

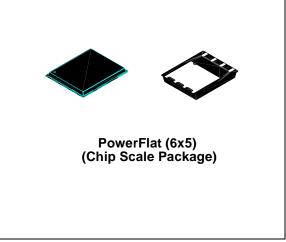
STL20NM20N

N-CHANNEL 200V - 0.088Ω - 20A PowerFLAT™ ULTRA LOW GATE CHARGE MDmesh™ II MOSFET

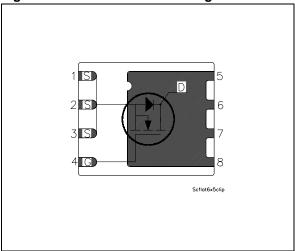
Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	Ι _D
STL20NM20N	200 V	< 0.105 Ω	20 A

- WORLDWIDE LOWEST GATE CHARGE
- TYPICAL $R_{DS}(on) = 0.088\Omega$
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- LOW GATE RESISTANCE
- LOW INPUT CAPACITANCE
- HIGH dv/dt and AVALANCHE CAPABILITIES


DESCRIPTION

This 200V MOSFET with a new advanced layout brings all unique advantages of MDmesh technology to lower voltages. The device exhibits worldwide lowest gate charge for any given onresistance.Its use is therefore ideal as primary switch in isolated DC-DC converters for Telecom and Computer applications.Used in combination with secondary-side low-voltage STripFETTM products, it contributes to reducing losses and boosting efficiency.The new PowerFLATTM package allows a significant reduction in board space without compromising performance.


APPLICATIONS

The MDmesh[™] family is very suitable for increasing power density allowing system miniaturization and higher efficiencies

Figure 1: Package

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STL20NM20N	L20NM20N	PowerFLAT™(6x5)	TAPE & REEL

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V	
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	200	V	
V _{GS}	Gate- source Voltage	± 30	V	
I _D (1)	Drain Current (continuous) at $T_C = 25^{\circ}C$ (Steady State) Drain Current (continuous) at $T_C = 100^{\circ}C$	20 12.3	A A	
I _{DM} (3)	Drain Current (pulsed)	80	А	
P _{TOT} (2)	Total Dissipation at $T_C = 25^{\circ}C$ (Steady State)	2.5	W	
P _{TOT} (1)	Total Dissipation at $T_C = 25^{\circ}C$ (Steady State)	80	W	
	Derating Factor (2)	0.02	W/°C	
dv/dt (4)	Peak Diode Recovery voltage slope	10	V/ns	

Table 3: Absolute Maximum ratings

Table 4: Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Rthj-c	Thermal Resistance Junction-case		1.56	°C/W
Rthj-pcb (2)	Thermal Resistance Junction-pcb	35	50	°C/W
T _j T _{stg}	Max. Operating Junction Temperature Storage Temperature	ure -55 to 150		°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max. Value	Unit
I _{AS}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	20	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 35 \text{ V}$)	380	mJ

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25^{\circ}C$ UNLESS OTHERWISE SPECIFIED) Table 6: On/Off

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{Ds(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 10 A		0.088	0.105	Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
g _{fs} (5)	Forward Transconductance	V _{DS} = 15 V _, I _D = 10 A		8		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		800 330 130		pF pF pF
C _{oss eq.} (*)	Equivalent Output Capacitance	V_{GS} = 0V, V_{DS} = 0V to 160 V		225		pF
t _d (on) t _r t _d (off) t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$V_{DD} = 100 \text{ V}, I_D = 10 \text{ A}$ $R_G = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (see Figure 16)		40 15 40 11		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 160 \text{ V}, I_D = 20 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 19)		32 6 25	50	nC nC nC

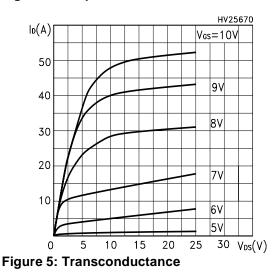
(*) Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				20	A
I _{SDM} (3)	Source-drain Current (pulsed)				80	А
V _{SD} (5)	Forward On Voltage	$I_{SD} = 20 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 20 A, di/dt = 100 A/µs, V _{DD} = 100 V, T _j = 25°C (see Figure 17)		160 960 128		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 20 A, di/dt = 100 A/µs, V _{DD} = 100 V, T _j = 150°C (see Figure 17)		225 1642 15		ns nC A

Note: 1. The value is rated according to R_{thj-c}. 2. When Mounted on FR-4 Board of 1inch², 2 oz Cu

3. Pulse width limited by safe operating area


4. ISD \leq 20A, di/dt \leq 400A/µs, VDD \leq V(BR)DSS

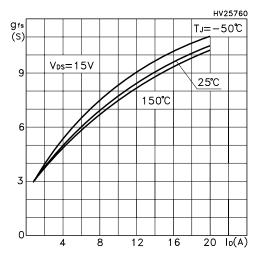

5. Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5 %

Figure 3: Safe Operating Area

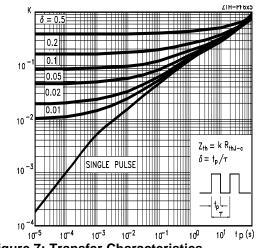

HV25880 Tj=150°C $I_D(A)$ Tc=25°C Single pulse 10² 100µs 10¹ 1ms 10ms 1 0⁰ 10 68 2 10⁰ ⁴ ⁶⁸ 10 ² 4 68 10² V_{DS} (V) 10⁻¹

Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

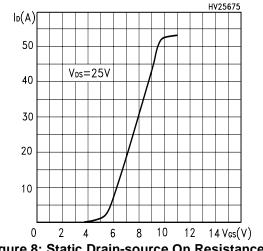


Figure 8: Static Drain-source On Resistance

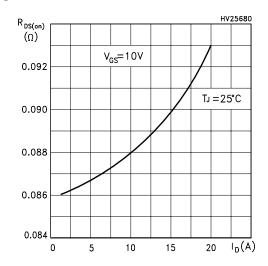


Figure 9: Gate Charge vs Gate-source Voltage

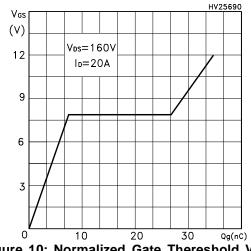
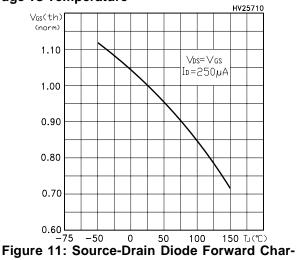



Figure 10: Normalized Gate Thereshold Voltage vs Temperature

acteristics HV25740 Vsd Tj=−50℃ $\langle \vee \rangle$ 2.6 2.2 1.8 1.4 25°C 1.0 150℃ 0.6 12 16 4 8 20 [sD(A) C

Figure 12: Capacitance Variations

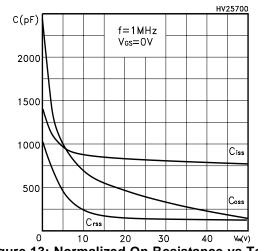


Figure 13: Normalized On Resistance vs Temperature

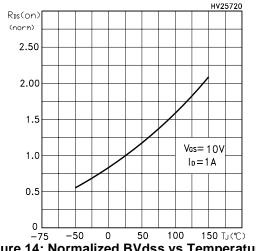


Figure 14: Normalized BVdss vs Temperature

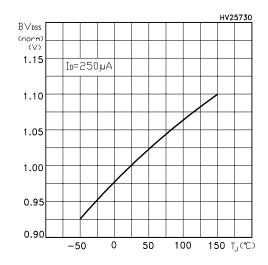


Figure 15: Unclamped Inductive Load Test Circuit

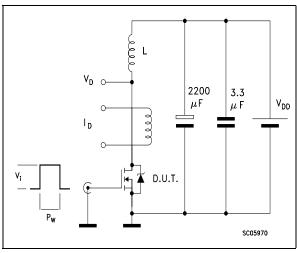


Figure 16: Switching Times Test Circuit For Resistive Load

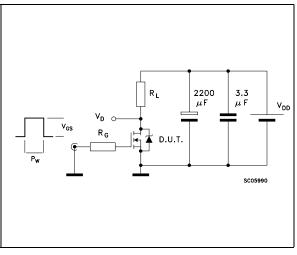
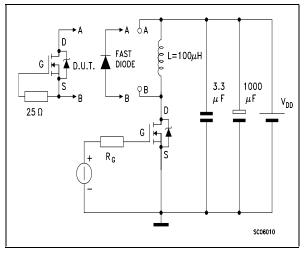



Figure 17: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 18: Unclamped Inductive Wafeform

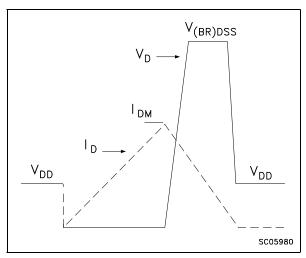
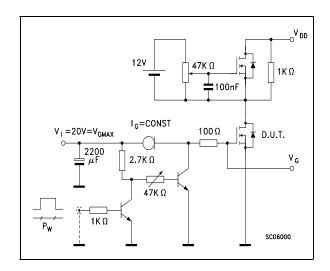
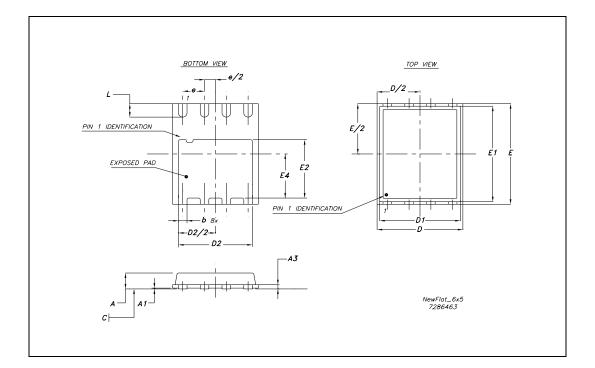




Figure 19: Gate Charge Test Circuit

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	0.80		0.93	0.031		0.036
A1		0.02			0.0007	0.0019
A3		0.20			0.007	
b	0.35		0.47	0.013		0.018
D		5.00			0.196	
D1		4.75			0.187	
D2	4.15		4.25	0.163		0.167
Е		6.00			0.236	
E1		5.75			0.226	
E2	3.43		3.53	0.135		0.139
E4	2.85		2.68	0.101		0.105
е		1.27			0.050	
L	0.70		0.90	0.027		0.035

Table 9: Revision History

Date	Revision	Description of Changes
16-Feb-2005	2	New stylesheet
		Some Values changed on table 6 and 8
09-Jun-2005	3	Inserted curves

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics a authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
