about
the TBS device, see the documents listed in Table 1 and any related errata documents.

Table 1: Related Documents

Document Number Document Name

PMC-1991257 TelecomBus serializer (TBS) Telecom Standard Product Data Sheet

Note: Ensure that you use the document that PMC-Sierra issued for your version of the device and driver.

Revision History

Issue No. Issue Date Details of Change

Issue 1 August 2000 Document created

Issue 2 October, 2000 Add description to a new overwrite
mode in TSI mapping

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-2001251, Issue 3

Issue No. Issue Date Details of Change

Issue 3 November 2001 1) expand definition of function
tbsIsMulticast
2) update tbsReadIndirect and
tbsWriteIndirect prototypes
3) changes in sTBS_EVT_RX8D,
sTBS_EVT_PRBS, sTBS_CNTR,
sTBS_CFG_DEVICE data
structures.
4) update DDB field to include
PRBS STS-1 Path configuration
and DIV
5) add one argument to API
function tbsPayloadCfg to allow
configuration block retrieval
6) add descriptions for data
structures sTBS_CFG_PRBS and
sTBS_CFG_PRBSPORT
7) add mutual exclusion semaphore
in DDB to protect statistics access
8) add (a) tbsUpdate() function, (b)
errStat in DDB
9) API tbsIX8EforceLcv() and
tbsIX8EcenterFIFO() are retired
10) API tbsPrbsGenEnable() and
tbsPrbsMonEnable() are renamed to
tbsPrbsGenCfg() and
tbsPrbsMonCfg()
11) remove ot8d_ofaais field and
tbsGenAIS() configures only Rx8D
blocks
12) remove fields sysclki, refclki
changei and change in
sTBS_STATUS_IO structure
13) add new field to DDB, BOOL
tsiOverwrite to control the
operating mode of the driver in TSI
mapping.

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-2001251, Issue 3

Legal Issues

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion
thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and
warranties of any kind regarding the contents or use of the information, including, but not limited to,
express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or
non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential
damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or
reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such
damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’ internal use. In
any event, no part of this document may be reproduced in any form without the express written consent of
PMC-Sierra, Inc.

© 2000 PMC-Sierra, Inc.

PMC-2001251, (P2), ref PMC-1991228 (P1)

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-2001251, Issue 3

TABLE OF CONTENTS

About this Manual and TBS... 2
Audience .. 2
References.. 2
Revision History .. 2
Legal Issues.. 4
Contacting PMC-Sierra.. 4

Table of Contents ... 5

1 Introduction ... 14

2 Driver Functions and Features .. 15

2.1 General Driver Functions... 15
Open/Close Driver Module .. 15
Start/Stop Driver Module ... 15
Add/Delete Device... 15
Device Initialization... 15
Activate/De-Activate Device ... 15
Read/Write Device Registers ... 16
Interrupt Servicing/Polling... 16
Statistics Collection.. 16

2.2 TBS Specific Driver Functions .. 16
Time Slot Interchange .. 16
Incoming 8B/10B Encoder... 17
Transmit Disparity Encoder ... 17
Receive 8B/10B Decoder... 17
PRBS Processors.. 17
Device Diagnostics... 17
Statistics and Alarm Monitoring .. 18
Specific Callback Functions... 18

3 Software Architecture.. 19

3.1 Driver External Interfaces.. 19
Application Programming Interface... 19
Real-Time Operating System (RTOS) Interface .. 20
Hardware Interface... 20

3.2 Main Components.. 20
Module Data-Block and Device(s) Data-Blocks.. 21
Interrupt-Service Routine... 22
Deferred-Processing Routine ... 22
Alarms, Status, and Statistics ... 22

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-2001251, Issue 3

Input/Output Configuration.. 22
Time Slot Interchange .. 23
Incoming 8B/10B Encoder... 23
Receive 8B/10B Decoder... 23
Disparity Decoder .. 23
PRBS Processors.. 23

3.3 Software States... 23
Module States... 24
Device States.. 25

3.4 Processing Flows ... 25
Module Management ... 26
Device Management... 26

3.5 Interrupt Servicing ... 27
Calling tbsISR .. 28
Calling tbsDPR .. 29
Calling tbsPoll.. 29

3.6 Theory of Operation... 30
TBS Overview.. 30
Time Slot Mapping.. 32
FIFO Centering .. 35
Alarms, Status and Statistics .. 35
Diagnostics... 35

4 Data Structures .. 38

4.1 Constants.. 38

4.2 Data Structures... 38
Structures Passed by the Application ... 39
Module Initialization Vector: MIV... 39
Device Initialization Vector: DIV .. 39
Device Configuration Block: DEVICE... 42
Payload Configuration Block: PYLD .. 43
TSI Connection Map: CONMAP... 44
TSI Connection Page: CONPAGE... 44
TSI Space-Time Slot: SPTSLOT ... 45
ISR Enable/Disable Mask .. 45
8B/10B Decoder Events: EVT_RX8D.. 46
PRBS Processor Events: EVT_PRBS.. 47
Structures in the Driver’s Allocated Memory .. 47
Module Data Block: MDB... 47
Device Data Block: DDB... 48
Statistics Block: STAT ... 50
Event/Statistics Counter Structure: CNTR... 50
Device Status Block: STATUS... 52

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-2001251, Issue 3

I/O Status Block: STATUS_IO .. 52
8B/10B Decoder Status Block: STATUS_RX8D.. 53
PRBS Monitor Status Block: STATUS_PRBS .. 53
PRBS Generator/Monitor Configuration Block: CFG_PRBS PORT 53
PRBS Generator/Monitor STS-1 Configuration Parameters: CFG_PRBS.......................... 54
Structures Passed through RTOS Buffers... 55
Interrupt Service Vector: ISV... 55
Deferred Processing Vector: DPV.. 55

4.3 Global Variable .. 56

5 Application Programming Interface .. 57

5.1 Module Management ... 57
Opening the Driver Module: tbsModuleOpen ... 57
Closing the Driver Module: tbsModuleClose .. 57
Starting the Driver Module: tbsModuleStart.. 58
Stopping the Driver Module: tbsModuleStop .. 58

5.2 Device Management .. 59
Adding a Device: tbsAdd... 59
Deleting a Device: tbsDelete.. 60
Initializing a Device: tbsInit... 60
Updating the Configuration of a Device: tbsUpdate .. 61
Resetting a Device: tbsReset .. 61
Activating a Device: tbsActivate ... 61
De-Activating a Device: tbsDeActivate... 62

5.3 Device Read and Write .. 62
Reading from Device Registers: tbsRead... 62
Writing to Device Registers: tbsWrite.. 63
Reading from a block of Device Registers: tbsReadBlock .. 63
Writing to a Block of Device Registers: tbsWriteBlock .. 64
Indirect reading from Device Registers: tbsReadIndirect .. 65
Indirect writing to Device Registers: tbsWriteIndirect .. 65

5.4 Device Configuration... 66
Setting Device Configuration Block: tbsDeviceSetConfig... 66
Getting Device Configuration Block: tbsDeviceGetConfig.. 66

5.5 Time Slot Interchange ... 67
Setting global TSI mapping mode: tbsSetMapMode ... 67
Getting global TSI mapping mode: tbsGetMapMode.. 68
Setting active connection page in TSI: tbsSetPage .. 68
Getting active connection page in TSI: tbsGetPage... 69
Mapping the source to destination slot(s) in TSI: tbsMapSlot... 69
Retrieving source space-time Slot in TSI: tbsGetSrcSlot .. 70
Retrieving destination space-time Slot in TSI: tbsGetDestSlot ... 70
Copying connection map from one page to another in TSI: tbsCopyPage 71

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-2001251, Issue 3

Inserting Idle Data in TSI: tbsInsIdleData ... 71
Removing established connection in TSI: tbsRmSlot.. 72
Clearing all established connections in TSI: tbsClrSlot... 73
Verifying a multicast connection in TSI: tbsIsMulticast .. 73
Verifying the connection map setting in TSI: tbsIsValidMap .. 74

5.6 8B/10B Decoder... 75
Forcing out of character alignment in 8B/10B decoder: tbsForceOutofChar 75
Forcing out of frame alignment in 8B/10B decoder: tbsForceOutofFrm............................. 75

5.7 Disparity Encoder .. 76
Forcing line code violation in disparity encoder: tbsTXDEForceLcv 76
Centering FIFO in disparity encoder: tbsTXDECenterFIFO... 76
Inserting test pattern in disparity encoder: tbsInsertTP.. 77

5.8 PRBS Processors.. 77
Configuring and retrieving payload for PRBS processor: tbsPayloadCfg........................... 77
Configuring PRBS generator: tbsPrbsGenCfg... 78
Forcing a bit error in PRBS generator: tbsPrbsForceBitErr... 79
Configuring PRBS monitor: tbsPrbsMonCfg .. 79
Resynchronizing PRBS monitor: tbsPrbsResync... 80

5.9 Interrupt Service Functions.. 80
Configuring ISR Processing: tbsISRConfig... 81
Getting the Interrupt Status Mask: tbsGetMask... 81
Setting the Interrupt Enable Mask: tbsSetMask... 82
Clearing the Interrupt Enable Mask: tbsClearMask... 82
Polling the Interrupt Status Registers: tbsPoll.. 82
Interrupt Service Routine: tbsISR .. 83
Deferred Processing Routine: tbsDPR ... 83

5.10 Alarm, Status, and Statistics Functions.. 84
Getting the Cumulative Device Statistics: tbsGetStats .. 84
Clearing the Device Statistics: tbsClrStats... 84
Getting Status of the Device : tbsGetStatus ... 85
Getting Delta Statistics Counter of the Device : tbsGetDelta .. 85
Getting Event Threshold of the Device : tbsGetThresh ... 86
Setting Event Threshold of the Device : tbsSetThresh... 86
Controlling AIS Generation of the Device : tbsGenAIS .. 87

5.11 Device Diagnostics .. 87
Testing Register Accesses: tbsTestReg... 87
Testing RAM Accesses: tbsTestRAM.. 88
Enabling outgoing to incoming parallel TelecomBus Loopbacks: tbsLoopOut2InTCB 88
Enabling incoming to outgoing parallel TelecomBus Loopbacks: tbsLoopIn2OutTCB 88
Enabling receive to transmit serial TelecomBus Loopbacks: tbsLoopRx2TxLVDS 89
Enabling transmit to receive serial TelecomBus Loopbacks: tbsLoopTx2RxLVDS 89

5.12 Callback Functions... 90

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-2001251, Issue 3

Calling Back to the Application due to IO events: cbackIO .. 90
Calling Back to the Application due to TSI events: cbackTSI... 91
Calling Back to the Application due to PRBS events: cbackPRBS 91
Calling Back to the Application due to TXDE events: cbackTXDE.................................... 92
Calling Back to the Application due to RX8D events: cbackRX8D.................................... 92

6 Hardware Interface .. 93

6.1 Device I/O.. 93
Reading from a Device Register: sysTbsRead... 93
Writing to a Device Register: sysTbsWrite.. 93

6.2 System-Specific Interrupt Servicing .. 94
Installing the ISR Handler : sysTbsISRHandlerInstall .. 94
ISR Handler: sysTbsISRHandler ... 94
Removing the ISR Handler : sysTbsISRHandlerRemove.. 95

7 RTOS Interface.. 96

7.1 Memory Allocation / De-Allocation .. 96
Allocating Memory: sysTbsMemAlloc.. 96
Freeing Memory: sysTbsMemFree .. 96

7.2 Buffer Management ... 97
Starting Buffer Management : sysTbsBufferStart .. 97
Getting an ISV Buffer: sysTbsISVBufferGet... 97
Returning an ISV Buffer: sysTbsISVBufferRtn... 97
Getting a DPV Buffer: sysTbsDPVBufferGet ... 98
Returning a DPV Buffer: sysTbsDPVBufferRtn ... 98
Stopping Buffer Management : sysTbsBufferStop .. 98

7.3 Timers .. 99
Sleeping a Task: sysTbsTimerSleep... 99

7.4 Semaphores .. 99
Creating a Semaphore: sysTbsSemCreate.. 99
Taking a Semaphore: sysTbsSemTake... 100
Giving a Semaphore: sysTbsSemGive... 100
Deleting a Semaphore: sysTbsSemDelete.. 100

7.5 Preemption ... 101
Disabling Preemption : sysTbsPreemptDisable ... 101
Re-Enabling Preemption : sysTbsPreemptEnable.. 101

7.6 System-Specific DPR Routine ... 101
Installing the DPR Task: sysTbsDPRTaskInstall ... 102
DPR Task: sysTbsDPRTask ... 102
Removing the DPR Task: sysTbsDPRTaskRemove... 103

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-2001251, Issue 3

8 Porting the TBS Driver.. 104

8.1 Driver Source Files .. 104

8.2 Driver Porting Procedures.. 104
Procedure 1: Porting Driver OS Extensions... 105
Procedure 2: Porting Drivers to Hardware Platforms ... 106
Procedure 3: Porting Driver Application-Specific Elements ... 106
Procedure 4: Building the Driver ... 108

Appendix A: Coding Conventions ... 109
Variable Type Definitions... 109
Naming Conventions.. 109
Macros.. 110
Constants.. 110
Structures.. 110
Functions.. 111
Variables... 111
File Organization.. 112
API Files .. 112
Hardware Dependent Files... 112
RTOS Dependent Files... 113
Other Driver Files .. 113

Appendix B: Error Codes... 114

Appendix C: Event Codes.. 116

List of Terms .. 121

Acronyms... 122

Index .. 123

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-2001251, Issue 3

LIST OF FIGURES
Figure 1: Driver External Interfaces .. 19

Figure 2: Driver Architecture... 21

Figure 3: Driver Software States.. 24

Figure 4: Module Management Flow Diagram... 26

Figure 5: Device Management Flow Diagram.. 27

Figure 6: Interrupt Service Model.. 28

Figure 7: Polling Service Model .. 30

Figure 8: Device Traffic Flow Illustration ... 30

Figure 9: Time Slot Interchange Model ... 32

Figure 10: Space-time Slot Mapping, Multicast and Unicast .. 33

Figure 11: PRBS Processor Model .. 36

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-2001251, Issue 3

LIST OF TABLES
Table 1: TBS Block Description .. 31

Table 2: TBS Module Initialization Vector: sTBS_MIV ... 39

Table 3: TBS Device Initialization Vector: sTBS_DIV ... 40

Table 4: TBS Device Configuration Data Structure: sTBS_CFG_DEVICE 42

Table 5: TBS Payload Configuration Block: sTBS_CFG_PYLD ... 43

Table 6: TBS TSI Connection Map Data Structure: sTBS_TSI_CONMAP................................. 44

Table 7: TBS TSI Connection Page Data Structure: sTBS_TSI_CONPAGE............................... 44

Table 8: TBS Space-time Slot Data Structure: sTBS_SPTSLOT .. 45

Table 9: TBS ISR Mask: sTBS_MASK... 45

Table 10: TBS 8B/10B Decoder Event: sTBS_EVT_RX8D.. 46

Table 11: TBS PRBS Monitor Event: sTBS_EVT_PRBS... 47

Table 12: TBS Module Data Block: sTBS_MDB.. 48

Table 13: TBS Device Data Block: sTBS_DDB.. 49

Table 14: TBS Event Statistics Block: sTBS_STAT.. 50

Table 15: TBS Events Counter Block: sTBS_CNTR .. 51

Table 16: TBS Device Status Block : sTBS_STATUS... 52

Table 17: TBS I/O Block Status: sTBS_STATUS _IO .. 52

Table 18: TBS 8B/10B Decoder Block Status: sTBS_STATUS _RX8D...................................... 53

Table 19: TBS PRBS Monitor Status: sTBS_STATUS _PRBS... 53

Table 20: TBS PRBS Generator/Monitor Configuration Block Per Port: sTBS_CFG_PRBS
PORT ... 54

Table 21: TBS PRBS Generator/Monitor Configuration Parameters Per Time Slot :
sTBS_CFG_PRBS... 54

Table 22: TBS Interrupt Service Vector: sTBS_ISV.. 55

TBS (PM5310) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-2001251, Issue 3

Table 23: TBS Deferred Processing Vector: sTBS_DPV... 55

Table 24: Variable Type Definitions... 109

Table 25: Naming Conventions.. 109

Table 26: File Naming Conventions .. 112

Table 27: TBS Error Codes.. 114

Table 28: TBS Event Codes ... 116

TBS (PM5310) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-2001251, Issue 3

1 INTRODUCTION
The following sections of the TBS Device Driver Manual describe the TBS device driver. The code
provided throughout this document is written in the C language. This has been done to promote greater
driver portability to other embedded hardware (Section 6) and Real Time Operating System environments
(Section 7).

Section 3 of this document, Software Architecture, defines the software architecture of the TBS device
driver by including a discussion of the driver’s external interfaces and its main components. The Data
Structure information in Section 4 describes the elements of the driver that configure or control its
behavior. Included here are the constants, variables and structures that the TBS device driver uses to store
initialization, configuration, and status information. Section 5 provides a detailed description of each
function that is a member of the TBS driver Application Programming Interface (API). The section
outlines function calls that hide device-specific details and application callbacks that notify the user of
significant device events.

For your convenience, Section 8 of this manual provides a brief guide for porting the TBS device driver
to your hardware and RTOS platform. In addition, an extensive Appendix (page 109) and Index (page
123) provides you with useful reference information.

TBS (PM5310) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-2001251, Issue 3

2 DRIVER FUNCTIONS AND FEATURES
This section summarizes the main functions and features supported by the TBS driver. A more detailed
description will follow in later sections.

2.1 General Driver Functions

Open/Close Driver Module

Opening the driver module allocates all the memory needed by the driver and initializes all module level
data structures.

Closing the driver module shuts down the driver module gracefully after deleting all devices that are
currently registered with the driver; it also releases all the memory allocated by the driver.

Start/Stop Driver Module

Starting the driver module involves allocating all RTOS resources needed by the driver, such as timers
and semaphores (except for memory, which is allocated during the Open call).

Closing the driver module involves de-allocating all RTOS resources allocated by the driver without
changing the amount of memory allocated to it.

Add/Delete Device

Adding a device involves verifying that the device exists, associating a device handle to the device, and
storing context information about it. The driver uses this context information to control and monitor the
device.

Deleting a device involves shutting down the device and clearing the memory used for storing context
information about this device.

Device Initialization

The initialization function resets then initializes the device and any associated context information about
it. The driver uses this context information to control and monitor the TBS device.

Activate/De-Activate Device

Activating a device puts it into its normal mode of operation by enabling interrupts and other global
registers. A successful device activation also enables other API invocations.

TBS (PM5310) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-2001251, Issue 3

On the contrary, de-activating a device removes it from its operating state; it also disables interrupts and
other global registers.

Read/Write Device Registers

These functions provide a ‘raw’ interface to the device. Device registers that are both directly and
indirectly accessible are available for both inspection and modification via these functions. If applicable,
block reads and writes are also available.

Interrupt Servicing/Polling

Interrupt Servicing is an optional feature. The user can disable device interrupts and instead poll the
device periodically to monitor status and check for alarm/error conditions.

Both polling and interrupt driven approaches detect a change in device status and report the status to a
Deferred Processing Routine (DPR). The DPR then invokes application callback functions based on the
status information retrieved. This allows the driver to report significant events that occur within the
device to the application.

Statistics Collection

Functions are provided to retrieve a snapshot of the various counts that are accumulated by the TBS
device. Routines should be invoked often enough to avoid letting the counters rollover.

2.2 TBS Specific Driver Functions

These functions provide control and monitoring of the various sections of the TBS device. These sections
are generally enabled or disabled and configured by the MODE specified during device initialization.
Changes to these registers that would violate the characteristics of the initialized mode should be
disallowed.

The following sub-sections list out all the major blocks in the TBS and their key features. Functions will
be designed to configure, control and/or monitor those main blocks. The last sub-section is devoted to
callback functions specific to the TBS for application interface.

Time Slot Interchange

Functions are provided to control/configure all time-slot interchange blocks in the TBS including the
transmit working, protection, and auxiliary TSI, as well as the receive working, protection, and auxiliary
TSI. These functions perform:

�� read/write to and from the dual connection memory pages (pages 0 & 1) for each block

�� switch between the two connection pages (active and inactive) via software control

TBS (PM5310) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-2001251, Issue 3

Incoming 8B/10B Encoder

A function is provided to control/configure all the 8B/10B encoders in TBS:

�� configure the mode of incoming TelecomBus data stream (MST, or HPT)

Transmit Disparity Encoder

Functions are available for controlling all three transmit disparity encoders, namely the working,
protection, and auxiliary. These functions perform:

�� insertion of line code violation into data stream

�� insertion of test patterns

�� idle data insertion

Receive 8B/10B Decoder

This section is composed of all three receive 8B/10B decoders, namely the working, protection, and
auxiliary. Functions are available for:

�� reporting out-of-character alignment and out-of-frame alignment conditions

�� controlling insertion of AIS alarm

�� reporting line code violation counts

PRBS Processors

This section consists of all PRBS processors in the TBS including all four incoming TelecomBus PRBS
processors and the working, protection, and auxiliary receive PRBS processors. These functions perform
the following:

�� configure and control the PRBS Generator (to facilitate downstream equipment diagnostics)

�� insert the PRBS data pattern, B1/E1 byte, single bit error

�� configure the data stream payload (STS-48c, STS-36c, STS-24c, STS-12c, STS-3c or STS-1)

�� configure and monitor the PRBS Detector (to facilitate upstream equipment diagnostics)

�� resynchronize the PRBS sequence, control the PRBS pattern, compare B1/E1 byte, report error count

�� enable/disable event/error monitor interrupts, such as B1/E1 mismatch, byte error interrupts, and
synchronized status change

Device Diagnostics

�� device register read/write test

�� outgoing to incoming TelecomBus loopback;

�� incoming to outgoing TelecomBus loopback;

TBS (PM5310) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-2001251, Issue 3

�� Rx to Tx LVDS loopback

�� Tx and Rx LVDS loopback

Statistics and Alarm Monitoring

Functions are provided to gather statistics and do alarm monitoring; they are:

�� get/clear cumulative statistics

�� get delta statistics

�� get/set thresholds

Specific Callback Functions

Callback functions are available to the application for event notification from the device driver. The
application will be notified via the callback functions for selected events of interest, such as I/O events.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-2001251, Issue 3

3 SOFTWARE ARCHITECTURE
This section describes the software architecture of the TBS device driver. This includes a discussion of the
driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the TBS device driver.

Figure 1: Driver External Interfaces

RTOS

 Function Calls Application Callbacks

Hardware
Interrupts

Service Callbacks

Application

TBS Device Driver

TBS Devices

Service Calls

Register
Accesses

Application Programming Interface

The Driver Application Programming Interface (API) is a list of high-level functions that can be invoked
by application programmers to configure, control, and monitor the TBS devices. The API functions
perform operations that are more meaningful from a systems perspective. The API includes functions
such as:

�� initialize the device(s)

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-2001251, Issue 3

�� perform diagnostic tests

�� validate configuration information

�� retrieve status and statistics information

The driver API functions use the services of the other driver components to provide this system-level
functionality to the application programmer.

The driver API also consists of callback routines that are used to notify the application of significant
events that take place within the device(s) and module.

Real-Time Operating System (RTOS) Interface

The driver’s RTOS interface provides functions that let the driver use RTOS services. The driver requires
the memory, interrupt, and preemption services from the RTOS. The RTOS interface functions perform
the following tasks for the driver:

�� allocate and de-allocate memory

�� manage buffers for the ISR and the DPR

�� take and give semaphores

�� enable and disable preemption

The RTOS interface also includes service callbacks. These are functions installed by the driver using
RTOS service calls, such as installing interrupts and starting timers. These service callbacks are invoked
when an interrupt occurs or a timer expires.

Note: Users must modify the RTOS interface code to suit their RTOS.

Hardware Interface

The hardware interface provides functions that read from and write to the device registers; it also provides
a template for an ISR that the driver calls when the device raises a hardware interrupt. You must modify
this function based on the interrupt configuration of your system.

3.2 Main Components

Figure 2 illustrates the top-level architectural components of the TBS device driver. This applies in both
polled and interrupt driven operation. In polled operation, the ISR is called periodically. In interrupt
operation, the interrupt directly triggers the ISR.

The driver includes the following main components:

�� Module and device(s) data-blocks

�� Interrupt-service routine

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-2001251, Issue 3

�� Deferred-processing routine

�� Alarm, status, and statistics

�� I/O Configuration

�� Time Slot Interchange

�� 8B/10B Encoder/Decoder

�� Disparity Encoder

�� PRBS Processor

Figure 2: Driver Architecture

 Function
Calls

Register
Accesses

Hardware
Interrupts

Se
rv

ic
e

C
al

ls

Application

R
TO

S

TBS Devices

Deferred
Processing

Routine

Interrupt
Service
Routine

Interrupt
Context

R
TO

S
In

te
rfa

ce

Hardware Interface

Application
Callbacks

Se
rv

ic
e

C
al

lb
ac

ksDriver API

Alarm, Status &
Statistics

8B/10B Encoder/
Decoder

Time slot Interchange

I/O Configuration

Module
Data Block

Device Data Blocks

.......

Disparity Encoder

PRBS Processor

Module Data-Block and Device(s) Data-Blocks

The Module Data-Block (MDB) is the top-layer data structure; it is created by the TBS driver to store
context information about the driver module, such as:

�� Module state

�� Maximum number of devices

�� The DDB(s)

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-2001251, Issue 3

The Device Data-Block (DDB) is contained in the MDB and is initialized by the driver module for each
TBS device that is registered. There is one DDB per device, and there is a limit on the number of DDBs;
that limit is set by the user when the module is initialized. The DDB is used to store context information
about one device, such as:

�� Device state

�� Control information

�� Initialization parameters

�� Callback function pointers

Interrupt-Service Routine

The TBS driver provides an ISR called tbsISR that checks to see if there is any valid interrupt condition
present for the device. This function can be used by a system-specific interrupt-handler function to service
interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls tbsISR is system and
RTOS dependent. Therefore, it is outside the scope of the driver. Example implementations of an interrupt
handler, as well as functions that install and remove it, are provided as a reference in section 6.2. You can
customize these example implementations to suit your specific needs.

See section 3.5 for a detailed explanation of the ISR and the interrupt-servicing model.

Deferred-Processing Routine

The TBS driver provides a DPR called tbsDPR that processes any interrupt condition gathered by the
ISR for that device. Typically, this is a system-specific function, which runs as a separate task within the
RTOS, will call tbsDPR.

Example implementations of a DPR task, as well as functions that install and remove it, are provided as a
reference in section 7.6. You can customize these example implementations to suit your specific needs.

See section 3.5 for a detailed explanation of the DPR and interrupt-servicing model.

Alarms, Status, and Statistics

The alarm, status, and statistics section is responsible for monitoring alarms, tracking device status
information, and retrieving statistical counts for each device registered with (added to) the driver.

Input/Output Configuration

This section controls the data traffic on both the transmit and the receive side in the TelecomBus and the
LVDS serial links. Attributes such as data parity, traffic concatenation level (STS-48c, STS-12c, STS-3c
or STS-1), and J0 byte processing delay are to be set up correctly for proper operation.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-2001251, Issue 3

Time Slot Interchange

The section controls all time-slot interchange modules in the TBS including the transmit working,
protection, and auxiliary TSI, as well as the receive working, protection and auxiliary TSI. A TSI operates
as an independent entity and possesses a dual-connection memory page mechanism. This two-page setup
allows users to switch to an alternate timeslot mapping without disrupting the current operation. Memory
page switching can be achieved by either software control or via external hardware pins.

Incoming 8B/10B Encoder

This section controls all the 8B/10B encoders in the TBS to configure the mode of the incoming
TelecomBus data stream (MST, or HPT

Receive 8B/10B Decoder

This section controls all three receive 8B/10B decoders, namely the working, protection, and auxiliary.
The decoders are responsible for AIS alarm insertion, character and frame alignment, out-of-character or
out-of-frame alignment monitoring, and line code violation counting.

Disparity Decoder

This section controls all three transmit disparity encoders, namely the working, protection and auxiliary in
the TBS; it handles insertion of line code violations, test patterns, and idle data.

PRBS Processors

This section controls all PRBS processors in the TBS, including all four incoming TelecomBus PRBS
processors, as well as the working, protection, and auxiliary receive PRBS processors. A PRBS processor
can be further subdivided into a PRBS generator and a PRBS monitor.

The PRBS generator is used to facilitate downstream equipment diagnostics. It handles the PRBS data
pattern, the B1/E1 byte, and single-bit error insertion. Proper payload configuration (STS-48c, STS-36c,
STS-24c, STS-12c, STS-3c, or STS-1) is necessary to ensure correct operation.

The PRBS monitor is used for upstream equipment diagnostics; it does this through operations such as
PRBS pattern monitoring, comparison of B1/E1 byte, and PRBS sequence resynchronization. It also
requires correct payload configuration to function properly.

3.3 Software States

Figure 3 shows the software state diagram for the TBS driver. State transitions occur on the successful
execution of the corresponding transition functions shown. State information helps maintain the integrity
of the MDB and DDB(s) by controlling the set of operations allowed in each state.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-2001251, Issue 3

Figure 3: Driver Software States

Idle

Present

Inactive
tbsActivate

tbsDeActivate

Start

tbsAdd tbsDelete

Ready

tbsModuleClosetbsModuleStart

tbsModuleOpen

tbsModuleClose

tbsModuleStop

Start

PER-DEVICE STATES

MODULE STATES

tbsReset

tbsInit

tbsReset

Active

Module States

The following is a description of the TBS module states. See section 5.1 for a detailed description of the
API functions that are used to change the module state.

Start

The driver Module has not been initialized. In this state, the driver does not hold any RTOS resources
(memory, timers, etc.), has no running tasks, and performs no actions.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-2001251, Issue 3

Idle

The driver module has been initialized successfully. The Module Initialization Vector (MIV) has been
validated, the Module Data Block (MDB) has been allocated and loaded with current data, the per-device
data structures have been allocated, and the RTOS has responded without error to all the requests sent to it
by the driver.

Ready

This is the normal operating state for the driver module. This means that all RTOS resources have been
allocated and the driver is ready for devices to be added. The driver module remains in this state while
devices are in operation.

Device States

The following is a description of the TBS per-device states. The state that is mentioned here is the
software state as maintained by the driver; it is not the software state maintained inside the device itself.
See section 5.2 for a detailed description of the API functions that are used to change the per-device state.

Start

The device has not been initialized. In this state the device is unknown to the driver and performs no
actions. There is a separate flow for each device that can be added, and they all start here.

Present

The device has been successfully added. A Device Data Block (DDB) has been associated to the device
and updated with the user context; in addition, a device handle has been given to the user. In this state, the
device performs no actions.

Inactive

In this state, the device is configured but all data functions are de-activated, including interrupts and
alarms, and status and statistics functions.

Active

This is the normal operating state for the device. In this state, interrupt servicing or polling is enabled.

3.4 Processing Flows

This section describes the main processing flows of the TBS’s driver components.

The flow diagrams presented here illustrate the sequence of operations that take place for different driver
functions. The diagrams also serve as a guide to the application programmer by illustrating the sequence
in which the application must invoke the driver API.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-2001251, Issue 3

Module Management

The following diagram illustrates the typical function call sequences that occur when initializing or
shutting down the TBS driver module.

Figure 4: Module Management Flow Diagram

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores as
well as removing the ISR handler and DPR task.

Performs module level shutdown of the driver. De-allocates all the driver's
memory.

Perform all device level functions here (add, init, activate, de-activate,
reset, delete,...)

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers and installing the ISR handler
and DPR task.

Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
the contents of the MDB with the validated MIV.

tbsModuleStart

tbsModuleOpen

tbsModuleStop

tbsModuleClose

END

START

Device Management

The following figure shows the typical function call sequences that the driver uses to add, initialize, re-
initialize, and delete the TBS device.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-2001251, Issue 3

Figure 5: Device Management Flow Diagram

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. ISR routines for this device are
removed using sysTbsISRRemoveHandler when the module is closed.

Applies a software reset to the device to put it in its default startup state.

Removes the device from the list of devices being controlled by the TBS
driver. This function de-allocates the device context information for the
device being deleted.

In order to re-initialize the device, reset the device using tbsReset and go
through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables. ISR routines are installed when the module is started
using sysTbsISRInstallHandler. The device is now operational and all
other API can be invoked.

Applies a reset to the device and initializes the device registers and
associated RAMs based on the DIV passed by the user.

Detects the new device in hardware, assigns a DDB to the new device and
stores the user's context for the device. Returns a device handle to the
user.

tbsInit

tbsAdd

tbsActivate

tbsReset

tbsDeactivate

tbsReset

tbsDelete

END

START

3.5 Interrupt Servicing

The TBS driver services device interrupts using an interrupt service routine (ISR) that traps interrupts; the
driver also uses a deferred processing routine (DPR) that processes the interrupt conditions and clears
them; this lets the ISR execute quickly and exit. Most of the time-consuming processing of the interrupt
conditions is deferred to the DPR by queuing the necessary interrupt-context information to the DPR task.
The DPR function runs in the context of a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should set the DPR task’s
priority higher than the application task interacting with the TBS driver.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-2001251, Issue 3

The driver provides system-independent functions, tbsISR and tbsDPR. You must fill in the
corresponding system-specific functions, sysTbsISRHandler and sysTbsDPRTask. The
system-specific functions isolate the system-specific communication mechanism (between the ISR and
DPR) from the system-independent functions, tbsISR and tbsDPR.

Figure 6 illustrates the interrupt service model used in the TBS driver design.

Figure 6: Interrupt Service Model

tbsISR

sysTbsISRHandler

tbsDPR

Interrupt
Context

Information
sysTbsDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service model in the TBS driver
to process the device’s event-indication registers (see page 39).

Calling tbsISR

An interrupt handler function, which is system dependent, must call tbsISR. But first, the low-level
interrupt-handler function must trap the device interrupts. You must implement this function to fit your
own system. As a reference, an example implementation of the interrupt handler (sysTbsISRHandler)
appears on page 94. You can customize this example implementation to suit your needs.

The interrupt handler that you implement (sysTbsISRHandler) is installed in the interrupt vector table
of the system processor. It is called when one or more TBS devices interrupt the processor. The interrupt
handler then calls tbsISR for each device that is in the active state and that has interrupt processing
enabled.

The tbsISR function reads from the master interrupt-status registers and disables the interrupt cause. If
at least one valid interrupt condition is found, then tbsISR fills an Interrupt Service Vector (ISV) with
this status information as well as the current device handle. The tbsISR function also clears and disables
all the device’s detected interrupts. The sysTbsISRHandler function is then responsible for sending
this ISV buffer to the DPR task.

Note: Normally you should save the status information for deferred processing by implementing a
message queue. The interrupt handler sends the status information to the queue by using the
sysTbsISRHandler.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-2001251, Issue 3

Calling tbsDPR

The sysTbsDPRTask function is a system-specific function that runs as a separate task within the
RTOS. You should set the DPR task’s priority higher than that of any application tasks that are interacting
with the TBS driver. In the message-queue implementation model, this task has an associated message
queue. The task waits for messages from the ISR on this message queue. When a message arrives,
sysTbsDPRTask calls the DPR (tbsDPR) with the received ISV.

At that point, tbsDPR processes the status information and takes appropriate action based on the
specific interrupt condition detected; it also reads the miscellaneous interrupt-status registers and then re-
enables the interrupt cause. The nature of this processing can differ from system to system. Therefore,
tbsDPR calls different indication callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message posting functions that post
messages to an application task. However, you can implement the indication callback to perform
processing within the DPR task context and return without sending any messages. In this case, ensure that
this callback function does not call any API functions that would change the driver’s state, such as
tbsDelete. Also, ensure that the callback function is non-blocking because the DPR task executes while
TBS interrupts are disabled. You can customize these callbacks to suit your system. See page 88 for
example implementations of the callback functions.

Note: Since the tbsISR and tbsDPR routines themselves do not specify a communication
mechanism, you have full flexibility in choosing a communication mechanism between the two. A
convenient way to implement this communication mechanism is to use a message queue, which is a
service that most RTOSs provide.

You must implement the two system specific functions, sysTbsISRHandler and sysTbsDPRTask.
When the driver calls sysTbsISRHandlerInstall, the application installs sysTbsISRHandler in
the interrupt vector table of the processor, and the sysTbsDPRTask function is spawned as a task by the
application. The sysTbsISRHandlerInstall function also creates the communication channel
between sysTbsISRHandler and sysTbsDPRTask. This communication channel is most commonly a
message queue associated with the sysTbsDPRTask.

Similarly, during removal of interrupts, the driver removes sysTbsISRHandler from the
microprocessor’s interrupt vector table and deletes the task associated with sysTbsDPRTask.

As a reference, this manual provides example implementations of the interrupt installation and removal
functions on pages 94 and 101. Users can customize these prototypes to suit their specific needs.

Calling tbsPoll

Instead of using an interrupt service model, you can use a polling service model in the TBSdriver to
process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the TBS driver design.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-2001251, Issue 3

Figure 7: Polling Service Model

tbsISR

tbsPoll

tbsDPR

Interrupt
Context

Information
Indication
Callbacks

Application

In polling mode, the application is responsible for calling tbsPoll often enough to service any pending
error or alarm conditions. When tbsPoll is called, the tbsISR function is called internally.

The tbsISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the TBS. If at least one valid interrupt condition is found, then tbsISR fills
an Interrupt Service Vector (ISV) with this status information, as well as the current device handle. The
tbsISR function also clears and disables all the device’s detected interrupts. In polling mode, this ISV
buffer is passed to the DPR task by calling tbsDPR internally.

3.6 Theory of Operation

TBS Overview

Figure 8: Device Traffic Flow Illustration

ITPP
ID8E

TWTI

TPTI

TATI

TWDE

TPDE

TADE

Working

Protection

Aux

Incoming
TeleCombus (byte-parallel)

Serial
LVDS

RW8D

RP8D

RA8D

Working

Protection

Aux

Serial
LVDSOutgoing

TeleCombus
(byte-parallel) TBS Traffic Flow

transmit

receive

OT8DOTPG

RWPM

RPPM

RAPM

RWTI

RPTI

RATI

IP8E

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-2001251, Issue 3

Table 1: TBS Block Description

Logical Block Name Software Block Name Definition

ITPP PRBS[TRANSMIT][x]* Incoming TelecomBus PRBS processor

ID8E & IP8E IX8E Incoming 8B/10B encoders

TWTI TSI[TRANSMIT]
[WORKING]

Transmit working TSI

TPTI TSI[TRANSMIT]
[PROTECTION]

Transmit protection TSI

TATI TSI[TRANSMIT][AUX] Transmit auxiliary TSI

TWDE TXDE[WORKING] Transmit disparity encoder

TPDE TXDE[PROTECTION] Transmit disparity encoder

TADE TXDE[AUX] Transmit disparity encoder

RW8D RX8D[WORKING] Receive working 8B/10B decoder

RP8D RX8D[PROTECTION] Receive protection 8B/10B decoder

RA8D RX8D[AUX] Receive auxiliary 8B/10B decoder

OT8D OT8D Outgoing 8B/10B decoder

RWPM PRBS[RECEIVE]
[WORKING]

Receive working PRBS monitor

RPPM PRBS[RECEIVE]
[PROTECTION]

Receive protection PRBS monitor

RAPM PRBS[RECEIVE][AUX] Receive auxiliary PRBS monitor

RWTI TSI[RECEIVE]
[WORKING]

Receive working TSI

RPTI TSI[RECEIVE]
[PROTECTION]

Receive protection TSI

RATI TSI[RECEIVE][AUX] Receive auxiliary TSI

OTPG PRBS[RECEIVE][x]* Outgoing PRBS generator

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-2001251, Issue 3

Notes: *x denotes don’t-care terms in the channel type; they can be either WORKING, PROTECTION, or
AUX.

The TBS implements byte-parallel TelecomBus and bit-serial 8B/10B-based TelecomBus conversion. On
the transmit (ingress) side, the TBS connects an incoming, parallel TelecomBus data stream to a set of
three (working, protection, and auxiliary) serial LVDS (TelecomBus) bit streams. 8B/10B encoders
(IX8E) are present to encode the incoming data into an extended set of 8B/10B characters. Special
8B/10B characters encode transport and payload frame boundaries, pointer justification events, and alarm
conditions. The PRBS processor (ITPP) is present to monitor incoming payloads and overwrite PRBS
patterns for diagnosis by downstream equipment. A set of three time-slot interchanges (TSI) is designed
for arbitrary mapping of time slots at STS-1 granularity. Multicast is supported. Disparity encoders
(TXDE) are present to handle a polarity change after a possible time slot re-mapping.

On the receive (egress) side, the TBS connects three independent serial TelecomBus links to the outgoing
byte-parallel TelecomBus. 8B/10B decoders (Rx8D) are employed to decode received 8B/10B characters
and control signals. There are a set of three TSIs that are used to handle arbitrary time slot remapping
from the received data to the outgoing TelecomBus. The PRBS processors (OTPG and RxPM) are also
available to monitor the decoded payload and to generate PRBS traffic patterns for diagnosis by
downstream equipment.

Time Slot Mapping

Figure 9: Time Slot Interchange Model

inPort outPort

TSI[tdir][chnlType]
timeslot#

12 ... 1

timeslot#

12 ... 1

1
2
3
4

1
2
3
4

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-2001251, Issue 3

The TBS has a total of 6 time-slot interchange units (TSI) for time-slot mapping; each of these is capable
of handling a STS-48 data stream. A TSI is described by 2 parameters, tdir and chnlType; these
denote the traffic direction (TRANSMIT or RECEIVE) and the channel type (WORKING,
PROTECTION, or AUX) respectively. Mapping is defined at STS-1 granularity; however, a valid
mapping must still fit into the required time slot map in a manner mandated by the channel’s data rate.
The user has the responsibility to maintain data integrity when redefining the connection map.

Time-slot interchange can be viewed as a process of mapping source time slots to destination time slots.
It is equivalent to establishing a one-to-one mapping or one to many mapping between the source slots
and the destination slots, depending on whether the connection is unicast or multicast.

The TSI model appears to be switching in both space and time (i.e., one can map an STS-1 timeslot from
port#1, timeslot#1 to port#3, timeslot#10). It is important to point out that the TSI is actually performing
only timeslot remapping. The apparent space switching is due to the STS-48 stream multiplexing across
4 STS-12 links (one can re-label the timeslots from #1 to #48 instead of 4 ports each with timeslots from
#1 to #12). We will, however, retain this space- and time-switching view; a view that matches the
hardware layout.

Figure 10: Space-time Slot Mapping, Multicast and Unicast

Unicast

Multicast

source slots destination slots

tbsMapSlot establishes the mapping between the source space-time slot and the destination space-time
slot(s). tbsRmSlot disconnects the established connection between the given source and destination
slots. tbsClrSlot clears all connections for the given source slot.

The user must be in one of two modes when mapping slots: normal or overwrite. The user can switch
modes at will by calling the API function tbsDeviceSetConfig.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-2001251, Issue 3

In normal mode, the driver keeps track of all connections. Before connecting to an already occupied time
slot, the user must first remove the old connection via tbsRmSlot or tbsClrSlot. This provides
additional protection in setting up and tearing down connections.

In overwrite mode, the user has more autonomy in connection management. The driver does not check
existing connections prior to setting up new ones, because tbsMapSlot essentially overwrites any
existing connections. The user is fully responsible for keeping track. Note that if it is necessary to update
active TSI pages in the application, using overwrite mode guarantees hitless updates.

The function tbsGetDestSlot returns the destination slot(s) when given the source slot.
tbsGetSrcSlot returns the source slot when given the destination slot. tbsIsMulticast verifies if
the given slot is mapped to multiple destination slots. tbsSetMapMode sets the global mapping mode of
all the TSIs in the device. There are two valid modes: user-defined or bypass. Bypass mode puts the chip
in a through mode; when in this mode, time-slot rearrangement will not take place. If the user-defined
mode is selected, time slots will be re-arranged based on the connection map inside the device.
tbsGetMapMode retrieves the current mapping mode of the device.

There are two connection pages in each TSI, page 0 and 1. tbsSetPage provides software control of the
active connection memory page in the TSI. The given page is exclusive-ORed with either the hardware
pin TCMP (controls ingress TSIs) or OCMP (controls egress TSIs) to determine which active page is
currently active. tbsGetPage queries the current active connection page. For connection page
synchronization, tbsCopyPage overwrites one connection page with the other within the TSI block.

Software select page Hardware pin xCMP Active page

0 0 0

0 1 1

1 0 1

1 1 0

For each time slot in the outgoing TelecomBus, it can accept data from one and only one source time slot
from either the working, protection, or auxiliary TSI. tbsIsValidMap verifies the connection map
setting in all the receive TSIs to see if more than one source time slot (from the receive TSIs) has been
assigned to an outgoing TelecomBus time slot. It is important to point out that even if multiple RxTSEN
bits are high, the RWTSEN bit will take precedence and the data from the working channel will be
selected over that of other channels. In essence, tbsIsValidMap looks for multiple ones settings of the
RxTSEN bits in the TSIs.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-2001251, Issue 3

When mapping time slots on the transmit side, there is an extra parameter to set for selecting where the
data source is (either from ID8E or IP8E blocks). On the transmit side, the data stream flows from the
ITPP block to both the ID8E and the IP8E block. As a result, the TxTI blocks have a choice of selecting
data either from the ID8E or IP8E block on a per time-slot basis. Hence, there is an extra field, srcSel, in
the data structure sTBS_SPTSLOT, governing where the data is drawn from when mapping slots in TxTI.
In the implementation, srcSel=0 selects ID8E and a non-zero value for srcSel chooses IP8E as the data
source. This extra control allows users to mix PRBS data and/or clear data coming out from the ITPP in
one single TxTI block. In addition, tbsGetSrcSlot and tbsGetDestSlot use this to specify if the
timeslot belongs to the ID8E or IP8E block on the transmit side. The parameter is ignored when
performing RxTI mapping.

FIFO Centering

tbsTXDECenterFIFO forces the FIFO depth in the transmit disparity encoders to be 4 8B/10B
characters deep if the current FIFO depth is not in the range of 3, 4 or 5 characters. If the current FIFO
depth is in the 3, 4 or 5 range, this function has no effect. This function should be invoked when either:
(1) the external system clock stabilizes or (2) after a FIFO overrun/underrun error is detected as part of a
recovery procedure.

Alarms, Status and Statistics

This section handles alarm generation, retrieval and maintenance of statistics/event counters, and status
retrieval.

Statistics are accumulated and events are counted inside the status block. For each statistic/event,
cumulative as well as delta counters are kept. The delta counter contains the statistic/event count since the
last query. tbsGetStats and tbsGetDelta retrieve the cumulative and delta statistics counters
respectively. The Delta statistics counters are cleared after a query. tbsClrStats clears the
cumulative statistics counters when invoked. Instead of having callbacks for each and every event (or
statistic), the user may wish to only have callbacks after a user-specified count/occurrence is
detected/encountered. tbsGetThresh and tbsSetThresh are for dynamically retrieving and setting
the event/statistic thresholds, respectively. In addition, if zero or one is set as threshold for a particular
event, callbacks will be made for every event occurrence.

Device status can be retrieved by invoking tbsGetStatus. Many signals − such as synchronization
state of an 8B/10B decoder, B1/E1 byte received by a PRBS monitor, and bus activity indicator − can be
instantly read back using this function.

tbsGenAIS enables/disables the insertion of AIS alarms in the event of out-of-frame alignment being
detected in the receive 8B/10B decoders.

Diagnostics

The purpose of this section is to perform system/device diagnostics. These diagnostics would include
loopbacks, generation of line-code violations on a TelecomBus, PRBS traffic insertion, and error
insertion.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-2001251, Issue 3

Loopback Functions

The loopback functions allow several blocks inside the TBS to be placed in diagnostic loopback
operation. tbsLoopOut2InTCB loops back the outgoing TelecomBus to the incoming one; while
tbsLoopIn2OutTCB loops back the incoming TelecomBus to the outgoing one. tbsLoopRx2TxLVDS
loops back the receive serial LVDS links to the transmit serial LVDS and tbsLoopTx2RxLVDS loops
back the transmit serial LVDS links to the receive serial LVDS.

PRBS Processor

Figure 11: PRBS Processor Model

inPort outPorttimeslot#
12 ... 1

timeslot#
12 ... 1

1
2
3
4

1
2
3
4

The PRBS processors (generators and monitors) are present to perform device/system diagnostics. There
are a total of two PRBS generators, one on the transmit side and one on the receive side. There are a total
of four PRBS monitors, one on the transmit side and three on the receive side (i.e., working, protection
and auxiliary). Individual PRBS generators or monitors are specified by one or two of the following
arguments: tdir and chnlType.

Each port in the PRBS processor has to be configured separately to handle different traffic payloads. A
PRBS processor can handle traffic from STS-1 to STS-48c. tbsPayloadCfg configures each port in the
PRBS processor for different traffic payload configuration.

tbsPrbsGenCfg configures and controls the PRBS generator. The user may command the generator to
operate in autonomous or TelecomBus mode, generate PRBS or sequential patterns, invert PRBS bytes
prior to insertion, replace B1/E1 bytes, and access the LFSR. In addition, the current PRBS generator
setting can also be retrieved using this function. Moreover, the user can also force bit errors in the
generator using tbsPrbsForceBitErr.

TBS (PM5310) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-2001251, Issue 3

Similarly, tbsPrbsMonCfg functions in a similar fashion for the PRBS monitor; it can be setup to
operate in the autonomous or TelecomBus mode, invert PRBS byte for monitoring, monitor B1/E1 bytes,
and monitor either PRBS or sequential patterns. In addition, the user may force the monitor to re-
synchronize using tbsPrbsResync.

Error Insertion

The user can force a line-code violation (LCV) in the transmit side disparity encoders by calling
tbsTXDEForceLcv.

In addition, the user can insert known test patterns into the following blocks for further diagnostics:
disparity encoders and transmit TSIs. A user-defined test pattern can be inserted into the data stream via
the disparity encoder using tbsInsertTP. For the transmit TSIs, tbsInsIdleData introduces a known
data pattern (should be an 8B/10B character) into the data stream.

Finally, the user can also introduce a series of out-of-synchronization conditions in the 8B/10B decoders.
tbsForceOutOfChar forces out of character alignment in the block which will then attempt to realign
with the alignment character (K28.5) in the data stream. In addition, out-of-frame errors may be
introduced by invoking tbsForceOutOfFrm. The decoder will again attempt to resynchronize with the
alignment character (K28.5).

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-2001251, Issue 3

4 DATA STRUCTURES
This section describes the elements of the driver that configure or control its behavior and therefore
should be of interest to the application programmer. Included here are the constants, variables, and
structures that the TBS device driver uses to store initialization, configuration, and statistics information.
For more information on our naming convention, the reader is referred to section 0.

4.1 Constants

The following Constants are used throughout the driver code:

�� <TBS ERROR CODES>: error codes used throughout the driver code, returned by the API functions,
and used in the global error number field of the MDB and DDB.

�� TBS_MAX_DEVS: defines the maximum number of devices that can be supported by this driver. This
constant must not be changed without a thorough analysis of the consequences to the driver code.

�� TBS_MOD_START, TBS_MOD_IDLE, TBS_MOD_READY: the three possible module states (stored in
stateModule).

�� TBS_START, TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE: the four possible device states (stored
in stateDevice).

�� TBS_NUM_TSIPAGE: defines the number of connection memory pages present in a TSI block.

�� TBS_NUM_CHNLTYPE: defines the number of channels (working, protection, …) on the egress side in
the device.

�� TBS_NUM_TSLOTS: the value of this constant minus one defines the number of time slots in one data
stream.

�� TBS_NUM_TCBSTM: the value of this constant minus one defines the number of data streams on both
the ingress side and the egress side per channel.

�� eTBS_TSIMODE: this is an enumerated type that defines all the TSI mapping modes.

�� eTBS_PTMODE: this is an enumerated type that defines all the path termination modes.

�� eTBS_TRAFFICDIR: this is an enumerated type that defines the traffic flow direction.

�� eTBS_CHNLTYPE: this is an enumerated type that defines all the channel types (working, protection,
and auxiliary).

4.2 Data Structures

The following are the main data structures used by the TBS driver. There are three types:

�� Structures that are passed by the application

�� Structures that are in the driver’s allocated memory

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-2001251, Issue 3

�� Structures that are passed through RTOS buffers

Structures Passed by the Application

These structures are defined for use by the application and are passed as arguments to functions within the
driver. The structures are: the module Initialization Vector (MIV), the Device Initialization Vector (DIV),
and the ISR mask.

Module Initialization Vector: MIV

Passed via the tbsModuleOpen call, this structure contains all the information needed by the driver to
initialize and connect to the RTOS.

�� perrModule is a pointer to the errModule which indicates the last error encountered in an operation.

�� maxDevs is used to inform the driver of how many devices will be operating concurrently during this
session. The number is used to calculate the amount of memory that will be allocated to the driver.
The maximum value that can be passed is TBS_MAX_DEVS (see section 4.1).

Table 2: TBS Module Initialization Vector: sTBS_MIV

Field Name Field Type Field Description

perrModule INT4 * (pointer to) errModule (see description
in the MDB)

maxDevs UINT2 Maximum number of devices supported
during this session

Device Initialization Vector: DIV

Passed via the tbsInit call, this structure contains all the information needed by the driver to initialize a
TBS device. If a NULL pointer is supplied, the device will be left at the power up hardware reset state
and no software initialization will take place. For a detailed description of the hardware reset state, please
refer to the TBS Engineering Document (PMC-990522).

�� valid: Reserved. Driver accesses this field. Do not write to it

�� pollISR is a flag that indicates the type of interrupt servicing the driver is to use. The choices are
‘polling’ (TBS_POLL_MODE), and ‘interrupt driven’ (TBS_ISR_MODE). When configured in ‘polling,’
the Interrupt capability of the device is NOT used, and the user is responsible for calling devicePoll
periodically. The actual processing of the event information is the same for both modes.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-2001251, Issue 3

�� cbackIO, cbackTSI, cbackPRBS, cbackTXDE, and cbackRX8D are used to pass the
address of application functions that will be used by the DPR to inform the application code of
pending events. If these fields are set as NULL, then any events that might cause the DPR to ‘call
back’ to the application will be processed during ISR processing but ignored by the DPR.

�� cfgDev is the device configuration block.

�� intrmask is the interrupt mask.

�� initPayloadCfg is a Boolean variable indicating whether or not PRBS processor payload
configuration will take place. If TRUE, the following PRBS payload configuration parameters will
be used to configure all the PRBS generators and monitors. Otherwise, the following parameter
blocks will be ignored.
�� cfgIgPrbsGen [TBS_NUM_TCBSTM] is the ingress PRBS generator’s payload configuration

blocks
�� cfgIgPrbsMon [TBS_NUM_TCBSTM] is the ingress PRBS monitor’s payload configuration

blocks.
�� cfgEgPrbsGen [TBS_NUM_TCBSTM] is the egress PRBS generator’s payload configuration

blocks.
�� cfgEgPrbsMon [TBS_NUM_CHNLTYPE][TBS_NUM_TCBSTM] is the egress PRBS monitor’s

payload configuration blocks.

�� initTSImap is a Boolean variable indicating whether TSI connection maps will be initialized. If
TRUE, all the TSI connection maps will be initialized with the following connection maps.
Otherwise, there will not be TSI map initialization and the following connection maps are ignored.

�� txtiConMap[TBS_NUM_CHNLTYPE] is the connection map for all the transmit TSIs

�� rxtiConMap [TBS_NUM_CHNLTYPE] is the connection map for all the receive TSIs

Table 3: TBS Device Initialization Vector: sTBS_DIV

Field Name Field Type Field Description

valid UINT2 Unused

pollISR TBS_POLL Indicates the type of ISR /
polling to do

cbackIO sTBS_CBACK Address for the callback function
for I/O events

cbackTSI sTBS_CBACK Address for the callback function
for time slot interchange events

cbackPRBS sTBS_CBACK Address for the callback function
for PRBS processor events

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

cbackTXDE sTBS_CBACK Address for the callback function
for disparity encoder events

cbackRX8D sTBS_CBACK Address for the callback function
for 8B/10B decoder events

cfgDev sTBS_CFG_DEVICE Device configuration block

intrmask sTBS_MASK Interrupt mask

initPayloadCfg BOOL Payload configuration indicator.
0 = not configured, 1 =
configured with given payload
configuration blocks

cfgIgPrbsGen
[TBS_NUM_TCBSTM]

sTBS_CFG_PYLD Ingress(transmit) PRBS
generator payload configuration
block

cfgIgPrbsMon
[TBS_NUM_TCBSTM]

sTBS_CFG_PYLD Ingress(transmit) PRBS monitor
payload configuration block

cfgEgPrbsGen
[TBS_NUM_TCBSTM]

sTBS_CFG_PYLD Egress(receive) PRBS generator
payload configuration block

cfgEgPrbsMon
[TBS_NUM_CHNLTYPE]
[TBS_NUM_TCBSTM]

sTBS_CFG_PYLD Egress(receive) PRBS monitor
payload configuration block

initTSImap BOOL TSI connection map
initialization indicator. 0 = not
initialized, 1 = initialized with
given map

txtiConMap
[TBS_NUM_CHNLTYPE]

sTBS_TSI_CONMAP Transmit TSI connection map

rxtiConMap
[TBS_NUM_CHNLTYPE]

sTBS_TSI_CONMAP Receive TSI connection map

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-2001251, Issue 3

Device Configuration Block: DEVICE

Used in the DIV for storing the device configuration.

Table 4: TBS Device Configuration Data Structure: sTBS_CFG_DEVICE

Field Name Field Type Field Description

iop UINT1 Incoming odd parity bit inclusion, 0 = even, 1 =
odd

incij0j1 UINT1 Incoming composite frame pulse bit inclusion, 0
= not included, 1 = included

incipl UINT1 Incoming payload active bit inclusion, 0 = not
included, 1 = included

oop UINT1 Outgoing odd parity bit inclusion, 0 = even, 1 =
odd

incoj0j1 UINT1 Outgoing composite frame pulse bit inclusion,
0 = not included, 1 = included

incopl UINT1 Outgoing payload active bit inclusion, 0 = not
included, 1 = included

rwsel_en UINT1 Device pin rwsel enable, 0 = disable, 1 = enable

rj0dly UINT2 J0 byte processing delay in cycles

rx8d_ofaais
[TBS_NUM_CHNLTYPE]
[TBS_NUM_TCBSTM]

UINT1 AIS insertion enable in Rx8D blocks, 0 = no
insertion, 1 = insertion

id8e_tmode
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

eTBS_PTMODE ID8E block termination mode for each time slot:
0 = MST, 1 = HPT

ip8e_tmode
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

eTBS_PTMODE IP8E block termination mode for each time slot:
0 = MST, 1 = HPT

csu_ena UINT1 CSU enable control bit. This bit is active low
and a logic zero enables the CSU.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

csu_rstb UINT1 CSU reset, holds this bit low for at least 100
microseconds for proper CSU reset. This bit
provides a mean to force a CSU reset by the
user.

notepad UINT2 Software ID register that retains a user word
even after a reset.

dll_lock UINT1 Controls the DLL to track the phase offset
between SYSCLK and REFCLK when this field
is low, ignores the phase offset when set to high

tsiOverwrite BOOL TSI mapping mode: 0 = normal, 1 = overwrite

Payload Configuration Block: PYLD

This is used in the DIV and DDB to store the payload configuration for the PRBS generators and
monitors.

Table 5: TBS Payload Configuration Block: sTBS_CFG_PYLD

Field Name Field Type Field Description

sts12csl UINT1 Selects the slave payload configuration. 0 = all time slots
are part of concatenated master payload, 1 = all time slots
are part of a slave payload

sts12c UINT1 Selects payload configuration. 0 = STS-1 paths are defined
by sts3c bits, 1 = all time slots are part of the same
concatenated payload defined by msslen bits.

msslen UINT1 Selects payload configuration to be processed. 0x0 = STS-
12c or below
0x1 = STS-24c
0x2 = STS-36c
0x3 = STS-48c

sts3c UINT1 STS-3c payload configuration bits. The 4 LSBs are used
(sts3c[3..0]).
sts3c[x] = 0: STS-1 time slot #(1+x), #(5+x), #(9+x) are part
of STS-3c payload
sts3c[x] = 1: STS-1 time slot #(1+x), #(5+x), #(9+x) are
independent STS-1 payload

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-2001251, Issue 3

TSI Connection Map: CONMAP

Used in the DIV and DDB for storing the TSI connection maps.

Table 6: TBS TSI Connection Map Data Structure: sTBS_TSI_CONMAP

Field Name Field Type Field Description

pg
[TBS_NUM_TSIPAGE]

sTBS_TSI_CONPAGE Connection maps consist of multiple
connection pages

TSI Connection Page: CONPAGE

Used in the DIV and CONMAP for storing the TSI connection maps.

Table 7: TBS TSI Connection Page Data Structure: sTBS_TSI_CONPAGE

Field Name Field Type Field Description

destSlot
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

sTBS_SPTSLOT Connection pages consist of slots
mapping

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-2001251, Issue 3

TSI Space-Time Slot: SPTSLOT

Used in the DIV and CONPAGE to represent space-time slot mapping.

Table 8: TBS Space-time Slot Data Structure: sTBS_SPTSLOT

Field Name Field Type Field Description

numPort UINT2 Port number

numTS UINT2 Time slot number

srcSel UINT1 Data source control (applicable only when
dealing with TxTI blocks)

ISR Enable/Disable Mask

Passed via the tbsSetMask, tbsGetMask and tbsClearMask calls, this structure contains all the
information needed by the driver to either enable or disable any of the interrupts in the TBS

Table 9: TBS ISR Mask: sTBS_MASK

Field Name Field Type Field Description

io_ipe
[TBS_NUM_TCBSTM]

UINT2 Interrupt enable for incoming data
parity error interrupts (0 = disable, 1
= enable)

txti_coap
[TBS_NUM_CHNLTYPE]

UINT2 Interrupt enable for change in active
connection page in transmit TSIs
interrupts (0 = disable, 1 = enable)

rxti_coap
[TBS_NUM_CHNLTYPE]

UINT2 Interrupt enable for change in active
connection page in receive TSIs
interrupts (0 = disable, 1 = enable)

txde_fifoerr
[TBS_NUM_CHNLTYPE][TBS_
NUM_TCBSTM]

UINT2 Interrupt enable for transmit disparity
encoder FIFO error interrupts (0 =
disable, 1 = enable)

rx8d
[TBS_NUM_CHNLTYPE]

sTBS_EVT_RX8D Interrupt enable for receive 8B/10B
decoder block. Individual interrupt
that corresponds to each event in the
data structure is enabled/disabled
separately. (0 = disable, 1 = enable)

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

itpp sTBS_EVT_PRBS Interrupt enable for incoming PRBS
monitor block. Individual interrupt
that corresponds to each event in the
data structure is enabled/disabled
separately. (0 = disable, 1 = enable)

rxpm
[TBS_NUM_CHNLTYPE]

sTBS_EVT_PRBS Interrupt enable for receive PRBS
monitor block. Individual interrupt
that corresponds to each event in the
data structure is enabled/disabled
separately. (0 = disable, 1 = enable)

csuLocke UINT2 Interrupt enable for CSU lock state
change interrupt (0 = disable, 1 =
enable)

dllError UINT2 Interrupt enable for DLL block (0 =
disable, 1 = enable)

8B/10B Decoder Events: EVT_RX8D

This structure encompasses all events in a receive 8B/10B decoder block. All the fields can be interpreted
in two ways. In the context of interrupt masking, the fields set/clear the corresponding hardware interrupt
bits. In the context of event counting, the fields serve as occurrence counters and threshold levels for a
particular event/interrupt. Data field lcvCt[] is the only exception. Since there are no hardware
interrupts associated with line code violation counters. This field is not applicable in interrupt masking.

Table 10: TBS 8B/10B Decoder Event: sTBS_EVT_RX8D

Field Name Field Type Field Description

oca
[TBS_NUM_TCBSTM]

UINT4 Out of character alignment interrupt per
port.

ofa
[TBS_NUM_TCBSTM]

UINT4 Out of frame alignment interrupt per port.

fuo
[TBS_NUM_TCBSTM]

UINT4 FIFO underrun/overrun interrupt per port

lcv
[TBS_NUM_TCBSTM]

UINT4 Line code violation interrupt per port.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

lcvCt
[TBS_NUM_TCBSTM]

UINT4 Line code violation counter per port. Not
defined in the context of interrupt mask.
Only defined in event counting.

PRBS Processor Events: EVT_PRBS

This structure includes all the events in a PRBS monitor block. All data fields can be interpreted in two
ways. In the context of interrupt masking, the fields set/clear the corresponding hardware interrupt bits.
In the context of event counting, the fields serve as occurrence counters and threshold levels for a
particular event/interrupt. Data field byteErrCt[][] is the only exception, since there are no hardware
interrupts associated with line code violation counters. This field is not applicable in interrupt masking.

Table 11: TBS PRBS Monitor Event: sTBS_EVT_PRBS

Field Name Field Type Field Description

monerr
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT4 Monitor byte error interrupt per slot

monb1e1
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT4 Monitors B1/E1 byte mismatch interrupt
per slot

monsync
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT4 Monitors synchronization state change
interrupt per slot

byteErrCt
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT4 Monitors byte error counter detected in
the block defined in event counting, but
not applicable in the context of interrupt
masking.

Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver; they are part of the context memory allocated when
the driver is opened. The structures are: the Module Data Block (MDB), and the Device Data Block
(DDB).

Module Data Block: MDB

The MDB is the top-level structure for the module. It contains configuration data about the module level
code and pointers to configuration data about the device level codes.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-2001251, Issue 3

�� errModule − Most of the module API functions return a specific error code directly. When the
returned code is TBS_FAILURE, this indicates that the top-level function was not able to carry the
specified error code back to the application. Under those circumstances, the proper error code is
recorded in this element. The element is the first in the structure so that the user can cast the MDB
pointer into a INT4 pointer and retrieve the local error (this eliminates the need to include the MDB
template into the application code).

�� valid indicates that this structure has been properly initialized and may be read by the user.

�� stateModule contains the current state of the module and could be set to: TBS_MOD_START,
TBS_MOD_IDLE or TBS_MOD_READY.

�� maxDev indicates the maximum number of devices supported by the driver

�� numDevs indicates the number of devices currently registered in the driver

�� pddb is a pointer to an array of device data blocks (DDB) inside the driver.

Table 12: TBS Module Data Block: sTBS_MDB

Field Name Field Type Field Description

errModule INT4 Global error Indicator for module calls

valid UINT2 Indicates that this structure has been initialized

stateModule TBS_MOD_STATE Module state; can be one of the following
IDLE or READY

maxDevs UINT2 Maximum number of devices supported

numDevs UINT2 Number of devices currently registered

pddb sTBS_DDB * (array of) Device Data Blocks (DDB) in
context memory

Device Data Block: DDB

The DDB is the top-level structure for each device. It contains configuration data about the device level
code and pointers to configuration data about device level sub-blocks.

�� errDevice − Most of the device API functions return a specific error code directly. When the
returned code is TBS_FAILURE, this indicates that the top-level function was not able to carry the
specific error code back to the application. In addition, some device functions do not return an error
code. Under those circumstances, the proper error code is recorded in this element. The element is the
first in the structure so that the user can cast the DDB pointer to a INT4 pointer and retrieve the local
error (this eliminates the need to include the DDB template in the application code).

�� valid indicates that this structure has been properly initialized and may be read by the user.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-2001251, Issue 3

�� stateDevice contains the current state of the Device and could be set to: TBS_START,
TBS_PRESENT, TBS_ACTIVE or TBS_INACTIVE.

�� usrCtxt is a value that can be used by the user to identify the device during the execution of the
callback functions. It is passed to the driver when tbsAdd is called and returned to the user in the
DPV when a callback function is invoked. The element is unused by the driver itself and may contain
any value.

�� For the rest of the members inside the structure, please refer to their respective description fields
inside the table.

Table 13: TBS Device Data Block: sTBS_DDB

Field Name Field Type Field Description

errDevice INT4 Global error indicator for device
calls

valid UINT2 Indicates that this structure has been
initialized

stateDevice eTBS_DEV_STATE Device State can be one of the
following PRESENT, ACTIVE or
INACTIVE

baseAddr void* Base address of the Device

usrCtxt sTBS_USR_CTXT Stores the user’s context for the
device. It is passed as an input
parameter when the driver invokes
an application callback

pollISR sTBS_POLL Indicates the current type of ISR /
polling

cbackIO sTBS_CBACK Address for the callback function
for I/O events

cbackTSI sTBS_CBACK Address for the callback function
for time slot interchange events

cbackPRBS sTBS_CBACK Address for the callback function
for PRBS processor events

cbackTXDE sTBS_CBACK Address for the callback function
for disparity encoder events

cbackRX8D sTBS_CBACK Address for the callback function
for 8B/10B decoder events

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

div sTBS_DIV DIV copy given at initialization

txtiMap
[TBS_NUM_CHNLTYPE]

sTBS_TSI_CONMAP Mirror copy of the transmit TSIs
connection map residing in the
driver memory

rxtiMap
[TBS_NUM_CHNLTYPE]

sTBS_TSI_CONMAP Mirror copy of the receive TSIs
connection map residing in the
driver memory

muxSemStat void* Pointer to mutual exclusion
semaphore for event statistics block
protection

errStat INT4 Error indicator for statistics
retrieval

intrmask sTBS_MASK Current interrupt mask

evtCntr sTBS_STAT Device event statistics block

tsiOverwrite BOOL TSI mapping mode: 0 = normal, 1 =
overwrite

Statistics Block: STAT

This is the top level structure for statistics.

Table 14: TBS Event Statistics Block: sTBS_STAT

Field Name Field Type Field Description

actual sTBS_CNTR Cumulative count of all the events

delta sTBS_CNTR Delta count of all the events

thresh sTBS_CNTR Threshold setting of all the events

threshCtr sTBS_CNTR Threshold counter for all events (internal use)

Event/Statistics Counter Structure: CNTR

This structure contains the counter for all TBS events and statistics.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-2001251, Issue 3

Table 15: TBS Events Counter Block: sTBS_CNTR

Field Name Field Type Field Description

sysclka UINT4 System clock inactivity event (an I/O
event)

io_ipe
[TBS_NUM_TCBSTM]

UINT4 Interrupt event for data parity error for
each incoming TelecomBus byte stream
(an I/O event)

csuLocke UINT4 Interrupt event for the CSU lock state
change (an I/O event)

dllError UINT4 Interrupt event for the DLL block error
condition

itca
[TBS_NUM_TCBSTM]

UINT4 Tributary control inactivity for each
incoming TelecomBus byte stream

ipca
[TBS_NUM_TCBSTM]

UINT4 High order path control inactivity for
each incoming TelecomBus byte stream

ida
[TBS_NUM_TCBSTM]

UINT4 Data bus inactivity for each incoming
TelecomBus byte stream

txti_coap
[TBS_NUM_CHNLTYPE]

UINT4 Interrupt event for change in active
connection page for each transmit TSI
block (a TSI event)

rxti_coap
[TBS_NUM_CHNLTYPE]

UINT4 Interrupt event for change in active
memory page for each receive TSI
block (a TSI event)

txde_fifoerr
[TBS_NUM_CHNLTYPE]
[TBS_NUM_TCBSTM]

UINT4 FIFO error interrupt event for each
transmit disparity encoder (a TXDE
event)

rx8d
[TBS_NUM_CHNLTYPE]

sTBS_EVT_RX8D Events for each receive 8B/10B decoder
block (a RX8D event)

itpp sTBS_EVT_PRBS Events for the transmit PRBS monitor
(a PRBS event)

rxpm
[TBS_NUM_CHNLTYPE]

sTBS_EVT_PRBS Events for the receive PRBS monitor (a
PRBS event)

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-2001251, Issue 3

Device Status Block: STATUS

This structure encompasses all the relevant status of the device for instant read back.

Table 16: TBS Device Status Block : sTBS_STATUS

Field Name Field Type Field Description

io sTBS_STATUS_ IO Current status of the I/O block

rx8d
[TBS_NUM_CHNLTYPE]

sTBS_STATUS_ RX8D Current status of the receive 8B/10B
decoders

rxpm
[TBS_NUM_CHNLTYPE]

sTBS_STATUS_ PRBS Current status of the receive PRBS
monitor blocks

itpp sTBS_STATUS_ PRBS Current status of the incoming PRBS
monitor block

csuLockv UINT2 Current status of the CSU reference
clock lock. 0 = not locked, 1 = locked

I/O Status Block: STATUS_IO

This sub-structure contains the I/O block status.

Table 17: TBS I/O Block Status: sTBS_STATUS _IO

Field Name Field Type Field Description

sysclka UINT1 System clock activity (0 = inactive, 1 = active)

itca
[TBS_NUM_TCBSTM]

UINT1 Tributary control active bit for each incoming
TelecomBus stream (0 = inactive, 1 = active)

ipca
[TBS_NUM_TCBSTM]

UINT1 High order path control active bit for each incoming
TelecomBus stream (0 = inactive, 1 = active)

ida
[TBS_NUM_TCBSTM]

UINT1 Data bus active bit for each incoming TelecomBus
stream (0 = inactive, 1 = active)

dll_run UINT1 DLL block lock status. If the phase detector has a
lock, it reads a logic high; otherwise, it reads a logic
low.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

dll_error UINT1 DLL error indicator. It normally reads a logic low
unless the DLL runs out of dynamic range.

8B/10B Decoder Status Block: STATUS_RX8D

This sub-structure contains the 8B/10B decoder status.

Table 18: TBS 8B/10B Decoder Block Status: sTBS_STATUS _RX8D

Field Name Field Type Field Description

ocav
[TBS_NUM_TCBSTM]

UINT1 Current out-of-character alignment status, 0 =
aligned, 1 = not aligned

ofav
[TBS_NUM_TCBSTM]

UINT1 Current out-of-frame alignment status, 0 =
aligned, 1 = not aligned

PRBS Monitor Status Block: STATUS_PRBS

This sub-structure encompasses the PRBS monitor’s status.

Table 19: TBS PRBS Monitor Status: sTBS_STATUS _PRBS

Field Name Field Type Field Description

monsyncv
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT1 Current monitor synchronization status, 0 =
unsynchronized, 1 = synchronized

prbs_lfsr
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT4 Current PRBS linear feedback shifted register
(LFSR) content

rec_b1
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT1 Received B1 bytes

rec_e1
[TBS_NUM_TCBSTM]
[TBS_NUM_TSLOTS]

UINT1 Received E1 bytes

PRBS Generator/Monitor Configuration Block: CFG_PRBS PORT

This sub-structure encompasses the PRBS generator/monitor configuration block.

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-2001251, Issue 3

Table 20: TBS PRBS Generator/Monitor Configuration Block Per Port: sTBS_CFG_PRBS PORT

Field Name Field Type Field Description

sts1PathCfg
[TBS_NUM_TSLOTS]

sTBS_CFG_PRBS STS-1 path configuration parameter per time slot

PRBS Generator/Monitor STS-1 Configuration Parameters: CFG_PRBS

This sub-structure encompasses the PRBS generator/monitor STS-1 path configuration parameters.

Table 21: TBS PRBS Generator/Monitor Configuration Parameters Per Time Slot : sTBS_CFG_PRBS

Field Name Field Type Field Description

amode UINT1 TelecomBus Mode, 0 = TelecomBus mode, 1 =
autonomous mode

inv_prbs UINT1 PRBS inversion. 0 = unmodified, 1 = inverted

b1e1_enb UINT1 B1/E1 byte replacement for generator and monitoring
for monitor. 0 = inactive, 1 = active

gpo UINT1 General purpose output, only used in OTPG (OCOUT
bit)

seq_prbs UINT1 Pattern selection. 0 = PRBS, 1 = sequential

prbs_lfsr UINT4 Linear feedback shift register (LFSR) for PRBS

b1 UINT1 B1 byte to be inserted for generator and to be
monitored for monitor

s UINT1 S bit value to be inserted to H1 byte bit 2 & 3, only
used in autonomous mode and when processing
concatenated payload (for generator use only)

prbs_ena UINT1 Enable/disable PRBS pattern insertion in generator
and monitoring in monitor. 0 = disable, 1 = enable
This field provides additional control for the PRBS
generator (ITPP) on the transmit side. 0 = disable, 1 =
Prbs data sent to ID8E, 2 = Prbs data sent to IP8E, 3 =
Prbs data sent to both ID8E and IP8E blocks

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-2001251, Issue 3

Structures Passed through RTOS Buffers

Interrupt Service Vector: ISV

This buffer structure is used to capture the status of the device (during a poll or ISR processing) for use by
the Deferred Processing Routine (DPR). It is the template for all device registers that are involved in
exception processing. It is the application’s responsibility to create a pool of ISV buffers (using this
template to determine the buffer’s size) when the driver calls the user-supplied sysTbsBufferStart
function. An individual ISV buffer is then obtained by the driver via sysTbsISVBufferGet and
returned to the ‘pool’ via sysTbsISVBufferRtn.

Table 22: TBS Interrupt Service Vector: sTBS_ISV

Field Name Field Type Field Description

deviceHandle sTBS_HNDL Handle to the device in cause

parityErrIntrStat UINT2 Master accumulation transfer and parity error interrupt
status

masterIntrStat_1 UINT2 Master interrupt status#1

masterIntrStat_2 UINT2 Master interrupt status#2

masterIntrStat_3 UINT2 Master interrupt status#3

masterIntrStat_4 UINT2 Master interrupt status#4

tsiIntrStat UINT2 Master TSI interrupt status

Deferred Processing Vector: DPV

This block is used in two ways. First, it is used to determine the size of the buffer required by the RTOS for
use in the driver. Second, it is the template for data that is assembled by the DPR and sent to the application
code. Note: the application code is responsible for returning this buffer to the RTOS buffer pool.

The DPR divides the TBS into 5 sections: IO, TSI, PRBS, TXDE, and RX8D. Five user-supplied callback
routines (one per section) are used to inform the application which section of the device has caused the
event being reported. The size of this buffer should be kept as short as possible.

Table 23: TBS Deferred Processing Vector: sTBS_DPV

Field Name Field Type Field Description

TBS (PM5310) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-2001251, Issue 3

Field Name Field Type Field Description

event TBS_DPR_EVENT Event being reported

cause UINT2 Reason for the Event

4.3 Global Variable

Although most of the variables within the driver are not meant to be used by the application code, there is
one global variable that can be of great use to it.

tbsMdb: This is a global pointer to the Module Data Block (MDB). The content of this global variable
should be considered read-only by the application.

�� errModule: This structure element is used to store an error code that specifies the reason for an
API function’s failure. The field is only valid for functions that do not return an error code or when a
value of TBS_FAILURE is returned.

�� stateModule: This structure element is used to store the module state (as shown in Figure 3).

�� pddb[]: An array of pointers to the individual Device Data Block s. The user is cautioned that a
DDB is only valid if the valid flag is set. Note that the array of DDBs is in no particular order.
�� errDevice: This structure element is used to store an error code that specifies the reason for an

API function’s failure. The field is only valid for functions that do not return an error code or
when a value of TBS_FAILURE is returned.

�� stateDevice: This structure element is used to store the device state (as shown in Figure 3).

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-2001251, Issue 3

5 APPLICATION PROGRAMMING INTERFACE
This section provides a detailed description of each function that is a member of the TBS driver
Application Programming Interface (API).

The API functions typically execute in the context of an application task.

Note: These functions are not re-entrant. This means that two application tasks cannot invoke the same
API at the same time. However, the driver protects its data structures from concurrent accesses by the
application and the DPR task.

5.1 Module Management

The module management is a set of API functions that are used by the application to open, start, stop, and
close the driver module. These functions will take care of initializing the driver, as well as allocating
memory and all the other RTOS resources needed by the driver. They are also used to change the module
state. For more information on the module states see the state diagram on page 24. For a typical module
management flow diagram see page 26.

Opening the Driver Module: tbsModuleOpen

Performs module level initialization of the device driver. This involves allocating all of the memory
needed by the driver and initializing the internal structures.

Prototype INT4 tbsModuleOpen(sTBS_MIV *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs Places the address of the MDB into the MIV passed by the Application.

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_MODULE_ALREADY_OPEN
 TBS_ERR_INVALID_MIV
 TBS_ERR_MEM_ALLOC

Valid States TBS_MOD_START

Side Effects Changes the MODULE state to TBS_MOD_IDLE

Closing the Driver Module: tbsModuleClose

Performs module level shutdown of the driver. This involves deleting all devices being controlled by the
driver (by calling tbsDelete for each device) and de-allocating all the memory allocated by the driver.

Prototype INT4 tbsModuleClose(void)

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-2001251, Issue 3

Inputs None

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_MODULE_NOT_OPEN
 TBS_FAILURE

Valid States ALL STATES

Side Effects Changes the MODULE state to TBS_MOD_START

Starting the Driver Module: tbsModuleStart

Connects the RTOS resources to the driver. This involves allocating semaphores and timers, initializing
buffers, and installing the ISR handler and DPR task. Upon successful return from this function, the
driver is ready to add devices.

Prototype INT4 tbsModuleStart(void)

Inputs None

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_MODULE_NOT_OPEN
 TBS_ERR_INVALID_STATE
 TBS_ERR_MEM_ALLOC
 TBS_ERR_INT_INSTALL
 TBS_FAILURE

Valid States TBS_MOD_IDLE

Side Effects Changes the MODULE state to TBS_MOD_READY

Stopping the Driver Module: tbsModuleStop

Disconnects the RTOS resources from the driver. This involves de-allocating semaphores and timers,
freeing-up buffers, and uninstalling the ISR handler and the DPR task. If there are any registered devices,
tbsDelete is called for each.

Prototype INT4 tbsModuleStop(void)

Inputs None

Outputs None

Returns Success = TBS_SUCCESS
F il TBS ERR MODULE NOT OPEN

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-2001251, Issue 3

Failure = TBS_ERR_MODULE_NOT_OPEN
 TBS_ERR_INVALID_STATE
 TBS_FAILURE

Valid States TBS_MOD_READY

Side Effects Changes the MODULE state to TBS_MOD_IDLE

5.2 Device Management

The device management is a set of API functions that are used by the application to control the device.
These functions take care of initializing a device in a specific configuration, enabling the device’s general
activity, as well as enabling interrupt processing for that device. These functions are also used to change
the software state for that device. For more information on the device states, see the state diagram on page
24. For a typical device management flow diagram, see page 27.

Adding a Device: tbsAdd

This verifies the presence of a new device in the hardware then returns a handle back to the user. The
device handle is passed as a parameter of most of the device API functions. It is used by the driver to
identify the device on which the operation is to be performed.

Prototype sTBS_HNDL tbsAdd(void *usrCtxt, void *baseAddr, INT4
**pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pperrDevice : (pointer to) an area of memory

Outputs pperrDevice : (pointer to) errDevice (inside the DDB)
ERROR code written to the MDB on failure
 TBS_ERR_INVALID_STATE
 TBS_ERR_DEVS_FULL
 TBS_ERR_DEV_ALREADY_ADDED
 TBS_ERR_INVALID_TYPE_ID
 TBS_FAILURE

Returns device handle

Valid States TBS_MOD_READY

Side Effects Changes the DEVICE state to TBS_PRESENT

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-2001251, Issue 3

Deleting a Device: tbsDelete

This function is used to remove the specified device from the list of devices being controlled by the TBS
driver. Deleting a device involves un-registering the DDB for that device and releasing its associated
device handle.

Prototype INT4 tbsDelete(sTBS_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_FAILURE

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects Changes the device state to TBS_PRESENT

Initializing a Device: tbsInit

This initializes the Device Data Block (DDB) associated with that device during tbsAdd, applies a soft
reset to the device, and configures it according to the DIV passed by the application. If the DIV is passed
as a NULL, the profile number is used. A profile number of zero indicates that all the register bits are to
be left in their default state (after a soft reset). Note that the profile number is ignored UNLESS the
passed DIV is NULL.

Prototype INT4 tbsInit(sTBS_HNDL deviceHandle, sTBS_DIV *pdiv,
UINT2 profileNum)

Inputs deviceHandle : device Handle (from tbsAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (not supported for this device)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_CONNECT_EXIST
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_PRESENT

Side Effects Changes the DEVICE state to TBS_INACTIVE

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-2001251, Issue 3

Updating the Configuration of a Device: tbsUpdate

Updates the configuration of the device, as well as the Device Data Block (DDB) associated with that
device according to the DIV passed by the application. The only difference between tbsUpdate and
tbsInit is that no soft reset will be applied to the device.

Prototype INT4 tbsUpdate(sTBS_HNDL deviceHandle, sTBS_DIV
*pdiv, UINT2 profileNum)

Inputs deviceHandle : device Handle (from tbsAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (not supported for this device)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Resetting a Device: tbsReset

This applies a software reset to the TBS device. Also resets all the DDB contents (except for the user
context). This function is typically called before re-initializing the device (via tbsInit).

Prototype INT4 tbsReset(sTBS HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects Changes the DEVICE state to TBS_PRESENT

Activating a Device: tbsActivate

This restores the state of a device after a de-activate. Interrupts may be re-enabled.

Prototype INT4 tbsActivate(sTBS_HNDL deviceHandle)

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-2001251, Issue 3

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_INACTIVE

Side Effects Changes the DEVICE state to TBS_ACTIVE

De-Activating a Device: tbsDeActivate

De-activates the device from operation. Interrupts are masked and the device is put into a quiet state via
enable bits.

Prototype INT4 tbsDeActivate(sTBS_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE

Side Effects Changes the DEVICE state to TBS_INACTIVE

5.3 Device Read and Write

Reading from Device Registers: tbsRead

This function can be used to read a register of a specific TBS device by providing the register number.
The function derives the actual address location based on the device handle and register number inputs. It
then reads the contents of this address location using the system-specific macro, sysTbsRead. Note that
a failure to read returns a zero and that any error indication is written to the associated DDB.

Prototype UINT2 tbsRead(sTBS_HNDL deviceHandle, UINT2
regNum)

Inputs deviceHandle : device Handle (from tbsAdd)
regNum : register number

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-2001251, Issue 3

Outputs ERROR code written to the MDB:
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB:
 TBS_ERR_INVALID_REG

Returns Success = value read
Failure = 0

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Device Registers: tbsWrite

This function can be used to write to a register of a specific TBS device by providing the register number.
The function derives the actual address location based on the device handle and register number inputs. It
then writes the contents of this address location using the system specific macro, sysTbsWrite. Note
that a failure to write returns a zero and any error indication is written to the DDB.

Prototype UINT2 tbsWrite(sTBS_HNDL deviceHandle, UINT2 regNum,
UINT2 value)

Inputs deviceHandle : device Handle (from tbsAdd)
regNum : register number
value : value to be written

Outputs ERROR code written to the MDB:
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB:
 TBS_ERR_INVALID_REG

Returns Success = value written
Failure = 0

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May change the configuration of the Device

Reading from a block of Device Registers: tbsReadBlock

This function can be used to read a register block of a specific TBS device by giving it the starting
register number and the size to read. The function derives the actual start address location based on the
device handle and starting register number inputs. It then reads the contents of this data block using
multiple calls to the system specific macro, sysTbsRead. Note that a failure to read returns a zero and
any error indication is written to the DDB. It is the user’s responsibility to allocate enough memory for
the block read.

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-2001251, Issue 3

Prototype UINT2 tbsReadBlock(sTBS_HNDL deviceHandle, UINT2
startRegNum, UINT2 size, UINT2 *pblock)

Inputs deviceHandle : device Handle (from tbsAdd)
startRegNum : starting register number
size : size of the block to read
pblock : (pointer to) the block to read

Outputs ERROR code written to the MDB
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB
 TBS_ERR_INVALID_ARG
 TBS_ERR_INVALID_REG
pblock : (pointer to) the block read

Returns Success = Last register value read
Failure = 0

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to a Block of Device Registers: tbsWriteBlock

This function can be used to write to a register block of a specific TBS device by giving it the starting
register number and the block size. The function derives the actual starting address location based on the
device handle and starting register number inputs. It then writes the contents of this data block using
multiple calls to the system specific macro, sysTbsWrite. A bit from the passed block is only modified
in the device’s registers if the corresponding bit is set in the passed mask. Note that any error indication is
written to the DDB

Prototype UINT2 tbsWriteBlock(sTBS_HNDL deviceHandle, UINT2
startRegNum, UINT2 size, UINT2 *pblock, UINT2 *pmask)

Inputs deviceHandle : device Handle (from tbsAdd)
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs ERROR code written to the MDB
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB
 TBS_ERR_INVALID_ARG
 TBS_ERR_INVALID_REG

Returns Success = Last register value written
Failure = 0

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-2001251, Issue 3

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May change the configuration of the Device

Indirect reading from Device Registers: tbsReadIndirect

This function can be used to perform an indirect read from am indirect register in the TBS device by
giving it the register location and the indirect address to be read from. The function derives the actual
start address location based on the device handle. It then reads the data pointed to by the indirect address
using calls to the system specific macro, sysTbsRead. Note that a failure to read returns a zero and any
error indication is written to the DDB.

Prototype UINT2 tbsReadIndirect(sTBS_HNDL deviceHandle, UINT2
iaddrReg, UINT2 idataReg, UINT2 iaddr, UINT2 *pData)

Inputs deviceHandle : device Handle (from tbsAdd)
iaddrReg : indirect address register number
idataReg : indirect data register number
indirAddr : indirect address to read
pData : (pointer to) the data to read

Outputs ERROR code written to the MDB
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB
 TBS_ERR_INVALID_REG
 TBS_ERR_POLL_TIMEOUT
pData : (pointer to) the block read

Returns Success = value read
Failure = 0

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May affect registers that change after a read operation

Indirect writing to Device Registers: tbsWriteIndirect

This function can be used to perform an indirect write to an indirect access register in the TBS device by
giving it the register location and the indirect address to be written to. The function derives the actual
start address location based on the device handle. It then writes the data to the location pointed to by the
indirect address using calls to the system specific macro, sysTbsWrite. Note that a failure to write
returns a zero and that any error indication is written to the DDB.

Prototype UINT2 tbsWriteIndirect(sTBS_HNDL deviceHandle, UINT2
iaddrReg, UINT2 idataReg, UINT2 iaddr, UINT2 Data)

Inputs deviceHandle : device Handle (from tbsAdd)
iaddrReg : indirect address register number

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-2001251, Issue 3

idataReg : indirect data register number
iaddr : indirect address to read
data : new data

Outputs ERROR code written to the MDB
 TBS_ERR_INVALID_DEV
ERROR code written to the DDB
 TBS_ERR_INVALID_REG
 TBS_ERR_POLL_TIMEOUT

Returns Success = value written
Failure = 0

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects May affect registers that change after a read operation

5.4 Device Configuration

The following functions control the dynamic configuration of the device.

Setting Device Configuration Block: tbsDeviceSetConfig

This function sets the device configuration dynamically through the sTBS_CFG_DEVICE data structure.

Prototype INT4 tbsDeviceSetConfig(sTBS_HNDL deviceHandle,
sTBS_CFG_DEVICE *pCfgParam)

Inputs deviceHandle : device Handle (from tbsAdd)
pCfgParam : device configuration block

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects May affect data flow

Getting Device Configuration Block: tbsDeviceGetConfig

This function gets the current device configuration.

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-2001251, Issue 3

Prototype INT4 tbsDeviceGetConfig(sTBS_HNDL deviceHandle,
sTBS_CFG_DEVICE *pCfgParam)

Inputs deviceHandle : device Handle (from tbsAdd)
pCfgParam : device configuration block

Outputs pCfgParam : device configuration block

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

5.5 Time Slot Interchange

The main objective of a time slot interchange is the remapping of time slots. Functions are provided to
connect and disconnect calls. There are also functions for housekeeping, such as altering mapping mode,
verifying unicast or multicast calls, checking mapping patterns, etc.

Setting global TSI mapping mode: tbsSetMapMode

Set the global mapping mode of all the TSIs in the device (user-defined or bypass). Bypass mode puts the
chip in a through mode and user-defined mode activates all the TSIs inside the device.

Prototype INT4 tbsSetMapMode(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_TSIMODE mode)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
mode : mapping mode

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-2001251, Issue 3

Getting global TSI mapping mode: tbsGetMapMode

Get the current global mapping mode of all the TSIs in the device (user-defined or bypass).

Prototype INT4 tbsGetMapMode(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_TSIMODE *pMode)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
pMode : current mapping mode

Outputs pMode : current mapping mode

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Setting active connection page in TSI: tbsSetPage

In conjunction with the external hardware pin xCMP (TCMP on the transmit side and OCMP on the
receive side), this function selects the active connection memory page in the TSI.

Prototype INT4 tbsSetPage(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : memory page number

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-2001251, Issue 3

Getting active connection page in TSI: tbsGetPage

Obtain the current active connection memory page of the TSI.

Prototype INT4 tbsGetPage(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
*pPgNum)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type

Outputs pPgNum : pointer to active memory page number

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Mapping the source to destination slot(s) in TSI: tbsMapSlot

Map the source slot to destination slot(s). If the parameter numSlots is greater than one, the function
maps the given srcSlot to a group of destSlot. An error code will be returned if there is an attempt to
map into an occupied destination space-time slot.

Prototype INT4 tbsMapSlot(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *psrcSlot, sTBS_SPTSLOT
destSlot[], UINT4 numSlots)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page number to be updated
psrcSlot : pointer to source space-time slot
destSlot[] : array of destination space-time slot(s)
numSlots : number of destination slot(s) to be mapped

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-2001251, Issue 3

 TBS_ERR_CONNECT_EXIST

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Retrieving source space-time Slot in TSI: tbsGetSrcSlot

Retrieves the source space-time slot for a given destination slot. A NULL slot will be returned if there is
no match (A NULL slot has port and time slot numbers equal to zero).

Prototype INT4 tbsGetSrcSlot(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *pdestSlot, sTBS_SPTSLOT
*psrcSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page number to be updated
pdestSlot : pointer to destination space-time slot(s)

Outputs psrcSlot : pointer to source space-time slot

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Retrieving destination space-time Slot in TSI: tbsGetDestSlot

Retrieves the destination space-time slot for a given source space-time slot. If the number of destinations
is less than or equal to one, the connection is unicast; otherwise, it is multicast. A NULL slot, along with
*pNumSlot = 0, will be returned if there is no match. (A NULL slot has port and time slot numbers
equal to zero)

Prototype INT4 tbsGetDestSlot(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *psrcSlot, sTBS_SPTSLOT
destSlot[], UINT4 *pNumSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page number to be updated

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-2001251, Issue 3

psrcSlot : pointer to source space-time slot(s)

Outputs destSlot[] : array of destination space-time slots
pNumSlot : pointer to number of destination time slots

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Copying connection map from one page to another in TSI: tbsCopyPage

Copy the connection memory map from one page to another in the TSI. This also applies to page copying
across different TSIs in the same traffic direction. For instance, page 0 of the working TSI can be copied
to page 1 of the protection TSI using this function.

Prototype INT4 tbsCopyPage(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE srcChnlType,
UINT2 srcPage, eTBS_CHNLTYPE destChnlType, UINT2
destPage)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
srcChnlType : source channel type
srcPage : source connection page number
destChnlType : destination channel type
destPage : destination connection page number

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Inserting Idle Data in TSI: tbsInsIdleData

Insert an arbitrary idle data pattern into a given destination space-time slot. The pattern should be a valid
8b/10b character in most cases. This function is valid only for transmit the TSIs.

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-2001251, Issue 3

Prototype INT4 tbsInsIdleData(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *pdestSlot, BOOL insert, UINT2
idleDat)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page to be updated
pdestSlot : pointer to destination space-time slot
insert : idle data insertion control. 0 = disable, 1 =
 enable
idleDat : idle data pattern. valid range: (0-1023)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Removing established connection in TSI: tbsRmSlot

Disconnect the established connection between the given source and destination space-time slot(s).

Prototype INT4 tbsRmSlot(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *psrcSlot, sTBS_SPTSLOT
destSlot[], UINT2 numSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page to be updated
psrcSlot : pointer to source space-time slot
destSlot[] : array of destination space-time slot(s)
numSlot : number of destination space-time slot(s) to be
 removed

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-2001251, Issue 3

 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_CONNECT_NONEXISTENT
 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Clearing all established connections in TSI: tbsClrSlot

Disconnect all established connection(s) for the given source space-time slot. This function is very useful
in disconnecting multicast calls for a given source space-time slot.

Prototype INT4 tbsClrSlot(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *psrcSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
pgNum : connection page to be updated
psrcSlot : pointer to source space-time slot

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_CONNECT_NONEXISTENT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Verifying a multicast connection in TSI: tbsIsMulticast

Query if a given source space-time slot is multi-casting. The returned value of this function can either be:
(1) the total number of connections if it is a non-negative number or (2) an error code if it is a negative
number.

Prototype INT4 tbsIsMulticast(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
pgNum, sTBS_SPTSLOT *psrcSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-2001251, Issue 3

pgNum : connection page to be updated
psrcSlot : pointer to source space-time slot

Outputs None

Returns Success = Total number of connections. If it is greater than one, it is a
multicast.
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Verifying the connection map setting in TSI: tbsIsValidMap

This function acts as a sanity check for the connection map setting in the receive side TSIs; it verifies the
current RWTSEN, RPTSEN, and RASTEN setting in the receive working, protection and auxiliary TSIs.
When the RWSEL_EN bit (accessible via the API tbsDeviceSetConfig and tbsDeviceGetConfig) is
low, the RxTSEN bit chooses which timeslot from the RxTI will be the data source to the outgoing
TelecomBus. The purpose of this function is to detect multiple RxTSEN bit settings for a possible error in
setting the map. (Note: If multiple RxTSEN bits are set, the RWTSEN will override the others; this
means that the working-channel data will be selected.)

Prototype INT4 tbsIsValidMap(sTBS_HNDL deviceHandle, BOOL
activePage)

Inputs deviceHandle : device Handle (from tbsAdd)
activePage : high to check active page, low to check
 inactive page

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_MAP
 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-2001251, Issue 3

5.6 8B/10B Decoder

8B/10B decoder (Rx8D) frames to the receive data stream to find 8B/10B character boundaries.
Functions, mainly diagnostics in nature, are available for interacting with these decoders.

Forcing out of character alignment in 8B/10B decoder: tbsForceOutofChar

Force the character alignment block in the 8B/10B decoder (Rx8D) into the out-of-character alignment
state. The block will search for and synchronize with the alignment character (K28.5) in the data stream.

Prototype INT4 tbsForceOutofChar(sTBS_HNDL deviceHandle,
eTBS_CHNLTYPE chnlType, UINT2 portNum)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number, valid range from 1 to 4

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Forcing out of frame alignment in 8B/10B decoder: tbsForceOutofFrm

Force the frame alignment block in the 8B/10B decoder (Rx8D) into the out-of-frame alignment state.
The block will search for and synchronize with the alignment character (K28.5) in the data stream.

Prototype INT4 tbsForceOutofFrm(sTBS_HNDL deviceHandle,
eTBS_CHNLTYPE chnlType, UINT2 blkType, UINT2 portNum)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number, valid range from 1 to 4
blkType : obsolete, value is ignored

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-2001251, Issue 3

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

5.7 Disparity Encoder

Disparity encoders ensure the disparity integrity of the 8B/10B character streams after a possible time slot
remapping. Diagnostic functions are available for these encoders.

Forcing line code violation in disparity encoder: tbsTXDEForceLcv

Generate line code violation by inverting data to generate complementary running disparity in the
disparity encoder blocks.

Prototype INT4 tbsTXDEForceLcv(sTBS_HNDL deviceHandle,
eTBS_CHNLTYPE chnlType, UINT2 portNum, BOOL activate)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number, valid range from 1 to 4
activate : 0 = disable, 1 = enable

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Centering FIFO in disparity encoder: tbsTXDECenterFIFO

Force the FIFO depth to be 4 8B/10B characters deep when the current FIFO depth is not in the range of
3, 4, or 5 characters. If the current FIFO depth is in the range of 3, 4 or 5, this function has no effect.

Prototype INT4 tbsTXDECenterFIFO(sTBS_HNDL deviceHandle,
eTBS_CHNLTYPE chnlType, UINT2 portNum)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number, valid range from 1 to 4

Outputs None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-2001251, Issue 3

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects momentary data corruption

Inserting test pattern in disparity encoder: tbsInsertTP

Insert user-specified test pattern into the disparity encoder block. The default pattern is 0x02aa.

Prototype INT4 tbsInsertTP(sTBS_HNDL deviceHandle,
eTBS_CHNLTYPE chnlType, UINT2 portNum, UINT2 tp, BOOL
activate)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number
tp : test pattern
activate : flag, 0 = disable, 1 = enable

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

5.8 PRBS Processors

The PRBS processors are present in the device for diagnostic use. Functions are designed to interact with
them to facilitate the process.

Configuring and retrieving payload for PRBS processor: tbsPayloadCfg

This function configure the PRBS processors, either generators or monitors, for specific traffic patterns.
Payload configuration on all ports is recommended. The function can also be invoked to retrieve the
current payload configuration for a specified PRBS processor.

Prototype INT4 tbsPayloadCfg(sTBS_HNDL deviceHandle,
eTBS TRAFFICDIR tdir, eTBS CHNLTYPE chnlType, UINT2

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-2001251, Issue 3

eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType, UINT2
portNum, UINT2 genmon, sTBS_CFG_PYLD *pplParam, BOOL
rd)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
portNum : port number, valid range from 1 to 4
genmon : 0 = generator, 1 = monitor configuration
pplParam : pointer to payload configuration parameter
 block
rd : FALSE = configure, TRUE = retrieve

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Configuring PRBS generator: tbsPrbsGenCfg

This function configures the PRBS generator for a given space-time slot. The attributes of the generator
can be specified in the pcfgParam data block. Options like putting the generator in TelecomBus or
autonomous mode, PRBS byte-inversion, and B1/E1 byte-insertion can all be specified in that block. For
STS-Nc signals, only the first STS-1 slot requires configuration. Subsequent configurations for other
STS-1 slots overwrites previous ones.

Prototype INT4 tbsPrbsGenCfg(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, sTBS_SPTSLOT *psptSlot,
sTBS_CFG_PRBS *pcfgParam, UINT2 rd)

Inputs deviceHandle : device handle (from tbsAdd)
tdir : traffic direction
psptSlot : pointer to space time slot
pcfgParam : pointer to parameter configuration block
rd : 0 = write config to device,1 = read config from
device

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-2001251, Issue 3

 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Forcing a bit error in PRBS generator: tbsPrbsForceBitErr

This function controls the insertion of single-bit errors into the generated PRBS data stream. A single-bit
error is introduced by inverting the most significant byte (MSB) of a single PRBS byte.

Prototype INT4 tbsPrbsForceBitErr(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, sTBS_SPTSLOT *psptSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
psptSlot : channel type

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Configuring PRBS monitor: tbsPrbsMonCfg

This function configures the PRBS monitor for a given space-time slot. The attributes of the monitor can
be specified in the pcfgParam data block. Options like putting the monitor in TelecomBus or
autonomous mode, PRBS byte-inversion before comparing, PRBS byte-setting, and B1/E1 byte-
monitoring can all be specified in that block. For STS-Nc signals, only the first STS-1 slot requires
configuration. Subsequent configurations for other STS-1 slots overwrite the previous ones.

Prototype INT4 tbsPrbsMonCfg(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType,
sTBS_SPTSLOT *psptSlot, sTBS_CFG_PRBS *pcfgParam,
UINT2 rd)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
psptSlot : pointer to space time slot
pcfgParam : pointer to monitor configuration block
rd : 0 = write config to device,1 = read config from

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-2001251, Issue 3

 device

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Resynchronizing PRBS monitor: tbsPrbsResync

This function forces the PRBS monitor to enter the out-of-sync state on a per space-time slot basis. The
monitor then attempts to regain synchronization. The argument chnlType is not used for the transmit-side
PRBS monitor. Only the first STS-1 time slot requires resynchronization for a STS-Nc signal.

Prototype INT4 tbsPrbsResync(sTBS_HNDL deviceHandle,
eTBS_TRAFFICDIR tdir, eTBS_CHNLTYPE chnlType,
sTBS_SPTSLOT *psptSlot)

Inputs deviceHandle : device Handle (from tbsAdd)
tdir : traffic direction
chnlType : channel type
psptSlot : pointer to space time slot

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

5.9 Interrupt Service Functions

This Section describes the interrupt-service functions that perform the following tasks:

�� Set, get, and clear the interrupt enable mask

�� Read and process the interrupt-status registers

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-2001251, Issue 3

�� Poll and process the interrupt-status registers

See page 28 for an explanation of our interrupt servicing architecture.

Configuring ISR Processing: tbsISRConfig

This function allows the user to configure how ISR processing is to be handled: polling
(TBS_POLL_MODE) or interrupt driven (TBS_ISR_MODE). If polling is selected, the user is responsible for
calling periodically devicePoll to collect exception data from the Device.

Prototype INT4 tbsISRConfig(sTBS_HNDL deviceHandle, UINT2
mode)

Inputs deviceHandle : device Handle (from tbsAdd)
mode : mode of operation

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_ARG

Valid States TBS_PRESENT, TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Getting the Interrupt Status Mask: tbsGetMask

Returns the contents of the interrupt mask registers of the TBS device.

Prototype INT4 tbsGetMask(sTBS_HNDL deviceHandle, sTBS_MASK
*pmask)

Inputs deviceHandle : device Handle (from tbsAdd)
pmask : (pointer to) mask structure

Outputs pmask : (pointer to) updated mask structure

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-2001251, Issue 3

Setting the Interrupt Enable Mask: tbsSetMask

Sets the contents of the interrupt mask registers of the TBS device. Any bits that are set in the passed
structure are cleared in the associated TBS registers.

Prototype INT4 tbsSetMask(sTBS_HNDL deviceHandle, sTBS_MASK
*pmask)

Inputs deviceHandle : device Handle (from tbsAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects May change the operation of the ISR / DPR

Clearing the Interrupt Enable Mask: tbsClearMask

Clears individual interrupt bits and registers in the TBS device. Any bits that are set in the passed
structure are cleared in the associated TBS registers.

Prototype INT4 tbsClearMask(sTBS_HNDL deviceHandle, sTBS_MASK
*pmask)

Inputs deviceHandle : device Handle (from tbsAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects May change the operation of the ISR / DPR

Polling the Interrupt Status Registers: tbsPoll

Commands the driver to poll the interrupt registers in the device. The call will fail unless the device was
initialized (via tbsInit) or configured (via tbsISRConfig) into polling mode.

Prototype INT4 tbsPoll(sTBS_HNDL deviceHandle)

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-2001251, Issue 3

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_MODE

Valid States TBS_ACTIVE

Side Effects None

Interrupt Service Routine: tbsISR

Reads the state of the interrupt registers in the TBS and stores them in an ISV. Performs whatever
functions are needed to clear the interrupt; these range from simply clearing the bits to performing
complex functions. This routine is called by the application code from within sysTbsISRHandler. If
ISR mode is configured, all interrupts that were detected are disabled and the ISV is returned to the
application. Note that the application is then responsible for sending this buffer to the DPR task. If polling
mode is selected, no ISV is returned to the application and the DPR is called directly with the ISV. Note:
care should be taken while designing these functions; keeping in mind all possible issues when multiple
devices are present, and some are in polling mode and some are in ISR mode.

Prototype void* tbsISR(sTBS_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns (pointer to) ISV buffer (to send to the DPR) or NULL (pointer)

Valid States TBS_ACTIVE

Side Effects None

Deferred Processing Routine: tbsDPR

Acts on data contained in the passed ISV, allocates one or more DPV buffers (via
sysTbsDPVBufferGet) and invokes one or more callbacks (if defined and enabled). This routine is
called by the application code within sysTbsDPRTask. Note that the callbacks are responsible for
releasing the passed DPV. It is recommended that it be done as soon as possible to avoid running out of
DPV buffers. Note: care should be taken while designing those functions, keeping in mind all possible
issues when multiple devices are present, and some are in polling mode and some are in ISR mode.

Prototype void tbsDPR(void *pisv)

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-2001251, Issue 3

Inputs pisv : (pointer to) ISV buffer

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

5.10 Alarm, Status, and Statistics Functions

Getting the Cumulative Device Statistics: tbsGetStats

This function retrieves all the cumulative statistical counts. It is the user’s responsibility to ensure that the
structure points to an area of memory large enough to hold the returned data.

Prototype INT4 tbsGetStats(sTBS_HNDL deviceHandle, sTBS_CNTR
*pCstats)

Inputs deviceHandle : device Handle (from tbsAdd)
pCstats : (pointer to) cumulative statistics counter block

Outputs pCstats : updated statistics counter block

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Clearing the Device Statistics: tbsClrStats

This function clears the cumulative statistical counts that are kept in the DDB. Non-zero fields in the
passed structure correspond to the counters that will be cleared. A NULL pointer will clear all the fields
in the counter.

Prototype INT4 tbsClrStats(sTBS_HNDL deviceHandle, sTBS_CNTR
*pCstats)

Inputs deviceHandle : device Handle (from tbsAdd)
pCstats : (pointer to) cumulative statistics counter block

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-2001251, Issue 3

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Getting Status of the Device : tbsGetStatus

This function returns the current status of the device.

Prototype INT4 tbsGetStatus(sTBS_HNDL deviceHandle,
sTBS_STATUS *pStatus)

Inputs deviceHandle : device Handle (from tbsAdd)
pStatus : (pointer to) device status block

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_POLL_TIMEOUT

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Getting Delta Statistics Counter of the Device : tbsGetDelta

This function returns the delta statistics counter block. The delta statistics counter block clears after each
read.

Prototype INT4 tbsGetDelta(sTBS_HNDL deviceHandle, sTBS_CNTR
*pDstats)

Inputs deviceHandle : device Handle (from tbsAdd)
pDstats : (pointer to) delta statistics counter block

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-2001251, Issue 3

 TBS_FAILURE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Getting Event Threshold of the Device : tbsGetThresh

This function retrieves the current threshold setting for all the device events.

Prototype INT4 tbsGetThresh(sTBS_HNDL deviceHandle, sTBS_CNTR
*pThresh)

Inputs deviceHandle : device Handle (from tbsAdd)
pThresh : (pointer to) event threshold block

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

Setting Event Threshold of the Device : tbsSetThresh

This function allows user to update the event threshold setting. The threshold value is used to control the
frequency of callbacks; these will only occur if the event occurrence exceeds the threshold value

Prototype INT4 tbsSetThresh(sTBS_HNDL deviceHandle, sTBS_CNTR
*pThresh)

Inputs deviceHandle : device Handle (from tbsAdd)
pThresh : (pointer to) event threshold block

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-2001251, Issue 3

Controlling AIS Generation of the Device : tbsGenAIS

This function enables/disables AIS alarm generation in Rx8D blocks.

Prototype INT4 tbsGenAIS(sTBS_HNDL deviceHandle, eTBS_CHNLTYPE
chnlType, UINT2 portNum, UINT2 blkType, BOOL enable)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
portNum : port number
blkType : obsolete, value is ignored
enable : flag to control AIS insertion, 0 = disable, 1 =
 enable

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects None

5.11 Device Diagnostics

Testing Register Accesses: tbsTestReg

This verifies the hardware access to the device registers by writing and reading back values.

Prototype INT4 tbsTestReg(sTBS_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_FAILRAMTEST

Valid States TBS_PRESENT

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-2001251, Issue 3

Testing RAM Accesses: tbsTestRAM

This performs a RAM test at the read/write registers inside the device’s memory space to verify the
address and data bus connections between the CPU and the device.

Prototype INT4 tbsTestRAM(sTBS_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tbsAdd)

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_FAILRAMTEST

Valid States TBS_PRESENT

Side Effects None

Enabling outgoing to incoming parallel TelecomBus Loopbacks:
tbsLoopOut2InTCB

This clears / sets the outgoing to incoming parallel TelecomBus Loopback. It is up to the user to perform
any tests on the looped data.

Prototype INT4 tbsLoopOut2InTCB(sTBS_HNDL deviceHandle, BOOL
enable)

Inputs deviceHandle : device Handle (from tbsAdd)
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects Will inhibit the flow of active data

Enabling incoming to outgoing parallel TelecomBus Loopbacks:
tbsLoopIn2OutTCB

This clears / sets the incoming to outgoing parallel TelecomBus Loopback. It is up to the user to perform
any tests on the looped data.

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-2001251, Issue 3

Prototype INT4 tbsLoopIn2OutTCB(sTBS_HNDL deviceHandle, BOOL
enable)

Inputs deviceHandle : device Handle (from tbsAdd)
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects Will inhibit the flow of active data

Enabling receive to transmit serial TelecomBus Loopbacks: tbsLoopRx2TxLVDS

This clears / sets the receive to transmit serial TelecomBus Loopback. It is up to the user to perform any
tests on the looped data.

Prototype INT4 tbsLoopRx2TxLVDS(sTBS_HNDL deviceHandle,
sTBS_CHNLTYPE chnlType, BOOL enable)

Inputs deviceHandle : device Handle (from tbsAdd)
chnlType : channel type
enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE
 TBS_ERR_INVALID_ARG

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects Will inhibit the flow of active data

Enabling transmit to receive serial TelecomBus Loopbacks: tbsLoopTx2RxLVDS

This clears / sets the transmit to receive serial TelecomBus Loopback. It is up to the user to perform any
tests on the looped data.

Prototype INT4 tbsLoopTx2RxLVDS(sTBS_HNDL deviceHandle, BOOL
enable)

Inputs deviceHandle : device Handle (from tbsAdd)
bl t l if l l l

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-2001251, Issue 3

enable : sets loop if non-zero, else clears loop

Outputs None

Returns Success = TBS_SUCCESS
Failure = TBS_ERR_INVALID_DEV
 TBS_ERR_INVALID_STATE

Valid States TBS_ACTIVE, TBS_INACTIVE

Side Effects Will inhibit the flow of active data

5.12 Callback Functions

The TBS driver has the capability to callback to functions within the user code when certain events occur.
These events and their associated callback routine declarations are detailed below. There is no user code
action that is required by the driver for these callbacks – the user is free to either: (1) implement these
callbacks in any manner or (2) to delete them from the driver.

The names given to the callback functions are given as examples only. The addresses of the callback
functions invoked by the tbsDPR function are passed during the tbsInit call (inside a DIV). However,
the user should use the exact same prototype. The application is responsible for releasing the passed DPV
as soon as possible (to avoid running out of DPV buffers) by calling sysTbsDPVBufferRtn either
within the callback function or later inside the application code.

Calling Back to the Application due to IO events: cbackIO

This callback function is provided by the user and is used by the DPR to report significant I/O events
back to the application. The function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that receives this
message can then process this information according to the system requirements. Note: the callback
function’s addresses are passed to the driver doing the tbsInit call. If the address of the callback
function was passed as a NULL at initialization, no callback will be made.

Prototype void cbackIO(sTBS_USR_CTXT usrCtxt, sTBS_DPV *pdpv)

Inputs usrCtxt : user context (from tbsAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-2001251, Issue 3

Calling Back to the Application due to TSI events: cbackTSI

This callback function is provided by the user and is used by the DPR to report significant TSI events
back to the application. The function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that receives this
message can then process this information according to the system requirements. Note: the callback
function’s addresses are passed to the driver doing the tbsInit call. If the address of the callback
function was passed as a NULL at initialization, no callback will be made.

Prototype void cbackTSI(sTBS_USR_CTXT usrCtxt, sTBS_DPV *pdpv)

Inputs usrCtxt : user context (from tbsAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

Calling Back to the Application due to PRBS events: cbackPRBS

This callback function is provided by the user and is used by the DPR to report significant PRBS events
back to the application. The function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that receives this
message can then process this information according to the system requirements. Note: the callback
function’s addresses are passed to the driver doing the tbsInit call. If the address of the callback
function was passed as a NULL at initialization, no callback will be made.

Prototype void cbackPRBS(sTBS_USR_CTXT usrCtxt, sTBS_DPV
*pdpv)

Inputs usrCtxt : user context (from tbsAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-2001251, Issue 3

Calling Back to the Application due to TXDE events: cbackTXDE

This callback function is provided by the user and is used by the DPR to report significant transmit
disparity encoder events back to the application. The function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context information.
The task that receives this message can then process this information according to the system
requirements. Note: the callback function’s addresses are passed to the driver doing the tbsInit call. If
the address of the callback function was passed as a NULL at initialization, no callback will be made.

Prototype void cbackTXDE(sTBS_USR_CTXT usrCtxt, sTBS_DPV
*pdpv)

Inputs usrCtxt : user context (from tbsAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

Calling Back to the Application due to RX8D events: cbackRX8D

This callback function is provided by the user and is used by the DPR to report significant 8B/10B
decoder events back to the application. The function should be non-blocking. Typically, the callback
routine sends a message to another task with the event identifier and other context information. The task
that receives this message can then process this information according to the system requirements. NOTE:
the callback function’s addresses are passed to the driver doing the tbsInit call. If the address of the
callback function was passed as a NULL at initialization, no callback will be made.

Prototype void cbackRX8D(sTBS_USR_CTXT usrCtxt, sTBS_DPV
*pdpv)

Inputs usrCtxt : user context (from tbsAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TBS_ACTIVE

Side Effects None

TBS (PM5310) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-2001251, Issue 3

6 HARDWARE INTERFACE
The TBS driver interfaces directly with the user’s hardware. In this section, a listing of each point of
interface is shown, along with a declaration and any specific porting instructions. It is the responsibility of
the user to connect these requirements into the hardware, either by defining a macro or by writing a
function for each item listed. Care should be taken when matching parameters and return values.

6.1 Device I/O

Reading from a Device Register: sysTbsRead

The most basic hardware connection reads the contents of a specific register location. This Macro should
be UINT2 oriented and should be defined by the user to reflect the target system’s addressing logic. There
is no need for error recovery in this function.

Format #define sysTbsRead(ba, offset)

Prototype UINT2 sysTbsRead(UINT2 ba, UINT2 offset)

Inputs ba : base address of the device
offset : offset of the register from base address to be read

Outputs None

Returns Value read from the addressed register location

Writing to a Device Register: sysTbsWrite

The most basic hardware connection writes the supplied value to the specific register location. This macro
should be UINT2 oriented and should be defined by the user to reflect the target system’s addressing
logic. There is no need for error recovery in this function.

Format #define sysTbsWrite(ba, offset, value)

Prototype UINT2 sysTbsWriteReg(UINT2 ba, UINT2 offset, UINT2 value)

Inputs ba : register location to be written
offset : offset of the register from base address to be written
value : data to be written

Outputs None

Returns Value written to the addressed register location

TBS (PM5310) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-2001251, Issue 3

6.2 System-Specific Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many different
implementations of these hardware level routines. In this driver, the user is responsible for installing an
interrupt handler (sysTbsISRHandler) in the interrupt vector table of the system processor. This
handler should call deviceISR for each device that has interrupt servicing enabled to perform the ISR
related housekeeping required by each device.

During execution of the API function tbsModuleStart / tbsModuleStop, the driver informs the
application that it is time to install/uninstall this shell via sysTbsISRHandlerInstall /
sysTbsISRHandlerRemove (which needs to be supplied by the user). Note: A device can be initialized
with ISR disabled; in that mode, the user should periodically invoke the provided ‘polling’ routine
(tbsPoll) that in turn calls tbsISR.

Installing the ISR Handler : sysTbsISRHandlerInstall

This installs the user-supplied Interrupt Service Routine (ISR), sysTbsISRHandler, into the
processor’s interrupt vector table.

Format #define sysTbsISRHandlerInstall(func)

Prototype INT4 sysTbsISRHandlerInstall(void *func)

Inputs func : (pointer to) the function tbsISR

Outputs None

Returns Success = 0
Failure = <any other value>

Pseudocode Begin
 install sysTbsISRHandler in processor’s interrupt vector
table
End

ISR Handler: sysTbsISRHandler

This routine is invoked when one or more TBS devices raise the interrupt line to the microprocessor. This
routine in turn invokes the driver-provided routine, tbsISR, for each device registered with the driver.

Format #define sysTbsISRHandler()

Prototype void sysTbsISRHandler(void)

Inputs None

TBS (PM5310) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-2001251, Issue 3

Outputs None

Returns None

Pseudocode Begin
for each device registered with the driver
call tbsISR
if returned ISV buffer is not NULL
send ISV buffer to the DPR
End

Removing the ISR Handler : sysTbsISRHandlerRemove

This performs Disable Interrupt Processing for this device; it also removes the user-supplied Interrupt
Service routine (ISR), sysTbsISRHandler, from the processor’s interrupt vector table.

Format #define sysTbsISRHandlerRemove()

Prototype void sysTbsISRHandlerRemove(void)

Inputs None

Outputs None

Returns None

Pseudocode Begin
remove sysTbsISRHandler from the processor’s interrupt vector
table
End

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-2001251, Issue 3

7 RTOS INTERFACE
The TBS driver requires the use of some RTOS resources. In this section, a listing of each required
resource is shown, along with a declaration and any specific porting instructions. It is the responsibility of
the user to connect these requirements into the RTOS, either by defining a macro or writing a function for
each item listed. Care should be taken when matching parameters and return values.

7.1 Memory Allocation / De-Allocation

Allocating Memory: sysTbsMemAlloc

This allocates a specified number of bytes of memory.

Format #define sysTbsMemAlloc(numBytes)

Prototype UINT1 *sysTbsMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Freeing Memory: sysTbsMemFree

This frees any memory allocated using sysTbsMemAlloc.

Format #define sysTbsMemFree(pfirstByte)

Prototype void sysTbsMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region being de-
 allocated

Outputs None

Returns None

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-2001251, Issue 3

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for sending and receiving
messages. The following calls, provided by the user, allow the driver to get and return buffers from the
RTOS. It is the user’s responsibility to create any special resources or pools to handle buffers of this size
during the sysTbsBufferStart call.

Starting Buffer Management : sysTbsBufferStart

This alerts the RTOS that the time has come to make sure that the ISV buffers and DPV buffers are
available and sized correctly. This may involve either: (1) creating new buffer pools or (2) doing nothing
− it depends upon the RTOS.

Format #define sysTbsBufferStart()

Prototype INT4 sysTbsBufferStart(void)

Inputs None

Outputs None

Returns Success = 0
Failure = <any other value>

Getting an ISV Buffer: sysTbsISVBufferGet

This gets a buffer from the RTOS that will be used by the ISR code to create an Interrupt Service Vector
(ISV). The ISV consists of data transferred from the device’s interrupt status registers.

Format #define sysTbsISVBufferGet()

Prototype sTBS_ISV *sysTbsISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

Returning an ISV Buffer: sysTbsISVBufferRtn

This returns an ISV buffer to the RTOS when the information in the block is no longer needed by the
DPR.

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-2001251, Issue 3

Format #define sysTbsISVBufferRtn(pISV)

Prototype void sysTbsISVBufferRtn(sTBS_ISV *pisv)

Inputs pisv : (pointer to) a ISV buffer

Outputs None

Returns None

Getting a DPV Buffer: sysTbsDPVBufferGet

This gets a buffer from the RTOS that will be used by the DPR code to create a Deferred Processing
Vector (DPV). The DPV consists of information about the state of the device that is to be passed to the
user via a callback function.

Format #define sysTbsDPVBufferGet()

Prototype sTBS_DPV *sysTbsDPVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Returning a DPV Buffer: sysTbsDPVBufferRtn

This returns a DPV buffer to the RTOS when the information in the block is no longer needed by the
DPR.

Format #define sysTbsDPVBufferRtn(pDPV)

Prototype void sysTbsDPVBufferRtn(sTBS_DPV *pdpv)

Inputs pdpv : (pointer to) a DPV buffer

Outputs None

Returns None

Stopping Buffer Management : sysTbsBufferStop

This alerts the RTOS: (1) that the driver no longer needs any of either the ISV buffers or the DPV buffers
and (2) that if any special resources were created to handle these buffers, they can be deleted now.

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-2001251, Issue 3

Format #define sysTbsBufferStop()

Prototype void sysTbsBufferStop(void)

Inputs None

Outputs None

Returns None

7.3 Timers

Sleeping a Task: sysTbsTimerSleep

This suspends execution of a driver task for a specified number of milliseconds.

Format #define sysTbsTimerSleep(time)

Prototype void sysTbsTimerSleep(UINT4 time)

Inputs time : sleep time in milliseconds

Outputs None

Returns Success = 0
Failure = <any other value>

7.4 Semaphores

Creating a Semaphore: sysTbsSemCreate

This creates a binary semaphore object.

Format #define sysTbsSemCreate()

Prototype void *sysTbsSemCreate(void)

Inputs None

Outputs None

Returns Success = (pointer to) a semaphore object
Failure = NULL (pointer)

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-2001251, Issue 3

Taking a Semaphore: sysTbsSemTake

This takes a binary semaphore.

Format #define sysTbsSemTake(psem)

Prototype INT4 sysTbsSemTake(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns Success = 0
Failure = <any other value>

Giving a Semaphore: sysTbsSemGive

This gives a binary semaphore.

Format #define sysTbsSemGive(psem)

Prototype INT4 sysTbsSemGive(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns Success = 0
Failure = <any other value>

Deleting a Semaphore: sysTbsSemDelete

This deletes a binary semaphore object.

Format #define sysTbsSemDelete(psem)

Prototype void sysTbsSemDelete(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns None

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-2001251, Issue 3

7.5 Preemption

Disabling Preemption : sysTbsPreemptDisable

This routine prevents the calling task from being preempted. If the driver is in interrupt mode, this routine
locks out all interrupts, as well as other tasks in the system. If the driver is in polling mode, this routine
only locks out other tasks.

Format #define sysTbsPreemptDisable()

Prototype INT4 sysTbsPreemptDisable(void)

Inputs None

Outputs None

Returns Preemption key (passed back as an argument in
sysTbsPreemptEnable)

Re-Enabling Preemption : sysTbsPreemptEnable

This routine allows the calling task to be preempted. If the driver is in interrupt mode, this routine unlocks
all interrupts and other tasks in the system. If the driver is in polling mode, this routine unlocks other
tasks only.

Format #define sysTbsPreemptEnable(key)

Prototype void sysTbsPreemptEnable(INT4 key)

Inputs key : preemption key (returned by
 sysTbsPreemptDisable)

Outputs None

Returns None

7.6 System-Specific DPR Routine

The porting of a task between platforms is not always simple. There are many different implementations
of the RTOS level parameters. In this driver, the user is responsible for creating a ‘shell’
(sysTbsDPRTask) that in turn calls tbsDPR with an ISV to perform the ISR related processing that is
required by each interrupting device.

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-2001251, Issue 3

During execution of the API function tbsModuleStart / tbsModuleStop, the driver informs the
application that it is time to install/uninstall this shell via sysTbsDPRTaskInstall /
sysTbsDPRTaskRemove (which needs to be supplied by the user).

Installing the DPR Task: sysTbsDPRTaskInstall

This informs the application that it is time to install the user-supplied function sysTbsDPRTask into the
RTOS as a task.

Format #define sysTbsDPRTaskInstall(func)

Prototype INT4 sysTbsDPRTaskInstall(void *func)

Inputs func : (pointer to) the function tbsDPR

Outputs None

Returns Success = 0
Failure = <any other value>

Pseudocode Begin
install sysTbsDPRTask in the RTOS as a task
End

DPR Task: sysTbsDPRTask

This routine is installed as a separate task within the RTOS. It runs periodically to retrieve the interrupt
status information sent to it by tbsISR ; it then invokes tbsDPR for the appropriate device.

Format #define sysTbsDPRTask()

Prototype void sysTbsDPRTask(void)

Inputs None

Outputs None

Returns None

Pseudocode Begin
do
wait for an ISV buffer (sent by tbsISR)
call tbsDPR with that ISV
 loop forever
End

TBS (PM5310) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-2001251, Issue 3

Removing the DPR Task: sysTbsDPRTaskRemove

This informs the application that it is time to remove (suspend) the user-supplied task, sysTbsDPRTask.

Format #define sysTbsDPRTaskRemove()

Prototype void sysTbsDPRTaskRemove(void)

Inputs None

Outputs None

Returns None

Pseudocode Begin
remove/suspend sysTbsDPRTask
End

TBS (PM5310) Driver Manual
Porting the TBS Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-2001251, Issue 3

8 PORTING THE TBS DRIVER
This section outlines how to port the TBS device driver to your hardware and OS platform. However, this
manual can offer only guidelines for porting the TBS driver because each platform and application is
unique.

8.1 Driver Source Files

The C source files listed in Table 26 contain the code for the TBS driver. You may need to either modify
the code or develop additional code. The code is in the form of constants, macros, and functions. For ease
of porting, the code is grouped into source files (src) and include files (inc). The src files contain the
functions and the inc files contain the constants and macros.

8.2 Driver Porting Procedures

The following procedures summarize how to port the TBS driver to your platform. The subsequent
sections describe these procedures in more detail.

To port the TBS driver to your platform:

Procedure 1: Port the driver’s OS extensions (page 105):

Procedure 2: Port the driver to your hardware platform (page 106):

Procedure 3: Port the driver’s application-specific elements (page 106):

Procedure 4: Build the driver (page 108).

Porting Assumptions

The following porting assumptions have been made:

It is assumed that RAM assigned to the driver’s static variables is initialized to ZERO before any driver
function is called.

It is assumed that a RAM stack of 4K is available to all of the driver’s non-ISR functions and that a RAM
stack of 1K is available to the driver’s ISR functions.

�� It is assumed that there is no memory management or MMU in the system and that all accesses by the
driver, to either memory or hardware, can be direct.

TBS (PM5310) Driver Manual
Porting the TBS Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-2001251, Issue 3

Procedure 1: Porting Driver OS Extensions

The RTOS extensions encapsulate all RTOS specific services and data types used by the driver. The
tbs_rtos.h file contains data types and compiler-specific data-type definitions. It also contains
macros for RTOS specific services used by the OS extensions. These RTOS extensions include:

�� Task management

�� Message queues

�� Events

�� Memory Management

In addition, you may need to modify functions that use OS specific services, such as utility and
interrupt-event handling functions. The tbs_rtos.c file contains the utility and interrupt-event handler
functions that use RTOS specific services.

To port the driver’s OS extensions:

1. Modify the data types in tbs_rtos.h. The number after the type identifies the data-type size. For
example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute the compiler types that
yield the desired types as defined in this file.

2. Modify the RTOS specific services in tbs_rtos.h. Redefine the following macros to the
 corresponding system calls that your target system supports:

Service Type Macro Name Description

sysTbsMemAlloc Allocates the memory block

sysTbsMemFree Frees the memory block

Memory

sysTbsMemCpy Copies the memory block from src to
dest

3. Modify the utilities and interrupt services that use RTOS specific services in the tbs_rtos.c.
 The tbs_rtos.c file contains the utility and interrupt-event handler functions that use OS
 specific services. Refer to the function headers in this file for a detailed description of each of the
 functions listed below:

Service
Type

Function Name Description

Memory sysTbsMemSet Sets each character in the
memory buffer

TBS (PM5310) Driver Manual
Porting the TBS Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-2001251, Issue 3

Timer sysTbsTimerSleep Sets the task execution delay in
milliseconds

sysTbsIntInstallHandler Installs the interrupt handler for
the RTOS

sysTbsIntRemoveHandler Removes the interrupt handler
from the RTOS

sysTbsISRHandler Interrupt handler for the TBS
device

Interrupt

sysTbsDPRTask Deferred interrupt-processing
routine (DPR)

Procedure 2: Porting Drivers to Hardware Platforms

This section describes how to modify the TBS driver for your hardware platform.

To port the driver to your hardware platform:

1. Modify the low-level device read/write macros in the tbs_hw.h file. You may need to modify the
raw read/write access macros (sysTbsReadReg and sysTbsWriteReg) to reflect your system’s
addressing logic.

2. Define the hardware system-configuration constants in the tbs_hw.h file. Modify the following
 constants to reflect your system’s hardware configuration:

Device Constant Description Default

TBS_MEM_ADDR_RANGE The assigned address memory
range for each TBS device. Your
system’s memory map
determines it.

0x1000

TBS_MAX_DEVS The maximum number of TBS
devices on each card

16

Procedure 3: Porting Driver Application-Specific Elements

Application specific elements are configuration constants used by the API for developing an application.
This section describes how to modify the application specific elements in the TBS driver.

TBS (PM5310) Driver Manual
Porting the TBS Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-2001251, Issue 3

To port the driver’s application-specific elements:

1. Define the following driver task-related constants for your OS-specific services in file
 tbs_rtos.h and tbs_hw.h:

Task Constant Description Default

TBS_DPR_TASK_PRIORITY Deferred Task (DPR) task
priority

85

TBS_DPR_TASK_STACK_SZ DPR task stack size, in bytes 16384

TBS_STATTASK_PRIORITY Statistics task priority 95

TBS_STATTASK_STACK_SZ Statistics task stack size, in
bytes

8192

TBS_POLL_DELAY Constant used in polling task
mode, this constant defines the
interval time in millisecond
between each polling action

1000

TBS_TASK_SHUTDOWN_

DELAY

Delay time in millisecond.
When clearing the DPR loop
active flag in the DPR task,
this delay is used to gracefully
shutdown the DPR task before
deleting it.

100

TBS_MAX_MSGS The queue message depth of
the queue used for pass
interrupt context between the
ISR task and DPR task

500

TBS_STATTASK_POLLPERIOD Statistics collection task
polling period in milliseconds

100

TBS_MAX_DEVS The maximum number of TBS
devices in the system (from 1
to 128)

16

2. Code the callback functions according to your application. The driver will call callback functions
 when an event occurs on the device. The application is responsible for releasing the DPV buffer
 using sysTbsDPVBufferRtn after necessary processing is completed. These functions must
 conform to the following prototypes:

TBS (PM5310) Driver Manual
Porting the TBS Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-2001251, Issue 3

�� void cbackTbsXX(sTBS_CTXT usrCtxt, sTBS_DPV *pdpv)

�� …

Procedure 4: Building the Driver

This section describes how to build the TBS driver.

To build the driver:

1. Ensure that the directory variable names in the makefile reflect your actual driver and directory
 names.

2. Compile the source files and build the TBS driver using your make utility.

3. Link the TBS driver to your application code.

TBS (PM5310) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-2001251, Issue 3

APPENDIX A: CODING CONVENTIONS
This section describes the coding conventions used in the implementation of all PMC driver software.

Variable Type Definitions

Table 24: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

BOOL Boolean

Naming Conventions

Table 30 presents a summary of the naming conventions followed by all PMC driver software. A detailed
description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This makes the code
more readable. Generally, the device’s name or abbreviation appears in prefix.

Table 25: Naming Conventions

Type Case Naming convention Examples

Macros Uppercase prefix with “m” and device
abbreviation

mTBS_WRITE

Constants Uppercase prefix with device abbreviation TBS_REG

TBS (PM5310) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-2001251, Issue 3

Type Case Naming convention Examples

Structures Hungarian
Notation

prefix with “s” and device
abbreviation

sTBS_DDB

API
Functions

Hungarian
Notation

prefix with device name tbsAdd()

Porting
Functions

Hungarian
Notation

prefix with “sys” and device
name

sysTbsReadReg()

Other
Functions

Hungarian
Notation

 utilTbsSlotIsVal
id()

Variables Hungarian
Notation

 maxDevs

Pointers to
variables

Hungarian
Notation

prefix variable name with “p” pmaxDevs

Global
variables

Hungarian
Notation

prefix with device name tbsMdb

Macros

�� Macro names must be all uppercase.

�� Words shall be separated by an underscore.

�� The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then the device
abbreviation must appear.

�� Example: mTBS_WRITE is a valid name for a macro.

Constants

�� Constant names must be all uppercase.

�� Words shall be separated by an underscore.

�� The device abbreviation must appear as a prefix.

�� Example: TBS_REG is a valid name for a constant.

Structures

�� Structure names must be all uppercase.

�� Words shall be separated by an underscore.

TBS (PM5310) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-2001251, Issue 3

�� The letter ‘s’ in lowercase must be used as a prefix to specify that it is a structure, then the device
abbreviation must appear.

�� Example: sTBS_DDB is a valid name for a structure.

Functions

API Functions

�� Naming of the API functions must follow the Hungarian notation.

�� The device’s full name in all lowercase shall be used as a prefix.

�� Example: tbsAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependent.

�� Naming of the porting functions must follow the Hungarian notation.

�� The ‘sys’ prefix shall be used to indicate a porting function.

�� The device’s name starting with an uppercase must follow the prefix.

�� Example: sysTbsReadReg () is hardware / RTOS specific.

Other Functions

�� Other Functions are all the remaining functions that are part of the driver and have no special naming
convention. However, they must follow the Hungarian notation.

�� Example: utilTbsSlotIsValid()is a valid name for such a function.

Variables

�� Naming of variables must follow the Hungarian notation.

�� A pointer to a variable shall use ‘p’ as a prefix followed by the variable name unchanged. If the
variable name already starts with a ‘p’, the first letter of the variable name may be capitalized, but
this is not a requirement. Double pointers might be prefixed with ‘pp’, but this is not required.

�� Global variables must be identified with the device’s name in all lowercase as a prefix.

�� Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a pointer to
maxDevs, and tbsBaseAddress is a valid name for a global variable. Note that both pprevBuf
and pPrevBuf are accepted names for a pointer to the prevBuf variable, and that both pmatrix
and ppmatrix are accepted names for a double pointer to the variable matrix.

TBS (PM5310) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-2001251, Issue 3

File Organization

Table 26 presents a summary of the file naming conventions. All file names must start with the device
abbreviation, followed by an underscore and the actual file name. File names should convey their purpose
with a minimum number of characters. If a file size is getting too big, you can separate it into two or more
files, providing that a number is added at the end of the file name (e.g. tbs_api1.c or tbs_api2.c).

There are 4 different types of files:

�� The API file containing all the API functions

�� The hardware file containing the hardware dependent functions

�� The RTOS file containing the RTOS dependent functions

�� The other files containing all the remaining functions of the driver

Table 26: File Naming Conventions

File Type File Name

API tbs_api.c, tbs_api.h

Hardware Dependent tbs_hw.c, tbs_hw.h

RTOS Dependent tbs_rtos.c, tbs_rtos.h

Other tbs_util.c, tbs_fns.h

API Files

�� The name of the API files must start with the device abbreviation followed by an underscore and
‘api’. Eventually a number might be added at the end of the name.

�� Examples: tbs_api1.c is the only valid name for the file that contains the first part of the API
functions; tbs_api.h is the only valid name for the file that contains all of the API functions
headers.

Hardware Dependent Files

�� The name of the hardware dependent files must start with the device abbreviation followed by an
underscore and ‘hw’. Eventually a number might be added at the end of the file name.

�� Examples: tbs_hw.c is the only valid name for the file that contains all of the hardware dependent
functions, tbs_hw.h is the only valid name for the file that contains all of the hardware dependent
functions headers.

TBS (PM5310) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-2001251, Issue 3

RTOS Dependent Files

�� The name of the RTOS dependent files must start with the device abbreviation followed by an
underscore and ‘rtos’. Eventually a number might be added at the end of the file name.

�� Examples: tbs_rtos.c is the only valid name for the file that contains all of the RTOS dependent
functions, tbs_rtos.h is the only valid name for the file that contains all of the RTOS dependent
functions headers.

Other Driver Files

�� The name of the remaining driver files must start with the device abbreviation followed by an
underscore and the file name itself; this should convey the purpose of the functions within that file
with a minimum amount of characters.

�� Examples: tbs_util.c is a valid name for a file that would have utility functions of the device,
tbs_fns.h is a valid name for the header file.

TBS (PM5310) Driver Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-2001251, Issue 3

APPENDIX B: ERROR CODES
This section of the manual describes the error codes used in the TBS device driver.

Table 27: TBS Error Codes

Error Code Description

TBS_SUCCESS Success

TBS_FAILURE Failure

TBS_ERR_MEM_ALLOC Not enough memory for allocation

TBS_ERR_INVALID_ARG Invalid parameter

TBS_ERR_MODULE_NOT_OPEN Module not open

TBS_ERR_MODULE_ALREADY_OPEN Module already open

TBS_ERR_INVALID_MIV Invalid module initialization vector

TBS_ERR_INVALID_STATE Invalid device state

TBS_ERR_INVALID_MAP Invalid connection map

TBS_ERR_DEVS_FULL Device table is full

TBS_ERR_DEV_NOT_DETECTED Device not found

TBS_ERR_DEV_ALREADY_ADDED Device is already in table

TBS_ERR_INVALID_TYPE_ID Manufacturer and/or device ID mismatch

TBS_ERR_INVALID_DEV Invalid device handle

TBS_ERR_INVALID_DIV Invalid device initialization vector

TBS_ERR_INT_INSTALL Unable to install interrupt handler

TBS_ERR_INVALID_MODE Invalid mode

TBS_ERR_INVALID_REG Invalid register number

TBS_ERR_POLL_TIMEOUT Indirect read/write busy bit timeout

TBS (PM5310) Driver Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-2001251, Issue 3

TBS_ERR_FAILRAMTEST RAM test failed

TBS_ERR_CONNECT_EXIST Connection already exists

TBS_ERR_CONNECT_NONEXISTENT Connection does not exist

TBS_NODEBUG Debug not installed, use TBS_DEBUG
compile switch

TBS (PM5310) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID: PMC-2001251, Issue 3

APPENDIX C: EVENT CODES
Table 28 below describes the interrupt event codes used in the TBS device driver. Note that specific
callback is defined by the “event” and “cause” fields of the sTBS_DPV structure (for the structure’s
definition, please refer to Table 23). Information encoded in these two fields explicitly defines the cause
of the callback. The “event” field encodes the nature of the callback (for example,
TBS_EVENT_TXDE_FIFOERR represents a FIFO overrun/underrun error in either of the TWDE, the
TPDE, or the TADE blocks); the “cause” field is a 16-bit parameter that can be interpreted as a bit vector,
and is used to further indicate the absolute cause(s) of the callback event. Each cause event bit is encoded
for a unique event, such that a “1” in a specific bit position indicates the occurrence of the event for that
channel/port/time-slot. For example, the event TBS_EVENT_TXDE_FIFOERR in Table 28 is interpretted as
follows: if the cause field is set to 0x85A (0000 1000 0101 1010), there have been FIFO errors detected in
TWDE block port #2 (bit 1) and #4 (bit 3), TPDE port#1 (bit 4) and #3 (bit 6), and TADE port#4 (bit 11).

Table 28: TBS Event Codes

Event Code Description Cause

TBS_EVENT_IO_IPE Incoming data parity
error

bit 0..3: port# 1..4

TBS_EVENT_IO_DLLERR DLL error n/a, always 0

TBS_EVENT_IO_CSULOCKCHG CSU lock status change n/a, always 0

TBS_EVENT_TXDE_FIFOERR FIFO error in TxDE
block

bit 0..3: working port# 1..4
bit 4..7: protection port# 1..4
bit 8..11: auxiliary port# 1..4

TBS_EVENT_ITPP1_BYTEERR Byte error in Tx PRBS
monitor ITPP#1

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP2_BYTEERR Byte error in Tx PRBS
monitor ITPP#2

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP3_BYTEERR Byte error in Tx PRBS
monitor ITPP#3

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP4_BYTEERR Byte error in Tx PRBS
monitor ITPP#4

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP1_B1E1MSH B1/E1 mismatch in Tx
PRBS monitor ITPP#1

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP2_B1E1MSH B1/E1 mismatch in Tx
PRBS monitor ITPP#2

bit 0..11: timeslot# 1..12

TBS (PM5310) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID: PMC-2001251, Issue 3

TBS_EVENT_ITPP3_B1E1MSH B1/E1 mismatch in Tx
PRBS monitor ITPP#3

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP4_B1E1MSH B1/E1 mismatch in Tx
PRBS monitor ITPP#4

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP1_SYNCCHG Sync state change in Tx
PRBS monitor ITPP#1

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP2_SYNCCHG Sync state change in Tx
PRBS monitor ITPP#2

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP3_SYNCCHG Sync state change in Tx
PRBS monitor ITPP#3

bit 0..11: timeslot# 1..12

TBS_EVENT_ITPP4_SYNCCHG Sync state change in Tx
PRBS monitor ITPP#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM1_BYTEERR Byte error in Rx
working PRBS monitor
RWPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM2_BYTEERR Byte error in Rx
working PRBS monitor
RWPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM3_BYTEERR Byte error in Rx
working PRBS monitor
RWPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM4_BYTEERR Byte error in Rx
working PRBS monitor
RWPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM1_BYTEERR Byte error in Rx
protection PRBS
monitor RPPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM2_BYTEERR Byte error in Rx
protection PRBS
monitor RPPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM3_BYTEERR Byte error in Rx
protection PRBS
monitor RPPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM4_BYTEERR Byte error in Rx
protection PRBS

bit 0..11: timeslot# 1..12

TBS (PM5310) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-2001251, Issue 3

monitor RPPM#4

TBS_EVENT_RAPM1_BYTEERR Byte error in Rx
auxiliary PRBS monitor
RAPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM2_BYTEERR Byte error in Rx
auxiliary PRBS monitor
RAPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM3_BYTEERR Byte error in Rx
auxiliary PRBS monitor
RAPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM4_BYTEERR Byte error in Rx
auxiliary PRBS monitor
RAPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM1_B1E1MSH B1/E1 mismatch in Rx
working PRBS monitor
RWPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM2_B1E1MSH B1/E1 mismatch in Rx
working PRBS monitor
RWPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM3_B1E1MSH B1/E1 mismatch in Rx
working PRBS monitor
RWPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM4_B1E1MSH B1/E1 mismatch in Rx
working PRBS monitor
RWPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM1_B1E1MSH B1/E1 mismatch in Rx
protection PRBS
monitor RPPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM2_B1E1MSH B1/E1 mismatch in Rx
protection PRBS
monitor RPPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM3_B1E1MSH B1/E1 mismatch in Rx
protection PRBS
monitor RPPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM4_B1E1MSH B1/E1 mismatch in Rx
protection PRBS

bit 0..11: timeslot# 1..12

TBS (PM5310) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-2001251, Issue 3

monitor RPPM#4

TBS_EVENT_RAPM1_B1E1MSH B1/E1 mismatch in Rx
auxiliary PRBS monitor
RAPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM2_B1E1MSH B1/E1 mismatch in Rx
auxiliary PRBS monitor
RAPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM3_B1E1MSH B1/E1 mismatch in Rx
auxiliary PRBS monitor
RAPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM4_B1E1MSH B1/E1 mismatch in Rx
auxiliary PRBS monitor
RAPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM1_SYNCCHG Sync state change in Rx
working PRBS monitor
RWPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM2_SYNCCHG Sync state change in Rx
working PRBS monitor
RWPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM3_SYNCCHG Sync state change in Rx
working PRBS monitor
RWPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RWPM4_SYNCCHG Sync state change in Rx
working PRBS monitor
RWPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM1_SYNCCHG Sync state change in Rx
protection PRBS
monitor RPPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM2_SYNCCHG Sync state change in Rx
protection PRBS
monitor RPPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM3_SYNCCHG Sync state change in Rx
protection PRBS
monitor RPPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RPPM4_SYNCCHG Sync state change in Rx
protection PRBS

bit 0..11: timeslot# 1..12

TBS (PM5310) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID: PMC-2001251, Issue 3

monitor RPPM#4

TBS_EVENT_RAPM1_SYNCCHG Sync state change in Rx
auxiliary PRBS monitor
RPPM#1

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM2_SYNCCHG Sync state change in Rx
auxiliary PRBS monitor
RPPM#2

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM3_SYNCCHG Sync state change in Rx
auxiliary PRBS monitor
RPPM#3

bit 0..11: timeslot# 1..12

TBS_EVENT_RAPM4_SYNCCHG Sync state change in Rx
auxiliary PRBS monitor
RPPM#4

bit 0..11: timeslot# 1..12

TBS_EVENT_TSI_MEMPGCHG TSI block connection
page change

bit 0: RATI, bit 1: RPTI,
bit 2: RWTI, bit 8: TATI,
bit 9: TPTI, bit 10: TWTI

TBS_EVENT_RX8D_OFA Out of frame alignment
in Rx8D blocks

bit 0..3: working port# 1..4
bit 4..7: protection port# 1..4
bit 8..11: auxiliary port# 1..4

TBS_EVENT_RX8D_OCA Out of character
alignment in Rx8D
blocks

bit 0..3: working port# 1..4
bit 4..7: protection port# 1..4
bit 8..11: auxiliary port# 1..4

TBS_EVENT_RX8D_FUO FIFO underrun/overrun
error in Rx8D blocks

bit 0..3: working port# 1..4
bit 4..7: protection port# 1..4
bit 8..11: auxiliary port# 1..4

TBS_EVENT_RX8D_LCV Line code violation in
Rx8D blocks

bit 0..3: working port# 1..4
bit 4..7: protection port# 1..4
bit 8..11: auxiliary port# 1..4

TBS (PM5310) Driver Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-2001251, Issue 3

LIST OF TERMS
APPLICATION: Refers to protocol software used in a real system as well as validation software written
to validate the TBS driver on a validation platform.

API (Application Programming Interface): Describes the connection between this MODULE and the
USER’s Application code.

ISR (Interrupt Service Routine): A common function for intercepting and servicing DEVICE events. This
function is kept as short as possible because an Interrupt preempts every other function starting the
moment it occurs and gives the service function the highest priority while running. Data is collected,
Interrupt indicators are cleared, and the function ended.

DPR (Deferred Processing Routine): This function is installed as a task, at a USER configurable priority,
that serves as the next logical step in Interrupt processing. Data that was collected by the ISR is analyzed
and then calls are made into the Application to inform it of the events that caused the ISR in the first
place. Because this function is operating at the task level, the USER can decide on its importance in the
system, relative to other functions.

DEVICE: A single TBS Integrated Circuit. There can be many Devices; all served by this ONE Driver
MODULE

�� DIV (DEVICE Initialization Vector): A structure passed from the API to the DEVICE during
initialization; it contains parameters that identify the specific modes and arrangements of the physical
DEVICE being initialized.

�� DDB (DEVICE Data Block): A structure that holds the Configuration Data for each DEVICE.

MODULE: All of the code that is part of this driver; there is only ONE instance of this MODULE
connected to ONE OR MORE TBS chips.

�� MIV (MODULE Initialization Vector): Structure passed from the API to the MODULE during
initialization; it contains parameters that identify the specific characteristics of the Driver MODULE
being initialized.

�� MDB (MODULE Data Block): A structure that holds the Configuration Data for this MODULE.

RTOS (Real Time Operating System): The host for this driver

TBS (PM5310) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-2001251, Issue 3

ACRONYMS
API: Application programming interface

DDB: Device data block

DIV: Device initialization vector

DPR: Deferred processing routine

DPV: Deferred processing (routine) vector

FIFO: First in, first out

MDB: Module data block

MIV: Module initialization vector

ISR: Interrupt service routine

ISV: Initialization service (routine) vector

RTOS: Real-time operating system

TSI: Time Slot Interchange

PRBS: Pseudo random bit sequence

TBS: TelecomBus

LVDS: Low voltage differential signal

TBS (PM5310) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-2001251, Issue 3

INDEX

A

AIS

functions
tbsGenAIS, 35, 87

AIS generation

controlling AIS generation of device, 87

API

API Files, 112

B

buffers

buffer management, 97, 98
functions

sysTbsBufferStart, 55, 97
sysTbsBufferStop, 98, 99
sysTbsDPVBufferGet, 83, 98
sysTbsDPVBufferRtn, 90, 98, 107
sysTbsISVBufferGet, 55, 97
sysTbsISVBufferRtn, 55, 97, 98

getting
DPV buffer, 98
ISV buffer, 97

returning
an ISV buffer, 97
DPV buffer, 98

starting
buffer management, 97

stopping
buffer management, 98

C

callbacks

callback functions, 18, 90
cbackIO, 40, 49, 90
cbackPRBS, 40, 49, 91
cbackRX8D, 40, 41, 49, 92
cbackTSI, 40, 49, 91
cbackTXDE, 40, 41, 49, 92

IO events, 90
PRBS events, 91
RX8D events, 92
TSI events, 91
TXDE events, 92

clearing

device statistics, 84
interrupt enable mask, 82

configuration

functions
pcfgParam, 78, 79
rxtiConMap, 40, 41
tbsDeviceGetConfig, 66, 67, 74
tbsDeviceSetConfig, 66, 74
tbsPayloadCfg, 36, 77

input and output, 22

D

decoders

8B/10B decoder, 17, 23, 46, 53, 75
receive 8B/10B decoder, 17, 23

deferred processing

routine, 16, 55, 83, 121
vector, 55, 98

device registers

reading
device registers, 62

devices

activating, 61
adding, 59
configuration, 42, 66
data block, 25, 47, 48, 49, 56, 60, 61
de-activating, 62
deleting, 60
diagnostics, 17, 87
getting

event threshold, 86

TBS (PM5310) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID: PMC-2001251, Issue 3

status device, 85
initialization vector, 39, 40, 60, 61
initializing a device, 60
management, 26, 27, 59
read and write, 62
resetting, 61
setting

event threshold, 86
states, 25
status block, 52
updating configuration, 61

disparity encoder, 17, 21, 76

DPR

functions
sysTbsDPRTask, 28, 29, 83, 101, 102, 103,

106
sysTbsDPRTaskInstall, 102
sysTbsDPRTaskRemove, 102, 103
tbsDPR, 22, 28, 29, 30, 83, 90, 101, 102

removing
DPR Task, 103

system-specific DPR routine, 101
task, 102

driver

porting procedures, 104
source files, 104

drivers

closing
driver module, 57

porting drivers, 106
porting TBS driver, 104
starting

driver module, 58
stopping

driver module, 58

E

encoders

incoming 8B/10B encoder, 17, 23

errors

errDevice, 48, 49, 56, 59
errModule, 39, 48, 56

events

event codes, 116

F

FIFO

centering, 35

G

global variable, 56

H

hardware

hardware dependent files, 112
hardware interface, 20, 93

I

initialization

initPayloadCfg, 40, 41
initTSImap, 40, 41

input and output status block, 52

interrupts

functions
sysTbsIntInstallHandler, 106
sysTbsIntRemoveHandler, 106

installing
DPR task, 102
ISR handler, 94

removing ISR handler, 95
service routine, 83, 94, 121
service vector, 28, 30, 55, 97
servicing, 16, 27, 94

calling

tbsDPR, 29

tbsISR, 28

tbsPoll, 29

system-specific interrupt servicing, 94

TBS (PM5310) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-2001251, Issue 3

ISR

functions
sysTbsISRHandler, 28, 29, 83, 94, 95, 106
sysTbsISRHandlerInstall, 29, 94
sysTbsISRHandlerRemove, 94, 95
TBS_ISR_MODE, 39, 81
tbsISR, 22, 28, 29, 30, 83, 94, 95, 102
tbsISRConfig, 81, 82

handler, 94, 95

ITPP, 31, 32, 35, 54

L

looping

functions
tbsLoopIn2OutTCB, 36, 88, 89
tbsLoopOut2InTCB, 36, 88
tbsLoopRx2TxLVDS, 36, 89
tbsLoopTx2RxLVDS, 36, 89

M

map

functions
tbsGetMapMode, 34, 68
tbsIsValidMap, 34, 74
tbsMapSlot, 33, 69
tbsSetMapMode, 34, 67

masks

functions
tbsClearMask, 45, 82
tbsGetMask, 45, 81
tbsSetMask, 45, 82

interrupts
getting interrupt status mask, 81
intrmask, 40, 41, 50
setting interrupt enable mask, 82

ISR
enable and disable mask, 45

memory

allocation, 96
deallocation, 96
freeing memory, 96
functions

sysTbsMemAlloc, 96, 105
sysTbsMemFree, 96, 105
sysTbsMemSet, 105

modules

data block, 25, 47, 48, 56
functions

tbsModuleClose, 57
tbsModuleOpen, 39, 57
tbsModuleStart, 58, 94, 102
tbsModuleStop, 58, 94, 102

initialization vector, 25, 39, 57
management, 26, 57
opening driver module, 57
states, 24

P

payload configuration block, 43

polling

functions
TBS_POLL_MODE, 39, 81
tbsPoll, 29, 30, 82, 94

interrupt status registers, 82
pollISR, 39, 40, 49

PRBS

configuring
CFG_PRBS, 53, 54, 78, 79
PRBS generator, 78
PRBS generator and monitor STS-1

configuration parameters, 54
PRBS monitor, 79

configuring and retrieving payload for PRBS
processor, 77

forcing bit error in PRBS generator, 79
functions

cfgEgPrbsGen, 40, 41
cfgEgPrbsMon, 40, 41
cfgIgPrbsGen, 40, 41
cfgIgPrbsMon, 40, 41
tbsPrbsForceBitErr, 36, 79
tbsPrbsGenCfg, 36, 78
tbsPrbsMonCfg, 37, 79
tbsPrbsResync, 37, 80

monitor status block, 53

TBS (PM5310) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-2001251, Issue 3

PRBS generator and monitor configuration
block, 53, 54

processor events, 47
processors, 17, 23, 77
resynchronizing PRBS monitor, 80

preemption, 101

disabling, 101
functions

sysTbsPreemptDisable, 101
sysTbsPreemptEnable, 101

re-enabling, 101

PYLD, 41, 43, 77

R

read

functions
tbsRead, 62
tbsReadBlock, 63, 64
tbsReadIndirect, 65

registers

functions
sysTbsReadReg, 106, 110, 111

rtos

files
tbs_rtos.c, 105, 112, 113
tbs_rtos.h, 105, 107, 112, 113

RTOS, 20

interface, 96
structures passed through RTOS buffers, 55

RWPM, 31

S

semaphores, 99

creating a semaphore, 99
deleting a semaphore, 100
functions

sysTbsSemCreate, 99
sysTbsSemDelete, 100
sysTbsSemGive, 100

sysTbsSemTake, 100
giving a semaphore, 100
taking a semaphore, 100

sleeping a task, 99

stateDevice, 38, 49, 56

stateModule, 38, 48, 56

statistics

block, 50
event and statistics counter structure, 50
functions

tbsClrStats, 35, 84
tbsGetStats, 35, 84

getting
cumulative device statistics, 84
delta statistics counter of device, 85

status

functions
tbsGetStatus, 35, 85

STATUS_IO, 52
STATUS_PRBS, 53
STATUS_RX8D, 53
sTBS_STATUS, 52, 53, 85

T

telecombus

enabling
incoming to outgoing parallel telecombus

loopbacks, 88
outgoing to incoming parallel telecombus

loopbacks, 88
receive to transmit serial telecombus

loopbacks, 89
transmit to receive serial telecombus

loopbacks, 89
testing

functions
tbsTestRAM, 88
tbsTestReg, 87

RAM accesses, 88
register accesses, 87

TBS (PM5310) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID: PMC-2001251, Issue 3

time slot, 16, 21, 23, 32, 54, 67, 122

timers, 99

functions
sysTbsTimerSleep, 99, 106

transmit disparity encoder, 17

TSI

connection map, 44
connection page, 44

space-time slot, 45

W

write

functions
sysTbsWrite, 63, 64, 65
sysTbsWriteReg, 106
tbsWrite, 63
tbsWriteBlock, 64
tbsWriteIndirect, 65

