— i CY7C66013

— z PRELIMINARY

CY7C66113

CY/7C66013

CY7C66113
Full-Speed USB (12 Mbps) Peripheral

Controller with Integrated Hub

Cypress Semiconductor Corporation « 3901 North First Street ¢ San Jose

 CA 95134 -

408-943-2600
February 4, 2000

CY7C66013
PRELIMINARY CY7C66113

TABLE OF CONTENTS

1.0 FEATURES .. i 6
2.0 FUNCTIONAL OVERVIEW ...ttt ettt bttt et e ettt e e e eeeeeeeeeeeeeeeeeeeeeeeas 7
3.0 PIN CONFIGURATIONS ..ottt bbbttt et e e et s bt e st e e bt e e be e et e eeeeeeeeeeeeeeeeeeeeeeeeas 9
4.0 PRODUCT SUMMARY TABLES .ttt et beebbesbeees 10
o R e AN T T T = £ PSS 10
4.2 1]O REQISTEI SUMIMAIY ..iiiiiiiiieiiiiiii e e e e e ettt e r e e e e e ee e e et e e aeeeeeetesat s s e eeeeeeeaessasananeeeeeeeeeresnnnns 10
4.3 INSTrUCTION S SUMIMAIY .iiiiiiiiiii it ee e e e e e ee e e e e rr s e e e e e eeeaee st aneeaeeaeeeresnenns 12
5.0 PROGRAMMING MODELuuttiititiiiiiiiiiiiiiiiiiiietiieiieeeieesbeeieeebeesaeeeeeeeeeeseeeeeeeeaeeeeeetaeeteeetaeeaaeeaeaeeeens 13
5.1 14-Bit Program COUNTEI (PC) ..iiiiuiiiiiiiieie ittt e e e e e e e e et s e s e e eeeee e aara s s e s eeeeeeaesnnnns 13

5.1.1 Program Memory OrganiZatiONccccooioieioioieiiiiiie e ettt s a s ss s e s e s e s e aeaeaeaee et aeeaeaesrererennsnnnenes 14
5.2 8-Bit ACCUMUIAEOT () wiritiiiiiiieiiieitie e st ee e e e e e e ettt e e e e ae e e aee bt e e eeeeeeeeesaran e s eaeeeeeesesnnnns 14
5.3 8-Bit TEMPOrary REQISTEI (X) ieieuuiuiiiiiieieiiieiiiiiis s e e ettt s e e e e e e e ae et s e e e e eeeeeetaran s s eseeeeeesesnnnns 14
5.4 8-Bit Program Stack POINter (PSP) ..o e e e e anneas 15

5.4.1 Data Memory OrganiZatiONccccceieieieieieieieie e ee e e ettt asaa s e s e s eaaaeaeaeaee et eeeaeaesreeeresnsnnnnnnes 15
5.5 8-Bit Data Stack POINTEr (DSP) ..uuuuiiiiiiiiiiiiiiis ettt e e e e e ae e e e e e e eeeeaernnans 15
5.6 AQAIESS MOES ...eiiiiiiitttt ettt ettt et e e e et e e st ettt e ee e ettt e et e ee e e eeteeeteeeeee et eeeaeens 16

LT A = L = W (] 1= = U=) SO 16

G2 B 1 €= T o ST PP PP OPPPTPP 16

NG B [g Lo 1= C= o OO PPPPPTTT 16
6.0 CLOCKING ... b bbbt ae bt b s e b e s beee 16
7.0 RESET i bbbt an e e 17
7.1 POWEI-ON RESEL (POR) ..uuiiiiiiiiiiiiiiii sttt st e e e e e e e e e et e e e e e eeeaeetatan e e eaeeaeeereennnns 17
7.2 WatCh DOQg RESEE (WDR) ..iiiiiiiieiiiiii ettt e e e e e e e e et e e e e e aeeeeetaran s s eeeeaeeeaesnnnns 17
8.0 SUSPEND MODE ...ttt ettt st e bt et e e et e e be e et e e et e eeeeeeteeeteeeteeeeaeeaeeeeeans 18
9.0 GENERAL-PURPOSE I/O (GPIO) PORTS ...oitiiitiiiiiiiiiiieiieeeieeeieeie ettt ettt e eeeeeeeeeseeeaeeeaaesaaeaaaeeaee s 18
9.1 GPIO Configuration POtccooiiiiiiiiii e 19
9.2 GPIO INterrupt ENADIE POITS oouiiiiiii ittt e e e e e e e e e e e e e e e eeeerernnens 20
10.0 DAC PORT ittt 21
O B Y N O] 1] S 2 L= 0 L] =T 21
(OB B YN O oY o [g) (=T o AU o = TSRO 22
11.0 12-BIT FREE-RUNNING TIMER ..o 22
0 R 1 =T (S =) I PSP PP P TP 22
12.2 TIMEE (IMSB) ettt ettt e et e s e e e e e e e e e e e e e e 22
12.0 1°C AND HAPI CONFIGURATION REGISTERcoiviieieeeeeeeeeeeeeseeee e e 23
13.0 12C CONTROLLER ..ottt ettt et 24
14.0 HARDWARE ASSISTED PARALLEL INTERFACE (HAPI) oo, 25
15.0 PROCESSOR STATUS AND CONTROL REGISTERcoooiiiiiiiii e 26
16.0 INTERRUPTS ..ottt 27
N R [N AT o U oL V=T o 0] TSRO 27
A (oY (=T o U oL = =T o o) Y RO 29
16.3 USB BUS RESEE INTEITUPT ..ottt et e e e e e et e e e ee s e e eeaaan s 29
G S T T [T =T U o AP 29

N CY7C66013

— PRELIMINARY C

==z Y7C66113
=2 CYPRESS

TABLE OF CONTENTS (continued)

16.5 USB ENAPOiNt INTEITUPTS wovviieii it ee e e e e e e e e e e e et e e e e eeeeeeaaea e ees 29
G IO T = I o TU o N [N =T U) PSP 29
T A B YN O 1 (=] U o) SO 30
16.8 GPIO/HAPI INTEITUPT oo 30
16.9 12C INEEITUDE vttt e et e et ee et ee e ee et et et ee et et et et et et et et et et ses e et eseee s e e eee s enneneeieens 30
L17.0 USB OVERVIEW ..ottt ettt ettt e e et e et et e e et st aaee et s e st e e eaaeseaa e e eanreaaeeees 31
17.1 USB Serial Interface ENGINe (SIE) ..uuuoiiiiiiiiiiiiiii st e et e e s e e e e e eeee e e e e aeeaaees 31
A O Y = R o g LU T g =T = 1 1o] o 31
ST O LS = T 151 = TR 32
18.1 Connecting/Disconnecting @ USB DEVICEccooviiiiiiiiii i e e e 32
18.2 Enabling/Disabling @ USB DEVICEiiiiiiiiiiiiiiiiie ettt ee e e e e e e e e ae e e e e e e aeees 33
18.3 Hub Downstream Ports Status and CONTIOl ...oeeeieeiiiiii e 33
18.4 Downstream Port Suspend and RESUMEccooiiiuiiiiiiii e e ee et e e e e eeeaae s 34
18.5 USB Upstream Port Status and CONTIOloooooiiiiiiiiii e e 35
19.0 USB SERIAL INTERFACE ENGINE OPERATION .iviiiiii ittt et n e e 36
1O.1 USB DEVICE AU S S S ouuiiiniiiiii et eet ettt et ettt et s e st e e ea e et seaseaasea s et etaasern e eenseensreneeens 36
19.2 USB DeViCe ENUPOINTS ouuiiiiiiiiiiiiiieiis st e e ettt s e e e e s ee e ae st ee e e e e e eeeeresasananeeaeaaaees 36
19.3 USB Control Endpoint MOde REQISIEIS ..uuiiiiiiiiiiiiiii et 37
19.4 USB Non-Control Endpoint Mode REQISTEISccvvuiiiiiiiiiie i 37
19.5 USB ENdpoint COUNTEr REQISTEIS .uuiiiiiiiiiiiieieii it e ettt e e e e e e e e e e e e e e e e e eaeees 38
19.6 Endpoint Mode/Count Registers Update and Locking Mechanismcccccoeevviiiiiiiiniiinnnnnn. 38
20.0 USB MODE TABLES ... iiiiiiii ittt ettt ettt et et e et ae sttt e et aee e et e e e e sttt e e eaaeeeetaeeenaeerenns 40
21.0 ABSOLUTE MAXIMUM RATINGS ..ottt ettt ettt et e et e et e et e e e e e s e e e e e e e eeaas 44
22.0 ELECTRICAL CHARACTERISTICS ..ottt ettt ettt e e e e e e e s e e e e e reeans 44
23.0 SWITCHING CHARACTERISTICS ..ottt ettt e et e et e et e et e e e e ea e e e aeeeenns 46
24.0 ORDERING INFORMATION oottt ittt e et e et ettt e e et e ettt e e et e e ettt e et ae e et e e e etaeerenns 48
25.0 PACKAGE DIAGRAMS oottt e e e et e e et e e et e et e e et e e e e ereans 49

LIST OF FIGURES

Figure 5-1. Program Memory Space with Interrupt Vector Tableccccviiiiiiiiii v, 14
Figure 6-1. Clock Oscillator ONn-Chip CirCUILocciiiiiiiiii e e 16
Figure 7-1. Watch DOg RESEt (WDR) ...ciiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e 17
Figure 9-1. Block Diagram Of @ GPIO PiNooiiiiiiiiii e e e e e e aeees 18
Figure 9-2. Port 0 Data 0X00 (read/WIITE) ...uuuuuiiiiiiiiiieeiie it e e e e e e e erea e 19
Figure 9-3. Port 1 Data OX0L1 (read/WIItE) .i.uuvuuiieiiiiiiieiiie it ee e e e e e e s 19
Figure 9-4. Port 2 Data 0X02 (F€ad/WIITE) ...uuuuuiiiiiiii et e e e e e e s 19
Figure 9-5. Port 3 Data 0X03 (F€ad/WIITE) ...uuuuuiiiiiiieiieeie e e e e ee e 19
Figure 9-6. GPIO Configuration Register 0X08 (read/Write)ccoceeiiiiiiiiiiiiiiiiiiiine e 20
Figure 9-7. Port O Interrupt Enable OX04 (read/Write)ccciiiiiiiiiiiiiiiiiiie e 20
Figure 9-8. Port 1 Interrupt Enable OX05 (read/Write)ccciviiiiiiiiiiiiiiii e 20
Figure 9-9. Port 2 Interrupt Enable OX06 (read/Write)ccciiiiiiiiiiiiiiiiiiiei e 20
Figure 9-10. Port 3 Interrupt Enable OX07 (read/Writ€)ccoiviiiiiiiiiiiii i 20
Figure 10-1. Block Diagram Of @ DAC PiN ...t s neae e 21
Figure 10-2. DAC Port Data 0X30 (read/WIItE) ...ciceuiiuiiii i ee e e eeeeeees 21

E o CY7C66013
S PRELIMINARY CY7C66113
== CYPRESS
LIST OF FIGURES (continued)

Figure 10-3. DAC Port Isink 0x38 t0 OX3F (WFIte ONIY) .uvuuiiiiiiiii e 21
Figure 10-4. DAC Port Interrupt Enable OX31 (Writ€ ONlY) ..oooviiiiiiiiiii e 22
Figure 10-5. DAC Port Interrupt Polarity 0X32 (Write ONnly) ...ocooiviiiiiiiii e 22
Figure 11-1. Timer Register 0X24 (read ONIY) ...oooiiiiiiiiiiii e e r e s 22
Figure 11-2. Timer Register 0X25 (read ONIY) ..o e e s 22
Figure 11-3. Timer BIOCK DI@QIamccooiiiiiiiiiiiii it e e e e e e e e et s e e e e ae e eeeaaea e s 23
Figure 12-1. HAPI/I>C Configuration Register 0X09 (read/Writ€)ccccuviviiiiiiiiiiiiriiier e e 23
Figure 13-1. I°C Data Register 0x29 (separate read/write registers)ccccevvivivieieiiinini e, 24
Figure 13-2. I°C Status and Control Register 0X28 (read/Write)ccccvveviiiiiiiiiiiiiiii e 24
Figure 15-1. Processor Status and Control Register OXFFoooviviiiiiiiii e 26
Figure 16-1. Global Interrupt Enable Register 0X20 (read/Writ€)cccveviiieiiiiiiiiiiiiieee e 27
Figure 16-2. USB Endpoint Interrupt Enable Register Ox21 (read/Write)ccccceeevvviiiiiiviiiniiiennnnn. 27
Figure 16-3. Interrupt Controller Functional Diagramccccoveeeiiiiiin e 28

Figure 16-4.
Figure 16-5.
Figure 18-1.
Figure 18-2.
Figure 18-3.
Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.

Figure 18-9.

Interrupt Vector Register 0x23 (read ONIY) ..ooooveeiiiiiiii e 29
GPIO INTEITUPT STIUCTUI ot e et eee e eaes 30
Hub Ports Connect Status 0x48 (read/write), 1 = Connect, 0 = Disconnect 32
Hub Ports Speed 0x4A (read/write), 1 = Low-Speed, 0 = Full-Speedceeeeees 33
Hub Ports Enable Register 0x49 (read/write), 1 = Enabled, 0 = Disabled 33
Hub Downstream Ports Control Register 0x4B (read/writ€)ccccvvvveiiiiiiiiieveiennnn, 33
Hub Ports Force Low Register (read/write) O0x51, 1 = Force Low, 0 = No Force 34
Hub Ports SEO Status Register Ox4F (read only), 1 = SEO, 0 = Non-SEOQ 34
Hub Ports Data Register 0x50 (read only), 1 =(D+ >D-),0=(D+ <D-) .cccoeeeeverennn. 34
Hub Ports Suspend Register 0x4D (read/write),

1 =Portis Selectively SUSPENTEcciiiiiiiiiiicii e 35
Hub Ports Resume Status Register OX4E (read only), 1 = Port is in Resume State 35

Figure 18-10. USB Status and Control Register OX1F (read/Write)cccccvviiiiiiiiiiiriiiiiiin e 35

Figure 19-1.
Figure 19-2.
Figure 19-3.
Figure 19-4.
Figure 19-5.
Figure 23-1.
Figure 23-2.
Figure 23-3.
Figure 23-4.

USB Device Address Registers 0x10, 0x40 (read/Writ€)cccccceeveveiiiviiiiiiiniininieeeennens 36
USB Device Endpoint Zero Mode Registers 0x12 and 0x42, (read/write) 37
USB Non-Control Device Endpoint Mode Registers 0x14, 0x16, 0x44, (read/write) 38
USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write) 38
Token/Data Packet FIOW DIi@gramccouuuiiiiiiiiiie i e e ee e 39
(04 Lo Tod QT 1 11 o Yo TSR 46
USB Data Signal TimMINg ..o ee e e e e s e e ae et an e e e e s eeeernnnnnns 47
HAPI Read by External Interface from USB Microcontrollerccccccviiiiniinnnnnnns 47
HAPI Write by External Device to USB Microcontrollerccoccvvvveviiciiiiiiiieeenennnnn, 48

N CY7C66013

= = PRELIMINARY CY7C66113
== CYPRESS
LIST OF TABLES

Table 4-1. Pin ASSIGNMENTS ..ottt e e e e e e e e e e e e ee e et rereeeeeeeeanesn e eas 10
Table 4-2. 1/O REQISTEN SUMMEAIY ..uiuuiiiiii et er e e e ee e s e e e e e e e e e s e e e e e eeeae et aneeaeeeeeeresnnnns 10
Table 4-3. INSrUCLION SEE SUMMAIYiiiiiiiiiieieis e e e et e e e e e eeeae et e eeeeeeeeerernenns 12
Table 9-1. Port CoNfigUIatioNS ..ooouiiiiiii e e e e e e e e e e e e e e e e eeeerernnens 19
Table 12-1. HAPI Port ConfigUIationccooiiiiiiiiiiii e e e e e ee e e e s e e aeeeaeannans 23
Table 12-2. 12C POrt CONFIGUIALION ...vviveieeeieeeeeee e ee s ee e e e e et et e s ree e ee e en e ee e 23
Table 13-1. I°C Status and Control Register Bit Definitionscouviiiiiiiiiic e 24
Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitionscccccccoveiiiiiiiieicii e, 25
Table 16-1. Interrupt Vector ASSIGNMENTS ..oiiiiiuii i ee e e e e ae e e e e e e eeerereenns 28
Table 18-1. Control Bit Definition for DOWNStream POItScccccociiiiiiiiiiiiiiiiiiiiiieiiriieeveeeieeeeees 34
Table 18-2. Control Bit Definition for Upstream POrtcccooiiiiiiiiiiiiciin e 36
Table 19-1. Memory Allocation for ENAPOINTSiiiiii i s eeeeaaeaneans 37
Table 20-1. USB Register MOde ENCOAING ..ovviuvuiiiiiiiiiieieieis et e e ee e e e e e e aeearennnnns 40
Table 20-2. Decode table for Table 20-3: “Details of Modes for Differing Traffic Conditions” ...41
Table 20-3. Details of Modes for Differing Traffic Conditionsccccceeveviiiiiiiiiiii e, 42

———
——
—a—
—
—
—
—
——
—

=2 CYPRESS

.0 Features

=

CY7C66013
PRELIMINARY CY7C66113

‘M

Full-speed USB Peripheral Microcontroller with an integrated USB hub
— Well suited for USB compound devices such as a keyboard hub function
8-bit USB Optimized Microcontroller
— Harvard architecture
— 6-MHz external clock source
—12-MHz internal CPU clock
—48-MHz internal Hub clock
Internal memory
— 256 bytes of RAM
—8 KB of PROM (CY7C66013, CY7C66113)
Integrated Master/Slave 12C Controller (100 kHz) enabled through General-Purpose I/0O (GPIO) pins
Hardware Assisted Parallel Interface (HAPI) for data transfer to external devices
I/O ports
— Three GPIO ports (Port 0 to 2) capable of sinking 8 mA per pin (typical)
— An additional GPIO port (Port 3) capable of sinking 12 mA per pin (typical) for high current requirements: LEDs
—Higher current drive achievable by connecting multiple GPIO pins together to drive a common output
— Each GPIO portcan beconfigured as inputs with internal pull-ups or open drain outputs or traditional CMOS outputs
— A Digital to Analog Conversion (DAC) port with programmable current sink outputs is available on the CY7C66113
device
— Maskable interrupts on all I/O pins
12-bit free-running timer with one microsecond clock ticks
Watch dog timer (WDT)
Internal power-on reset (POR)
USB Specification Compliance
— Conforms to USB Specification, Version 1.1
— Conforms to USB HID Specification, Version 1.1
— Supports one or two device addresses with up to 5 user configured endpoints
Up to two 8-byte control endpoints
Up to four 8-byte data endpoints
Up to two 32-byte data endpoints
— Integrated USB transceivers
— Supports 4 Downstream USB ports
— GPIO pins can provide individual power control outputs for each Downstream USB port
— GPIO pins can provide individual port over current inputs for each Downstream USB port
Improved output drivers to reduce EMI
Operating voltage from 4.0V to 5.5V DC
Operating temperature from 0 to 70 degrees Celsius
CY7C66013 available in 48-pin PDIP (-PC) or 48-pin SSOP (-PVC) packages
CY7C66113 available in 56-pin SSOP (-PVC) packages
Industry standard programmer support

= CY7C66013
—— - PRELIMINARY CY7C66113

2.0 Functional Overview

The CY7C66013 and CY7C66113 are compound devices with a full-speed USB microcontroller in combination with a USB hub.
Each device is well suited for combination peripheral functions with hubs, such as a keyboard hub function. The 8-bit one-time-pro-
grammable microcontroller with a 12-MBps USB Hub supports as many as 4 downstream ports.

The CY7C66013 features 29 GPIO pins to support USB and other applications. The I/O pins are grouped into four ports (P0[7:0],
P1[7:0], P2[7:0], P3[4:0]) where each port can be configured as inputs with internal pull-ups, open drain outputs, or traditional
CMOS outputs. Ports 0 to 2 are rated at 8 mA per pin (typical) sink current. Port 3 pins are rated at 12 mA per pin (typical) sink
current, which allows these pins to drive LEDs. Multiple GPIO pins can be connected together to drive a single output for more
drive current capacity. Additionally, each 1/O pin can be used to generate a GPIO interrupt to the microcontroller. All of the GPIO
interrupts all share the same “GPIO” interrupt vector.

The CY7C66113 has 31 GPIO pins (P0[7:0], P1[7:0], P2[7:0], P3[6:0]). Additionally, the CY7C66113 features an additional 8 I/O
pins in the Digital to Analog Conversion (DAC) port (P4[7:0]). Every DAC pin includes an integrated 14-kQ pull-up resistor. When
a ‘'l’is written to a DAC I/O pin, the output current sink is disabled and the output pin is driven HIGH by the internal pull-up resistor.
When a ‘0’ is written to a DAC I/O pin, the internal pull-up is disabled and the output pin provides the programmed amount of sink
current. A DAC I/O pin can be used as an input with an internal pull-up by writing a ‘1’ to the pin.

The sink current for each DAC 1/O pin can be individually programmed to one of sixteen values using dedicated Isink registers.
DAC bits DAC[1:0] can be used as high current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC
bits DAC[7:2] have a programmable current sink range of 0.2 to 1.0 mA (typical). Multiple DAC pins can be connected together
to drive a single output that requires more sink current capacity. Each 1/0 pin can be used to generate a DAC interrupt to the
microcontroller. Also, the interrupt polarity for each DAC 1/O pin is individually programmable.

The microcontroller uses an external 6-MHz crystal and an internal oscillator to provide a reference to an internal PLL-based
clock generator. This technology allows the customer application to use an inexpensive 6-MHz fundamental crystal that reduces
the clock-related noise emissions (EMI). A PLL clock generator provides the 6-, 12-, and 48-MHz clock signals for distribution
within the microcontroller.

The CY7C66013 and CY7C66113 have 8 KB of PROM. These parts also include power-on reset logic, a watch dog timer, and a
12-bit free-running timer. The power-on reset (POR) logic detects when power is applied to the device, resets the logic to a known
state, and begins executing instructions at PROM address 0x0000. The watch dog timer is used to ensure the microcontroller
recovers after a period of inactivity. The firmware may become inactive for a variety of reasons, including errors in the code or a
hardware failure such as waiting for an interrupt that never occurs.

The microcontroller can communicate with external electronics through the GPIO pins. An I°C interface accommodates a 100-kHz
serial link with an external device. There is also a Hardware Assisted Parallel Interface which can be used to transfer data to an
external device.

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources, 128-us and 1.024-ms. The timer can be used to
measure the duration of an event under firmware control by reading the timer at the start of the event and after the event is
complete. The difference between the two readings indicates the duration of the event in microseconds. The upper four bits of
the timer are latched into an internal register when the firmware reads the lower eight bits. A read from the upper four bits actually
reads data from the internal register, instead of the timer. This feature eliminates the need for firmware to try to compensate if
the upper four bits increment immediately after the lower eight bits are read.

The microcontroller supports 11 maskable interrupts in the vectored interrupt controller. Interrupt sources include the 128-ps (bit
6) and 1.024-ms (bit 9) outputs from the free-running timer, five USB endpoints, the USB hub, the DAC port, the GPIO ports, and
the 1°C master mode interface. The timer bits cause an interrupt (if enabled) when the bit toggles from LOW ‘0’ to HIGH ‘1’. The
USB endpoints interrupt after the USB host has written data to the endpoint FIFO or after the USB controller sends a packet to
the USB host. The DAC ports have an additional level of masking that allows the user to select which DAC inputs can cause a
DAC interrupt. The GPIO ports also have a level of masking to select which GPIO inputs can cause a GPIO interrupt. For additional
flexibility, the input transition polarity that causes an interrupt is programmable for each pin of the DAC port. Input transition polarity
can be programmed for each GPIO port as part of the port configuration. The interrupt polarity can be rising edge (‘0’ to ‘1’) or
falling edge (‘1’ to ‘0’).

The CY7C66013 and CY7C66113 include an integrated USB serial interface engine (SIE) that supports the integrated peripherals
and the hub controller function. The hardware supports up to two USB device addresses with one device address for the hub
(two endpoints) and a device address for a compound device (three endpoints). The SIE allows the USB host to communicate
with the hub and functions integrated into the microcontroller. The part includes a 1:4 hub repeater with one upstream port and
four downstream ports. The USB Hub allows power-management control of the downstream ports by using GPIO pins assigned
by the user firmware. The user has the option of ganging the downstream ports together with a single pair of power-management
pins, or providing power management for each port with four pairs of power-management pins.

= CY7C66013
= = PRELIMINARY CY7C66113

Logic Block Diagram

6-MHz crystal UsB |- D+[0] Upstream
’—m—‘ Transceiver < D-[0] USB Port
PLL # # SR)
|
> i o1
<> i | D
48 MHz Transceiver
Clock
> Transceiver <% D-{2]

- CPU
12 MHz TT Repeater

|

|

- 12-MHz |

Divider 8-bit <\:l\‘/ - usB > D+[2]

Bl

|

|

|

PROM uSB [D+[3]

<\:l\‘/ UsB - <>
8 KB SIE > <™ Transceiver <% D-[3]
|
S
RAM @ @ @ Interrupt <> USB |« D[4
256 byte) Controller ‘|' Transceiver < D-[4]
eo)
Downstream USB Ports
% |
6 MHz > L — — — — -
12-bit :1‘ l; GPIO > Pol] Power management under firmware
Timer PORT O . - control using GPIO pins
* I
@ Gpio [PO
Watch Dog PORT1 | P1[7]
Timer I
T P2[0:1,7]
@ GPIO/ (e T
HAPI <% P2[2]: Latch_Empty
Power-On PORT2 [T Eg%f Data_Ready
Reset P2[5} OF
<> P2[5]; OE
&> P2[6]; CS
I
GPIO i P3(0l High Current
PORT 3 . P3| Outputs
- - — — — a

GPIO <« P3[5] Additional

PORT 3 |« pafe] 5o Cur™""

e DACI0]

L]
> DAC[7]
— | CY7C66l13only_

12c e SCLK
Interface [+ SPATA

1L -3 3 L

*[2C interface enabled by firmware through
P2[1:0] or P1[1:0]

PRELIMINARY

CY7C66013
CY7C66113

Pin Configurations

XTALOUT
XTALIN
VRer
P1[3]
P1[5]
P1[7]
P3[1]
D+[0]
D-[0]
P3[3]
GND
D+[1]
D-[1]
P2[1]
D+[2]
D-[2]
P2[3]
P2[5]
P2[7]
GND
PO[7]
PO[5]
PO[3]

Vee

P1[1]
P1[0]
P1[2]
P1[4]
P1[6]
P3[0]
D-[3]
D+[3]
P3[2]
GND
P3[4]
D-[4]
D+[4]
P2[0]
P2[2]
GND
P2[4]
P2[6]
Vep

PO[0]
PO[2]
PO[4]

CY7C66013
48-pin PDIP/SSOP
1 N 48
2 47
3 46
4 45
5 44
6 43
7 42
8 41
9 40
10 39
11 38
12 37
13 36
14 35
15 34
16 33
17 32
18 31
19 30
20 29
21 28
22 27
23 26
24 25

PO[1]

A AararAararAarAarAarAararAarararararraririr

N N) T S N

PO[6]

TOP VIEW

XTALOUT
XTALIN
VREF
P1[3]
P1[5]
P1[7]
P3[1]
D+0]
D-[0]
P3[3]
GND
P3[5]
D+[1]
D-1]
P2[1]
D+[2]
D-2]
P2[3]
P2[5]
P2[7]
DAC[7]
PO[7]
PO[5]
PO[3]
PO[1]
DAC[5]
DAC[3]
DAC[1]

CY7C66113

56-pin SSOP
O: Vsa]
02 55 |
s 54 []
I s3 [
O s 52 [
s 51 |
O - 50 [
O s 29]
O o 48 1
[0 a7 1
0 46 [
0 12 s (]
O 1 4]
[14 a3]
[s a2 (]
O 1 a (]
O 7 40 [
[1s 39 (1
O 10 38]
O 20 37 [
0 22 36 []
O 22 35]
O 23 3 [
[24 33]
O 2 2 [
[26 a1 [
O 27 30 [
[2s 29 [

Vee
P1[1]
P1[0]
P1[2]
P1[4]
P1[6]
P3[0]
D-[3]
D+[3]
P3[2]
P3[4]
D-[4]
D+[4]
P3[6]
P2[0]
P2[2]
GND
P2[4]
P2[6]
DACI0]
Vep
PO[O]
PO[2]
PO[4]
PO[6]
DAC[2]
DAC[4]
DACI6]

PRELIMINARY

CY7C66013
CY7C66113

Product Summary Tables

4.1 Pin Assignments
Table 4-1. Pin Assighments
Name 110 48-Pin 56-Pin Description
D+[0], D—[0] 1/0 8,9 8,9 Upstream port, USB differential data
D+[1], D—[1] 1/0 12,13 13,14 Downstream port 1, USB differential data
D+[2], D—[2] 1/0 15, 16 16, 17 Downstream port 2, USB differential data
D+[3], D3] 1/0 40, 41 48, 49 Downstream port 3, USB differential data
D+[4], D—[4] 1/0 35, 36 44, 45 Downstream port 4, USB differential data
PO[7:0] I/0 21,25,22,26, | 22,32,23, | GPIO Port0
23,27,24,28 | 33,24, 34,
25,35
P1[7:0] I/0 6,43,5,44,4, | 6,51,5,52, | GPIO Port 1
45,47,46 | 4,53,55,54
P2[7:0] I/0 19,30, 18,31, | 20, 38,19, | GPIO Port 2
17,33, 14,34 | 39, 18, 41,
15, 42
P3[6:0] 110 37,10,39,7, | 43,12,46, | GPIO Port 3, capable of sinking 12 mA (typical)
42 10, 47, 7,50
DACJ7:0] 1/0 n/a 21, 29, 26, | Digitalto Analog Converter (DAC) Port with programmable current sink
30, 27, 31, | outputs. DAC[1:0] offer a programmable range of 3.2 to 16 mA typical.
28, 37 DAC[7:2] have a programmable sink current range of 0.2 to 1.0 mA
typical.
XTALN IN 6-MHz crystal or external clock input
XTALoyT ouT 6-MHz crystal out
Vpp 29 36 Programming voltage supply, tie to ground during normal operation
Vee 48 56 Voltage supply
GND 11, 20, 32, 38 11, 40 Ground
VREE IN 3 3 External 3.3V supply voltage for the differential data output buffers and
the D+ pull up
4.2 I/O Register Summary

I/O registers are accessed via the I1/0 Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads data from the selected
port into the accumulator. IOWR performs the reverse; it writes data from the accumulator to the selected port. Indexed 1/0O Write
(IOWX) adds the contents of X to the address in the instruction to form the port address and writes data from the accumulator to
the specified port. Specifying address 0 (e.g., IOWX 0h) means the 1/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write to reserved registers as this may cause an undefined operation
or increased current consumption during operation. When writing to registers with reserved bits, the reserved bits must be written

with ‘0",

Table 4-2. 1/0 Register Summary

Register Name I/O Address | Read/Write Function Page
Port 0 Data 0x00 R/W GPIO Port 0 Data 19
Port 1 Data 0x01 R/W GPIO Port 1 Data 19
Port 2 Data 0x02 R/W GPIO Port 2 Data 19
Port 3 Data 0x03 R/W GPIO Port 3 Data 19
Port O Interrupt Enable 0x04 w Interrupt Enable for Pins in Port 0 20
Port 1 Interrupt Enable 0x05 w Interrupt Enable for Pins in Port 1 20
Port 2 Interrupt Enable 0x06 w Interrupt Enable for Pins in Port 2 20

10

iy
]

CY7C66013

ECYPRESS PRELIMINARY CY7C66113
Table 4-2. 1/0 Register Summary (continued)
Register Name I/O Address | Read/Write Function Page
Port 3 Interrupt Enable 0x07 w Interrupt Enable for Pins in Port 3 20
GPIO Configuration 0x08 R/W GPIO Port Configurations 20
HAPI and 1°C Configuration 0x09 RIW HAPI Width and I°C Position Configuration 23
USB Device Address A 0x10 R/W USB Device Address A 36
EP AO Counter Register 0x11 R/W USB Address A, Endpoint 0 Counter 38
EP AO Mode Register 0x12 R/W USB Address A, Endpoint 0 Configuration 37
EP Al Counter Register 0x13 R/W USB Address A, Endpoint 1 Counter 38
EP Al Mode Register 0x14 R/W USB Address A, Endpoint 1 Configuration 38
EP A2 Counter Register 0x15 R/W USB Address A, Endpoint 2 Counter 38
EP A2 Mode Register 0x16 R/W USB Address A, Endpoint 2 Configuration 38
USB Status & Control Ox1F R/W USB Upstream Port Traffic Status and Control 35
Global Interrupt Enable 0x20 R/W Global Interrupt Enable 27
Endpoint Interrupt Enable 0x21 R/W USB Endpoint Interrupt Enables 27
Interrupt Vector 0x23 R Pending Interrupt Vector Read/Clear 28
Timer (LSB) 0x24 R Lower 8 Bits of Free-running Timer (1 MHz) 22
Timer (MSB) 0x25 R Upper 4 Bits of Free-running Timer 22
WDT Clear 0x26 w Watch Dog Timer Clear 17
I“C Control & Status 0x28 R/W I°C Status and Control 24
1°C Data 0x29 R/W 1°C Data 24
DAC Data 0x30 R/W DAC Data 21
DAC Interrupt Enable 0x31 w Interrupt Enable for each DAC Pin 22
DAC Interrupt Polarity 0x32 w Interrupt Polarity for each DAC Pin 22
DAC Isink 0x38-0x3F W Input Sink Current Control for each DAC Pin 21
USB Device Address B 0x40 R/W USB Device Address B (not used in 5-endpoint mode) | 36
EP BO Counter Register 0x41 R/W USB Address B, Endpoint 0 Counter 38
EP BO Mode Register 0x42 R/W USB Address B, Endpoint 0 Configuration, or 37
USB Address A, Endpoint 3 in 5-endpoint mode
EP B1 Counter Register 0x43 R/W USB Address B, Endpoint 1 Counter 38
EP B1 Mode Register 0x44 R/W USB Address B, Endpoint 1 Configuration, or 38
USB Address A, Endpoint 4 in 5-endpoint mode
Hub Port Connect Status 0x48 R/W Hub Downstream Port Connect Status 32
Hub Port Enable 0x49 R/W Hub Downstream Ports Enable 33
Hub Port Speed Ox4A R/W Hub Downstream Ports Speed 33
Hub Port Control (Ports [4:1]) 0x4B R/W Hub Downstream Ports Control (Ports [4:1]) 33
Hub Port Suspend 0x4D R/W Hub Downstream Port Suspend Control 35
Hub Port Resume Status Ox4E R Hub Downstream Ports Resume Status 35
Hub Ports SEO Status O0x4F R Hub Downstream Ports SEO Status 34
Hub Ports Data 0x50 R Hub Downstream Ports Differential data 34
Hub Downstream Force Low 0x51 R/W Hub Downstream Ports Force LOW 34
Processor Status & Control OxFF R/W Microprocessor Status and Control Register 26

11

i)
]

CY7C66013

ECYPRESS PRELIMINARY CY7C66113

4.3 Instruction Set Summary
Refer to the CYASM Assembler User’s Guide for more details.
Table 4-3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles
HALT 00 7 NOP 20 4
ADD A,expr data 01 4 INC A acc 21 4
ADD A,[expr] direct 02 6 INC X X 22 4
ADD A,[X+expr] index 03 7 INC [expr] direct 23 7
ADC A,expr data 04 4 INC [X+expr] index 24 8
ADC A,[expr] direct 05 6 DEC A acc 25 4
ADC A,[X+expr] index 06 7 DEC X X 26 4
SUB A,expr data 07 4 DEC [expr] direct 27 7
SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8
SUB A,[X+expr] index 09 7 IORD expr address 29 5
SBB A,expr data 0A 4 IOWR expr address 2A 5
SBB A,[expr] direct 0B 6 POP A 2B 4
SBB A,[X+expr] index oC 7 POP X 2C 4
OR A,expr data oD 4 PUSH A 2D 5
OR A,[expr] direct OE 6 PUSH X 2E 5
OR A,[X+expr] index OF 7 SWAP A, X 2F 5
AND A,expr data 10 4 SWAP A,DSP 30 5
AND A,[expr] direct 11 6 MOV [expr],A direct 31 5
AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6
XOR A,expr data 13 4 OR [expr],A direct 33 7
XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8
XOR A [X+expr] index 15 7 AND [expr],A direct 35 7
CMP A,expr data 16 5 AND [X+expr],A index 36 8
CMP A, [expr] direct 17 7 XOR [expr],A direct 37 7
CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8
MOV A, expr data 19 4 IOWX [X+expr] index 39 6
MOV A [expr] direct 1A 5 CPL 3A 4
MOV A, [X+expr] index 1B 6 ASL 3B 4
MOV X,expr data 1C 4 ASR 3C 4
MOV X,[expr] direct 1D 5 RLC 3D 4
reserved 1E RRC 3E 4
XPAGE 1F 4 RET 3F 8
MOV AX 40 4 DI 70 4
MOV X,A 41 4 El 72 4
MOV PSPA 60 4 RETI 73 8
CALL addr 50-5F |10 JC addr Co-CF |5
JMP addr 80-8F 5 JNC addr DO-DF 5
CALL addr 90-9F 10 JACC addr EO-EF 7
Jz addr AO-AF INDEX addr FO-FF 14
JNZ addr BO-BF

12

CY7C66013
PRELIMINARY CY7C66113

———
——
—a—
—
—

—
—
——
—

==2 CYPRESS

‘M

5.0 Programming Model

5.1 14-Bit Program Counter (PC)

The 14-bit program counter (PC) allows access to up to 8 KB of PROM available with the CY7C66x13 architecture. The top 32
bytes of the ROM in the 8K part are reserved for testing purposes. The program counter is cleared during reset, such that the
first instruction executed after a reset is at address 0x0000h. Typically, this is a jump instruction to a reset handler that initializes
the application (see Interrupt Vectors on page 27).

The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256-byte
“page” of sequential code should be an XPAGE instruction. The assembler directive “XPAGEON” causes the assembler to insert
XPAGE instructions automatically. Because instructions can be either one or two bytes long, the assembler may occasionally
need to insert a NOP followed by an XPAGE to execute correctly.

The address of the next instruction to be executed, the carry flag, and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program counter is restored during a RET instruction.

The program counter cannot be accessed directly by the firmware. The program stack can be examined by reading SRAM from
location 0x00 and up.

13

= = PRELIMINARY

CY7C66013
CY7C66113

5.1.1 Program Memory Organization

after reset Address
14-bit PC 0x0000

0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010
0x0012
0x0014
0x0016
0x0018

0x001A

Ox1FDF

Program execution begins here after a reset

USB Bus Reset interrupt vector

128-ps timer interrupt vector

1.024-ms timer interrupt vector

USB address A endpoint 0 interrupt vector

USB address A endpoint 1 interrupt vector

USB address A endpoint 2 interrupt vector

USB address B endpoint 0 interrupt vector

USB address B endpoint 1 interrupt vector

Hub interrupt vector

DAC interrupt vector

GPIO interrupt vector

I°C interrupt vector

-Program Memory begins here

8 KB (-32) PROM ends here (CY7C66013, CY7C66113)

Figure 5-1. Program Memory Space with Interrupt Vector Table

5.2 8-Bit Accumulator (A)

The accumulator is the general-purpose register for the microcontroller.

5.3 8-Bit Temporary Register (X)

The “X” register is available to the firmware for temporary storage of intermediate results. The microcontroller can perform indexed
operations based on the value in X. Refer to Section 5.6.3 for additional information.

14

CY7C66013
PRELIMINARY CY7C66113

I
]

\
lllln

¥ CYPRESS

8-Bit Program Stack Pointer (PSP)

During a reset, the program stack pointer (PSP) is set to 0x00 and “grows” upward from this address. The PSP may be set by
firmware, using the MOV PSPA instruction. The PSP supports interrupt service under hardware control and CALL, RET, and
RETI instructions under firmware control. The PSP is not readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory addressed by the PSP, then the PSP is incremented. The second
byte is stored in memory addressed by the PSP, and the PSP is incremented again. The overall effect is to store the program
counter and flags on the program “stack” and increment the PSP by two.

The return from interrupt (RETI) instruction decrements the PSP, then restores the second byte from memory addressed by the
PSP. The PSP is decremented again and the first byte is restored from memory addressed by the PSP. After the program counter
and flags have been restored from stack, the interrupts are enabled. The overall effect is to restore the program counter and flags
from the program stack, decrement the PSP by two, and re-enable interrupts.

The call subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The return from subroutine (RET) instruction restores the program counter but not the flags from the program stack and decre-
ments the PSP by two.

o,
) '"

5.4.1 Data Memory Organization

The CY7C66x13 microcontrollers provide 256 bytes of data RAM. Normally, the SRAM is partitioned into four areas: program
stack, user variables, data stack, and USB endpoint FIFOs. The following is one example of where the program stack, data stack,

and user variables areas could be located.

After reset Address
| 8-bit DSP | 8-bit PSP |4> 0x00 Program Stack Growth
|
i(Move DSPI1)
|

v
v

8-bit DSP p user selected Data Stack Growth

User variables

USB FIFO space for up to two Addresses and five endpoints[z]

OxFF

Notes:

1. Refer to Section 5.5 for a description of DSP.
2. Endpoint sizes are fixed by the Endpoint Size Bit (1/O register Ox1F, Bit 7), see Table 19-1.

5.5 8-Bit Data Stack Pointer (DSP)

The data stack pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH
instruction pre-decrements the DSP, then writes data to the memory location addressed by the DSP. A POP instruction reads
data from the memory location addressed by the DSP, then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction when DSP equals 0x00 writes data at the top of the data RAM
(address OxFF). This writes data to the memory area reserved for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the Program Stack, user-defined memory (variables), or the USB

endpoint FIFOs.

For USB applications, the firmware should set the DSP to an appropriate location to avoid a memory conflict with RAM dedicated
to USB FIFOs. The memory requirements for the USB endpoints are described in Section 19.2. Example assembly instructions
to do this with two device addresses (FIFOs begin at 0xD8) are shown below:

MOV A,;20h ; Move 20 hex into Accumulator (must be D8h or less)
SWAP ADSP ; swap accumulator value into DSP register

15

CY7C66013
PRELIMINARY CY7C66113

I
]

\
lllln

¥ CYPRESS

Address Modes
The CY7C66013 and CY7C66113 microcontrollers support three addressing modes for instructions that require data operands:
data, direct, and indexed.

Sk
’ '"

5.6.1 Data (Immediate)
“Data” address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:

* MOV A,0D8h
This instruction requires two bytes of code where the first byte identifies the “MOV A” instruction with a data operand as the second
byte. The second byte of the instruction is the constant “OxD8". A constant may be referred to by name if a prior “EQU” statement
assigns the constant value to the name. For example, the following code is equivalent to the example shown above:

» DSPINIT: EQU 0D8h

* MOV A,DSPINIT

5.6.2 Direct

“Direct” address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the
variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address

location 0x10:

* MOV A,[10h]
Normally, variable names are assigned to variable addresses using “EQU” statements to improve the readability of the assembler
source code. As an example, the following code is equivalent to the example shown above:

* buttons: EQU 10h

* MOV A, [buttons]

5.6.3 Indexed
“Indexed” address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is
the sum of a constant encoded in the instruction and the contents of the “X” register. Normally, the constant is the “base” address
of an array of data and the X register contains an index that indicates which element of the array is actually addressed:

« array: EQU 10h

* MOV X,3

* MOV A,[X+array]
This would have the effect of loading A with the fourth element of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

6.0 Clocking

__________ al
XTALOUT |Z‘ |

(pin 1))
| |
|

——— P
XTALIN

(pin 2) to internal PLL |

| 30 pF ~~30 pF |
| @ @ |

Figure 6-1. Clock Oscillator On-Chip Circuit

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect an external oscillator or a crystal to
these pins. When using an external crystal, keep PCB traces between the chip leads and crystal as short as possible (less than
2 cm). A 6-MHz fundamental crystal can be connected to these pins to provide a reference frequency for the internal PLL. A
ceramic resonator does not allow the microcontroller to meet the timing specifications of a full speed USB and therefore a ceramic
resonator is not recommended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the internal clock is effectively shorted to ground.

16

= CY7C66013
—— - PRELIMINARY CY7C66113

7.0 Reset

The CY7C66x13 supports two resets: Power-On Reset (POR) and a Watch Dog Reset (WDR). Each of these resets causes:

« all registers to be restored to their default states,

» the USB Device Addresses to be set to 0,

« all interrupts to be disabled,

» the PSP and Data Stack Pointer (DSP) to be set to memory address 0x00.
The occurrence of a reset is recorded in the Processor Status and Control Register, as described in Section 15.0. Bits 4 and 6
are used to record the occurrence of POR and WDR respectively. Firmware can interrogate these bits to determine the cause of
areset.

Program execution starts at ROM address 0x0000 after a reset. Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto program stack. The firmware
reset handler should configure the hardware before the “main” loop of code. Attempting to execute a RET or RETI in the firmware
reset handler causes unpredictable execution results.

7.1 Power-On Reset (POR)

When V¢ is first applied to the chip, the Power-On Reset (POR) signal is asserted and the CY7C66x13 enters a “semi-suspend”
state. During the semi-suspend state, which is different from the suspend state defined in the USB specification, the oscillator
and all other blocks of the part are functional, except for the CPU. This semi-suspend time ensures that both a valid V¢ level is
reached and that the internal PLL has time to stabilize before full operation begins. When the V¢ has risen above approximately
2.5V, and the oscillator is stable, the POR is deasserted and the on-chip timer starts counting. The first 1 ms of suspend time is
not interruptible, and the semi-suspend state continues for an additional 95 ms unless the count is bypassed by a USB Bus Reset
on the upstream port. The 95 ms provides time for V¢ to stabilize at a valid operating voltage before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the 95 ms semi-suspend time, the semi-suspend state is aborted and
program execution begins immediately from address 0x0000. In this case, the Bus Reset interrupt is pending but not serviced
until firmware sets the USB Bus Reset Interrupt Enable bit (bit O of register 0x20) and enables interrupts with the El command.

The POR signal is asserted whenever V¢ drops below approximately 2.5V, and remains asserted until V¢ rises above this level
again. Behavior is the same as described above.

7.2 Watch Dog Reset (WDR)

The Watch Dog Timer Reset (WDR) occurs when the internal Watch Dog timer rolls over. Writing any value to the write-only
Watch Dog Restart Register at address 0x26 clears the timer. The timer rolls over and WDR occurs if it is not cleared within
twarcH (8 ms minimum) of the last clear. Bit 6 of the Processor Status and Control Register is set to record this event (the register
contents are set to 010X0001 by the WDR). A Watch Dog Timer Reset lasts for 2 ms, after which the microcontroller begins
execution at ROM address 0x0000.

‘47 tWATCH4» ‘4—2 ms-» ‘

Last write to No write to WDT Execution begins at
Watch Dog Timer register, so WDR Reset Vector 0x0000
Register goes HIGH

Figure 7-1. Watch Dog Reset (WDR)

The USB transmitter is disabled by a Watch Dog Reset because the USB Device Address Registers are cleared (see Section
19.1). Otherwise, the USB Controller would respond to all address 0 transactions.

It is possible for the WDR bit of the Processor Status and Control Register (OxFF) to be set following a POR event. If a firmware
interrogates the Processor Status and Control Register for a set condition on the WDR bit, the WDR bit should be ignored if the
POR (bit 3 of register OxFF) bit is set.

17

= CY7C66013
—— - PRELIMINARY CY7C66113

8.0 Suspend Mode

The CY7C66x13 can be placed into a low-power state by setting the Suspend bit of the Processor Status and Control register.
All logic blocks in the device are turned off except the GPIO interrupt logic and the USB receiver. The clock oscillator and PLL,
as well as the free-running and watch dog timers, are shut down. Only the occurrence of an enabled GPIO interrupt or non-idle
bus activity at a USB upstream or downstream port wakes the part from suspend. The Run bit in the Processor Status and Control
Register must be set to resume a part out of suspend.

The clock oscillator restarts immediately after exiting suspend mode. The microcontroller returns to a fully functional state 1 ms
after the oscillator is stable. The microcontroller executes the instruction following the I/O write that placed the device into suspend
mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake-up periodically and poll system components while maintaining a very low average
power consumption. To achieve the lowest possible current during suspend mode, all I/O should be held at Vcc or Gnd. This also
applies to internal port pins that may not be bonded in a particular package.

Typical code for entering suspend is shown below:

; All GPIO set to low-power state (no floating pins)
; Enable GPIO interrupts if desired for wake-up

H’iov a, 09h ; Set suspend and run bits
iowr FFh ; Write to Status and Control Register - Enter suspend, wait for USB activity (or GPIO Interrupt)
nop ; This executes before any ISR

; Remaining code for exiting suspend routine

9.0 General-Purpose I/0 (GPIO) Ports

GPIO
CFG mode
2-bits
A 4
OE >
'Y

Internal .| Data S
Data Bus ¢ » Out S
Latch P—» § 14 kQ
GPIO
Portwrite — |] PIN
4{ Qg*
Data
Port Read In 4
%‘7 Latch |« 4—
Reg_Bit Z 4
STRB e
(Latch is Transparent . N 5
except in HAPI mode) Data O
Interrupt
Latch
Interrupt]
Enable
Interrupt «
Controller *Port 0,1,2: Low Igjnk

Port 3: High Igjnk

Figure 9-1. Block Diagram of a GPIO Pin

There are up to 31 GPIO pins (PO[7:0], P1[7:0], P2[7:0], and P3[6:0]) for the hardware interface. The number of GPIO pins
changes based on the package type of the chip. Each port can be configured as inputs with internal pull-ups, open drain outputs,
or traditional CMOS outputs. Port 3 offers a higher current drive, with typical current sink capability of 12 mA. The data for each
GPIO port is accessible through the data registers. Port data registers are shown in Figure 9-2 through Figure 9-5, and are set

to 1 on reset.

18

CY7C66013

= . PRELIMINARY C
=—F Y7C66113
== CYPRESS
7 6 5 4 3 2 1 0
PO[7] PO[6] PO[5] PO[4] PO[3] PO[2] PO[1] PO[0]
Figure 9-2. Port 0 Data 0x00 (read/write)
7 6 5 4 3 2 1 0
P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]
Figure 9-3. Port 1 Data 0x01 (read/write)
7 6 5 4 3 2 1 0
P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]
Figure 9-4. Port 2 Data 0x02 (read/write)
7 6 5 4 3 2 1 0
P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]
(see text)

Figure 9-5. Port 3 Data 0x03 (read/write)

Special care should be taken with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a port bit that
is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO data bit is
left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the USB
Specifications. If a ‘1’ is written to the unused data bit and the port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a
‘0. Notice that the CY7C66013 always requires that P3[7:5] be written with a ‘0. When the CY7C66113 is used the P3[7] should
be written with a ‘0.

In normal non-HAPI mode, reads from a GPIO port always return the present state of the voltage at the pin, independent of the
settings in the Port Data Registers. If HAPI mode is activated for a port, reads of that port return latched data as controlled by
the HAPI signals (see Section 14.0). During reset, all of the GPIO pins are set to a high impedance input state (‘1 in open drain
mode). Writing a ‘0’ to a GPIO pin drives the pin LOW. In this state, a ‘0’ is always read on that GPIO pin unless an external source
overdrives the internal pull-down device.

9.1 GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal pull-ups, open drain outputs, and traditional CMOS outputs. In
addition, the interrupt polarity for each port can be programmed. With positive interrupt polarity, a rising edge (‘0’ to ‘1’) on an
input pin causes an interrupt. With negative polarity, a falling edge (‘1’ to ‘0’) on an input pin causes an interrupt. As shown in the
table below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled. The GPIO Configuration
Port register provides two bits per port to program these features. The possible port configurations are detailed in Table 9-1:

Table 9-1. Port Configurations

Port Configuration bits Pin Interrupt Bit Driver Mode Interrupt Polarity
11 0 Resistive Disabled
1 Resistive -
10 0 CMOS Output Disabled
1 Open Drain Disabled
01 0 Open Drain Disabled
1 Open Drain -
00 0 Open Drain Disabled (Default Condition)
(Reset State) 1 Open Drain T

In “Resistive” mode, a 14-kQ pull-up resistor is conditionally enabled for all pins of a GPIO port. An I/O pin is driven HIGH through
a 14-kQ pull-up resistor when a ‘1’ has been written to the pin. The output pin is driven LOW with the pull-up disabled when a ‘0’
has been written to the pin. An I/O pin that has been written as a ‘1’ can be used as an input pin with the integrated 14-kQ pull-up
resistor. Resistive mode selects a negative (falling edge) interrupt polarity on all pins that have the GPIO interrupt enabled.

19

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

In “CMOS” mode, all pins of the GPIO port are outputs that are actively driven. A CMOS port is not a possible source for interrupts.

In “Open Drain” mode, the internal pull-up resistor and CMOS driver (HIGH) are both disabled. An open drain I/O pin that has
been written as a ‘1’ can be used as an input or an open drain output. An I/O pin that has been written as a ‘0’ drives the output
low. The interrupt polarity for an open drain GPIO port can be selected as positive (rising edge) or negative (falling edge).

During reset, all of the bits in the GPIO Configuration Register are written with ‘0’ to select Open Drain output for all GPIO ports
as the default configuration.

7 6 5 4 3 2 1 0
Port 3 Port 3 Port 2 Port 2 Port 1 Port 1 Port 0 Port 0
Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0

Figure 9-6. GPIO Configuration Register 0x08 (read/write)

9.2 GPIO Interrupt Enable Ports

Each GPIO pin can be individually enabled or disabled as an interrupt source. The Port 0-3 Interrupt Enable registers provide
this feature with an interrupt enable bit for each GPIO pin. When HAPI mode (discussed in Section 14.0) is enabled the GPIO
interrupts are blocked, including ports not used by HAPI, so GPIO pins cannot be used as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a ‘1’ to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input pin. All GPIO pins share a common interrupt, as discussed in

Section 16.8.

7 6 5 4 3 2 1 0
PO[7] PO[6] PO[5] PO[4] PO[3] PO[2] PO[1] PO[0]
Figure 9-7. Port O Interrupt Enable 0x04 (read/write)

7 6 5 4 3 2 1 0
P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-8. Port 1 Interrupt Enable 0x05 (read/write)

7 6 5 4 3 2 1 0
P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]
Figure 9-9. Port 2 Interrupt Enable 0x06 (read/write)
7 6 5 4 3 2 1 0
reserved - P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]
set to zero

Figure 9-10. Port 3 Interrupt Enable 0x07 (read/write)

20

CY7C66013

==:;;?5YPRE o PRELIMINARY CY7C66113
10.0 DAC Port
Vee
Internal | Data DO) O‘ ‘Ql
Data Bus ¢ » Out
Latch | suspend
(Bit 3 of Register OXFF)
14 kQ
DAC Write DAC
I/O Pin
Isink
Register
Internal
Buffer < _ﬂ_‘

DAC Read <
Interrupt » =y
Enable » S

8 I
S > Conroller

Interrupt > %
Polarity =

Figure 10-1. Block Diagram of a DAC Pin

The CY7C66113 features a Digital to Analog Conversion (DAC) port which has programmable current sink on each 1/O pin. Writing
a‘l’toa DAC I/O pin disables the output current sink (Isink DAC) and drives the I/O pin HIGH through an integrated 14-kQ resistor.
When a ‘0’ is written to a DAC 1/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. This causes the Isink DAC to
sink current to drive the output LOW. The amount of sink current for the DAC /O pin is programmable over 16 values based on
the contents of the DAC Isink Register for that output pin. DAC[1:0] are high current outputs that are programmable from 3.2 mA
to 16 mA (typical). DAC[7:2] are low current outputs, programmable from 0.2 mA to 1.0 mA (typical).

When the suspend bit in Processor Status and Control Register (OxFF) is set, the Isink DAC block of the DAC circuitry is disabled.
Special care should be taken when the CY7C64x13 device is placed in the suspend. The DAC Port Data Register(0x30) should
normally be loaded with all ‘1's (OxFF) before setting the suspend bit. If any of the DAC bits are set to ‘0’ when the device is
suspended, that DAC input will float. The floating pin could result in excessive current consumption by the device, unless an

external load places the pin in a deterministic state.
When a DAC 1/O bit is written as a ‘1’, the I/O pin is an output pulled HIGH through the 14-kQ resistor or an input with an internal
14-kQ pull-up resistor. All DAC port data bits are set to ‘1’ during reset.

Low current outputs High current outputs

0.2 mA to 1.0 mA typical

3.2 mA to 16 mA typical

7

6

5 4

3

2

1

0

DACI[1]

DACIO0]

DAC|5] DAC[4] DACI[3] DAC|2]
Figure 10-2. DAC Port Data 0x30 (read/write)

DACI6]

DAC[7]

10.1 DAC Isink Registers

Each DAC 1/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The
first Isink register (0x38) controls the current for DAC[0], the second (0x39) for DAC[1], and so on until the Isink register at 0x3F
controls the current to DAC[7]. Writing all ‘O’s to the Isink register causes 1/5 of the max current to flow through the DAC 1/O pin.
Writing all ‘1’s to the Isink register provides the maximum current flow through the pin. The other 14 states of the DAC sink current

are evenly spaced between these two values.

Isink Value

1 0

6 5 4 3 2
Isink[1] Isink[0]

reserved Isink[3] Isink[2]

Figure 10-3. DAC Port Isink 0x38 to Ox3F (write only)

7

reserved

reserved

reserved

21

CY7C66013

PRELIMINARY CY7C66113

I
]

\
lllln

¥ CYPRESS

|_\
©
N'l

DAC Port Interrupts
A DAC portinterrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature

with an interrupt enable bit for each DAC 1/O pin. Writing a ‘1’ to a bit in this register enables interrupts from the corresponding
bit position. Writing a ‘0’ to a bit in the DAC Port Interrupt Enable register disables interrupts from the corresponding bit position.
All of the DAC Port Interrupt Enable register bits are cleared to ‘0’ during a reset. All DAC pins share a common interrupt, as

explained in Section 16.7.

7 6 5 4 3 2 1 0
DAC[7] DAC|6] DAC[5] DAC[4] DACI[3] DAC|2] DAC[1] DACI[0]
Figure 10-4. DAC Port Interrupt Enable 0x31 (write only)

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register
Writing a ‘0’ to a bit selects negative polarity (falling edge) that causes an interrupt (if enabled) if a falling edge transition occurs
on the corresponding input pin. Writing a ‘1’ to a bit in this register selects positive polarity (rising edge) that causes an interrupt
(if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits

are cleared during a reset.

7 6 5 4 3 2 1 0
DAC[7] DAC|6] DAC[5] DAC[4] DACI[3] DAC|2] DAC[1] DACI[0]
Figure 10-5. DAC Port Interrupt Polarity 0x32 (write only)

11.0 12-Bit Free-Running Timer
The 12-bit timer provides two interrupts (128-ps and 1.024-ms) and allows the firmware to directly time events that are up to 4
ms in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper 4

bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is accessing the count stored in the
temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are

separated in time.

11.1 Timer (LSB)
7 6 5 4 3 2 1 0
Timer Timer Timer Timer Timer Timer Timer Timer
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Figure 11-1. Timer Register 0x24 (read only)
11.2 Timer (MSB)
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Timer Timer Timer Timer
Bit 11 Bit 10 Bit 9 Bit 8

Figure 11-2. Timer Register 0x25 (read only)

22

CY7C66013
—— - PRELIMINARY CY7C66113

1.024-ms Interrupt
128-ps Interrupt

11 |10 |9 8 7 6 5 4 3 2 1 0 «— 1-MHz Clock

L3 | L2 |L1 |LO

‘D3 ‘DZ ‘Dl ‘DO D7 |D6 | D5 D4 | D3 |D2 | D1 | DO
> To Timer Register

Figure 11-3. Timer Block Diagram

12.0 1°C and HAPI Configuration Register

Internal hardware supports communication with external devices through two interfaces: a two-wire I2C, and a HAPI for 1, 2, or
3 byte transfers. The I°C and HAPI functions, discussed in detail in Sections 13.0 and 14.0, share a common configuration register

(see Figure 12-1). All bits of this register are cleared on reset.

7 6 5 4 3 2 1 0
R/W R/W R/W R R R/W R/W
I°C Position Reserved LEMPTY DRDY Latch Empty | Data Ready HAPI Port HAPI Port

Polarity Polarity Width Bit 1 Width Bit 0

Figure 12-1. HAPI/I2C Configuration Register 0x09 (read/write)

Bits [7,1:0] of the HAPI/I%C Configuration Register control the pin out configuration of the HAPI and 1°C interfaces. Bits [5:2] are
used in HAPI mode only, and are described in Section 14.0. Table 12-1 shows the HAPI port configurations, and Table 12-2 shows
1°c pin location configuration options. These 1’c options exist due to pin limitations in certain packages, and to allow simultaneous

HAPI and 1°C operation.
HAPI operation is enabled whenever either HAPI Port Width Bit (Bit 1 or 0) is non-zero. This affects GPIO operation as described

in Section 14.0. 1°C must be separately enabled as described in Section 13.0.

Table 12-1. HAPI Port Configuration

Port Width HAPI Port Width
Bits[1:0]
11 24 Bits: P3[7:0], P1[7:0], PO[7:0]
10 16 Bits: P1[7:0], PO[7:0]
01 8 Bits: PO[7:0]
00 No HAPI Interface
Table 12-2. 12C Port Configuration
12C Position Port Width
Bit[7] Bit[1] 12C Position
X 1 12C on P2[1:0], 0:SCL, 1:SDA
0 0 12C on P1[1:0], 0:SCL, 1:SDA
1 0 12C on P2[1:0], 0:SCL, 1:SDA

23

CY7C66013

PRELIMINARY CY7C66113

13.0 I2C Controller

The 12C block provides a versatile two-wire communication with external devices, supporting master, slave, and multi-master
modes of operation. The 12C block functions by handling the low-level signaling in hardware, and issuing interrupts as needed to
allow firmware to take appropriate action during transactions. While waiting for firmware response, the hardware keeps the 1’c
bus idle if necessary.

The I°C generates an interrupt to the microcontroller at the end of each received or transmitted byte, when a stop bit is detected
by the slave when in receive mode, or when arbitration is lost. Details of the interrupt responses are given in Section 16.9.

The I°C interface consists of two registers, an I°C Data Register (Figure 13-1) and an I°C Status and Control Register (Figure
13-2). The Data Register is implemented as separate read and write registers. Generally, the I°C Status and Control Register
should only be monitored after the 1’c interrupt, as all bits are valid at that time. Polling this register at other times could read
misleading bit status if a transaction is underway.

The I1°C SCL clock is connected to bit 0 of GPIO port 1 or GPIO port 2, and the I°C SDA data is connected to bit 1 of GPIO port
1 or GPIO port 2. Refer to Section 12.0 for the bit definitions and functionality of the HAPI/I2C Configuration Register, which is
used to set the locations of the configurable 1°c pins. Once the 1°c functionality is enabled by setting bit 0 of the I°C Status &
Control Register, the two LSB ([1:0]) of the corresponding GPIO port is placed in Open Drain mode, regardless of the settings of
the GPIO Configuration Register.

All control of the I°C clock and data lines is performed by the 1°C block.

7 6 5 4 3 2 1 0
I°C Data 7 I°C Data 6 I°C Data 5 I°C Data 4 I°C Data 3 1°C Data 2 I°C Data 1 I°C Data 0
Figure 13-1. I2C Data Register 0x29 (separate read/write registers)
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
MSTR Continue/ Xmit ACK Addr ARB Lost/ | Received Stop 1°c
Mode Busy Mode Restart Enable

Figure 13-2. 12C Status and Control Register 0x28 (read/write)

The I2C Status and Control register bits are defined in Table 13-1, with a more detailed description following.

Table 13-1. 12C Status and Control Register Bit Definitions

Description
Write to 1 to enable I°C function. When cleared, 1°C GPIO pins operate normally.

Reads 1 only in slave receive mode, when 1’C Stop bit detected (unless firmware did not
ACK the last transaction).

Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.
Write to 1 in master mode to perform a restart sequence (also set Continue bit).

Bit Name
0 I°C Enable
1 Received Stop

2 ARB Lost/Restart

3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.
Reads 0 otherwise. This bit should always be written as 0.
4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.
In transmit mode, reads 1 if ACK was received, 0 if no ACK received.
Xmit Mode Write to 1 for transmit mode, O for receive mode.

Write 1 to indicate ready for next transaction.
Reads 1 when I°C block is busy with a transaction, 0 when transaction is complete.

Write to 1 for master mode, O for slave mode. This bit is cleared if master loses arbitration.
Clearing from 1 to 0 generates Stop bit.

Continue/Busy

7 MSTR Mode

MSTR Mode: Setting this bit causes the 1°C to initiate a master mode transaction by sending a start bit and transmitting the first
data byte from the data register (this typically holds the target address and R/W bit). Subsequent bytes are initiated by setting the

Continue bit, as described below.

In master mode, the 1°C block generates the clock (SCK) and drives the data line as required depending on transmit or receive
state. The 1°C block performs any required arbitration and clock synchronization. The loss of arbitration results in the clearing of

24

= CY7C66013
—— - PRELIMINARY CY7C66113

this bit, the setting of the ARB Lost bit, and the generation of an interrupt to the microcontroller. If the chip is the target of an
external master that wins arbitration, then the interrupt is held off until the transaction from the external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware write, an 1°c Stop bit is generated.

Continue/Busy: This bit is written by the firmware to indicate that the firmware is ready for the next byte transaction to begin. In
other words, the bit has responded to an interrupt request and has completed the required update or read of the data register.
During a read this bit indicates if the hardware is busy and is locking out additional writes to the 1°C Status and Control register.
This locking aIIows the hardware to complete certain operations that may require an extended period of time. Following an 1’c
interrupt, the 12C block does not return to the Busy state until firmware sets the Continue bit. This allows the firmware to make
one control register write without the need to check the Busy bit.

Xmit Mode: This bit is set by firmware to enter transmit mode and perform a data transmit in master or slave mode. Clear this
bit for receive mode. Firmware generally determines the value of this bit from the R/W bit associated with the 1°C address packet.
The Xmit Mode bit state is ignored when initially writing the MSTR Mode or the Restart bits, as these cases always cause transmit
mode for the first byte.

ACK: Thls bit is set or cleared by firmware during receive operation to indicate if the hardware should generate an ACK signal
on the I°C bus. Writing a 1 to this bit generates an ACK (SDA LOW) on the I°C bus at the ACK bit time. During transmits (Xmit
Mode = 1), this bit should be cleared.

Addr: This bit is set by the I°C block during the first byte of a slave receive transaction, after an I°C start or restart. The Addr bit
is cleared when the firmware sets the Continue bit. This bit allows the firmware to recognize when the master has lost arbitration,
and in slave mode it allows the firmware to recognize that a start or restart has occurred.

ARB Lost/Restart: This bit is valid as a status bit (ARB Lost) after master mode transactlons In master mode, set this bit (along
with the Continue and MSTR Mode bits) to perform an 1°C restart sequence. The 1’c target address for the restart must be written
to the data register before setting the Continue bit. To prevent false ARB Lost signals, the Restart bit is cleared by hardware during
the restart sequence.

Receive Stop: This bit is set When the slave is in receive mode and detects a stop bit on the bus. The Recelve Stop bit is not set
if the firmware terminates the 1°C transaction by not acknowledging the previous byte transmitted on the 1°C bus, e. g., in receive
mode if firmware sets the Continue bit and clears the ACK bit.

I2C Enable: Set this bit to override GPIO definition with I°C function on the two 1°C pins. When this bit is cleared, these pins are
free to function as GPIOs. In I°C mode, the two pins operate in open drain mode, independent of the GPIO configuration setting.

14.0 Hardware Assisted Parallel Interface (HAPI)

The CY7C66x13 processor provides a hardware assisted parallel interface for bus widths of 8, 16, or 24 bits, to accommodate
data transfer with an external microcontroller or similar device. Control bits for selecting the byte width are in the HAPI/IC
Configuration Register (Figure 12-1), bits 1 and 0.

Slgnals are provided on Port 2 to control the HAPI interface. Table 14-1 describes these signals and the HAPI control bits in the
HAPI/IC Configuration Register. Enabling HAPI causes the GPIO setting in the GPIO Configuration Register (0x08) to be
overridden. The Port 2 output pins are in CMOS output mode and Port 2 input pins are in input mode (open drain mode with Q3
OFF in Figure 9-1).

Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitions

Pin Name Direction Description (Port 2 Pin)
P2[2] LatEmptyPin Out Ready for more input data from external interface
P2[3] DReadyPin Out Output data ready for external interface
P2[4] STB In Strobe signal for latching incoming data
P2[5] OE In Output Enable, causes chip to output data
P2[6] CS In Chip Select (Gates STB and OE)
Bit Name R/W Description (HAPI/IZC Configuration Register)
2 Data Ready R Asserted after firmware writes data to Port 0, until OE driven LOW.
3 Latch Empty R Asserted after firmware reads data from Port O, until STB driven LOW.
4 DRDY Polarity R/W Determines polarity of Data Ready bit and DReadyPin:
If 0, Data Ready is active LOW, DReadyPin is active HIGH.
If 1, Data Ready is active HIGH, DReadyPin is active LOW.
5 LEMPTY Polarity R/W Determines polarity of Latch Empty bit and LatEmptyPin:
If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH.
If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.

25

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

HAPI Read by External Device from CY7C66x13: In this case (see Figure 23-3), firmware writes data to the GPIO ports. If
16-bit or 24-bit transfers are being made, Port 0 should be written last, since writes to Port 0 asserts the Data Ready bit and the
DReadyPin to signal the external device that data is available.

The external device then drives the OE and CS pins active (LOW), which causes the HAPI data to be output on the port pins.
When OE is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. At that point, firmware can reload the HAPI latches
for the next output, again writing Port O last.

The Data Ready bit reads the opposite state from the external DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin
is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C66x13: In this case (see Figure 23-4), the external device drives the STB and CS pins
active (LOW) when it drives new data onto the port pins. When this happens, the internal latches become full, which causes the
Latch Empty bit to be deasserted. When STB is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. Firmware then
reads the parallel ports to empty the HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0 should be read last because
reads from Port 0 assert the Latch Empty bit and the LatEmptyPin to signal the external device for more data.

The Latch Empty bit reads the opposite state from the external LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0,
LatEmptyPin is active HIGH, and the Latch Empty bit is active LOW.

15.0 Processor Status and Control Register

7 6 5 4 3 2 1 0
R R/W R/W R/W R/W R R/W
IRQ Watch Dog | USB Bus Re- Power-On Suspend Interrupt reserved Run
Pending Reset set Interrupt Reset Enable Sense

Figure 15-1. Processor Status and Control Register OxFF

The Run bit, bit 0, is manipulated by the HALT instruction. When Halt is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the processor stops at the end of the current instruction. The processor
remains halted until an appropriate reset occurs (power-on or watch dog). This bit should normally be written as a ‘1.

Bit 1 is reserved and must be written as a zero.

The Interrupt Enable Sense (bit 2) shows whether interrupts are enabled or disabled. Firmware has no direct control over this bit
as writing a zero or one to this bit position has no effect on interrupts. A ‘0’ indicates that interrupts are masked off and a ‘1’
indicates that the interrupts are enabled. This bit is further gated with the bit settings of the Global Interrupt Enable Register (0x20)
and USB End Point Interrupt Enable Register (0x21). Instructions DI, El, and RETI manipulate the state of this bit.

Writing a ‘1’ to the Suspend bit (bit 3) halts the processor and cause the microcontroller to enter the suspend mode that signifi-
cantly reduces power consumption. A pending, enabled interrupt or USB bus activity causes the device to come out of suspend.
After coming out of suspend, the device resumes firmware execution at the instruction following the IOWR which put the part into
suspend. An IOWR attempting to put the part into suspend is ignored if non-idle USB bus activity is present. See Section 8.0 for
more details on suspend mode operation.

The Power-On Reset (bit 4) is set to ‘1’ during a power-on reset. The firmware can check bits 4 and 6 in the reset handler to
determine whether a reset was caused by a power-on condition or a watch dog timeout. Note that a POR event may be followed
by a watch dog reset before firmware begins executing, as explained below.

The USB Bus Reset Interrupt (bit 5) occurs when a USB Bus Reset is received on the upstream port. The USB Bus Reset is a
single-ended zero (SEO) that lasts from 12 to 16 ps. An SEO is defined as the condition in which both the D+ line and the D- line
are LOW at the same time. When the SIE detects that this SEO condition is removed, the USB Bus Reset interrupt bit is set in
the Processor Status and Control Register and a USB Bus Reset interrupt is generated.

The Watch Dog Reset (bit 6) is set during a reset initiated by the Watch Dog Timer. This indicates the Watch Dog Timer went for
more than tyarcnH (8 ms minimum) between Watch Dog clears. This can occur with a POR event, as noted below.

The IRQ pending (bit 7), when set, indicates that one or more of the interrupts has been recognized as active. Aninterrupt remains
pending until its interrupt enable bit is set (registers 0x20 or 0x21) and interrupts are globally enabled. At that point, the internal
interrupt handling sequence clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is set to 00010001, which indicates a POR (bit 4 set) has occurred
and no interrupts are pending (bit 7 clear). During the 96 ms suspend at start-up (explained in Section 7.1), a Watch Dog Reset
also occurs unless this suspend is aborted by an upstream SEO before 8 ms. If a WDR occurs during the power-up suspend
interval, firmware reads 01010001 from the Status and Control Register after power-up. Normally, the POR bit should be cleared
so a subsequent WDR can be clearly identified. If an upstream bus reset is received before firmware examines this register, the
Bus Reset bit may also be set.

26

CY7C66013
PRELIMINARY CY7C66113

W

y

YPRESS

During a Watch Dog Reset, the Processor Status and Control Register is set to 01XX0001, which indicates a Watch Dog Reset
(bit 6 set) has occurred and no interrupts are pending (bit 7 clear). The Watch Dog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

16.0 Interrupts

Interrupts are generated by the GPIO/DAC pins, the internal timers, 1°C or HAPI operation, the internal USB hub, or on various
USB traffic conditions. All interrupts are maskable by the Global Interrupt Enable Register and the USB End Point Interrupt Enable
Register. Writing a ‘1’ to a bit position enables the interrupt associated with that bit position. During a reset, the contents of the
Global Interrupt Enable Register and USB End Point Interrupt Enable Register are cleared, effectively disabling all interrupts.

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W
Reserved 1’c GPIO/HAPI DAC USB Hub 1.024-ms 128-ps USB Bus RST
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Enable Enable Enable Enable
Figure 16-1. Global Interrupt Enable Register 0x20 (read/write)
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W
Reserved Reserved Reserved EPB1 EPBO EPA2 EPA1 EPAO
Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Enable Enable

Figure 16-2. USB Endpoint Interrupt Enable Register 0x21 (read/write)

The interrupt controller contains a separate flip-flop for each interrupt. See Figure 16-3 for the logic block diagram of the interrupt
controller. When an interrupt is generated, it is first registered as a pending interrupt. It stays pending until it is serviced or a reset
occurs. A pending interrupt only generates an interrupt request if it is enabled by the corresponding bit in the interrupt enable
registers. The highest priority interrupt request is serviced following the completion of the currently executing instruction.

When servicing an interrupt, the hardware first disables all interrupts by clearing the Global Interrupt Enable bit in the CPU (the
state of this bit can be read at Bit 2 of the Processor Status and Control Register). Second, the flip-flop of the current interrupt is
cleared. This is followed by an automatic CALL instruction to the ROM address associated with the interrupt being serviced (i.e.,
the Interrupt Vector, see Section 16.1). The instruction in the interrupt table is typically a JMP instruction to the address of the
Interrupt Service Routine (ISR). The user can re-enable interrupts in the interrupt service routine by executing an El instruction.
Interrupts can be nested to a level limited only by the available stack space.

The Program Counter value as well as the Carry and Zero flags (CF, ZF) are stored onto the Program Stack by the automatic
CALL instruction generated as part of the interrupt acknowledge process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt. The PUSH A instruction should typically be used as the first
command in the ISR to save the accumulator value and the POP A instruction should be used to restore the accumulator value
just before the RETI instruction. The program counter CF and ZF are restored and interrupts are enabled when the RETI
instruction is executed.

The DI and El instructions can be used to disable and enable interrupts, respectively. These instructions affect only the Global
Interrupt Enable bit of the CPU. If desired, El can be used to re-enable interrupts while inside an ISR, instead of waiting for the
RETI that exists the ISR. While the global interrupt enable bit is cleared, the presence of a pending interrupt can be detected by
examining the IRQ Sense bit (Bit 7 in the Processor Status and Control Register).

16.1 Interrupt Vectors

The Interrupt Vectors supported by the USB Controller are listed in Table 16-1. The lowest-numbered interrupt (USB Bus Reset
interrupt) has the highest priority, and the highest-numbered interrupt (I2C interrupt) has the lowest priority. Although Reset is not
an interrupt, the first instruction executed after a reset is at PROM address 0x0000h—which corresponds to the first entry in the
Interrupt Vector Table. Because the JMP instruction is 2 bytes long, the interrupt vectors occupy 2 bytes.

27

= CY7C66013
—— - PRELIMINARY CY7C66113

I USB Reset Clear
CLR Interrupt_’ To CPU
Vector

1—p Q USB Reset IRQ
Enable [0] 128psCLR | ;- == = — — — — —

(Reg 0x20) 128-ps IRQ

1-ms CLR —» IRQ Sense
1-ms IRQ
AddA EPO CLR
AddA EPO IRQ

AddA EP1 CLR
AddA EP1 IRQ

|
|
|
|
|
|
CLR AddA EP2 CLR
! P ° Enable [2 AddA EP2IRQ | Global Int Enable
nable [2] —|AddB EPO CLR | | interrupt
|
|
|
|
|
|

USB —| CLK
Reset
Int

IRQout

(e}
o

N

IRQ

o
o]

Sense
AddA—| oLk | (Re9 0x21) AddB EPO IRQ Enable

ENP2 AddB EP1 CLR Bit
Int AddB EP1 IRQ

Hub CLR
Hub IRQ

DAC CLR
DAC IRQ

Controlled by DI, El, and
CLR RETI Instructions

Interrupt
Acknowledge

e}
o

—GPIO CLR
—GPIO IRQ

I2C CLR

CLR

12C IRQ

11— | Enable [6]
(Reg 0x20) Interrupt
12C— cLK Priority
Int Encoder

Figure 16-3. Interrupt Controller Functional Diagram

Table 16-1. Interrupt Vector Assignments

Interrupt Vector Number ROM Address Function
Not Applicable 0x0000 Execution after Reset begins here

1 0x0002 USB Bus Reset interrupt
2 0x0004 128-ps timer interrupt
3 0x0006 1.024-ms timer interrupt
4 0x0008 USB Address A Endpoint O interrupt
5 0x000A USB Address A Endpoint 1 interrupt
6 0x000C USB Address A Endpoint 2 interrupt
7 0x000E USB Address B Endpoint O interrupt
8 0x0010 USB Address B Endpoint 1 interrupt
9 0x0012 USB Hub interrupt
10 0x0014 DAC interrupt
11 0x0016 GPIO / HAPI interrupt
12 0x0018 I°C interrupt

A pending address can be read from the Interrupt Vector Register (Figure 16-4). The value read from this register is only valid if
the Global Interrupt bit has been disabled, by executing the DI instruction or in an Interrupt Service Routine before interrupts have
been re-enabled. The value read from this register is the interrupt vector address; for example, a 0x12 indicates the hub interrupt
is the highest priority pending interrupt.

28

CY7C66013

==:;;?5YPRE o PRELIMINARY CY7C66113
7 6 5 4 3 2 1 0
R R R R R
Reserved Reserved Reserved Interrupt Interrupt Interrupt Interrupt Reads ‘0’
Vector Bit 4 Vector Bit 3 Vector Bit 2 Vector Bit 1

Figure 16-4. Interrupt Vector Register 0x23 (read only)

16.2 Interrupt Latency

Interrupt latency can be calculated from the following equation:

(Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) +
(5 clock cycles for the JMP instruction)

For example, if a 5 clock cycle instruction such as JC is being executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine executes a minimum of 16 clocks (1+10+5) or a maximum of 20 clocks (5+10+5) after the interrupt is
issued. For a 12-MHz internal clock (6-MHz crystal), 20 clock periods is 20 / 12 MHz = 1.667 ps.

Interrupt latency =

16.3 USB Bus Reset Interrupt

The USB Controller recognizes a USB Reset when a Single Ended Zero (SEO) condition persists on the upstream USB port for
12-16 ps (the Reset may be recognized for an SEOQ as short as 12 us, but is always recognized for an SEO longer than 16 pus).
SEOQ is defined as the condition in which both the D+ line and the D- line are LOW. Bit 5 of the Status and Control Register is set
to record this event. The interrupt is asserted at the end of the Bus Reset. If the USB reset occurs during the start-up delay
following a POR, the delay is aborted as described in Section 7.1. The USB Bus Reset Interrupt is generated when the SEO state

is deasserted.
A USB Bus Reset clears the following registers:
SIE Section: USB Device Address Registers (0x10, 0x40)
Hub Section: Hub Ports Connect Status (0x48)
Hub Ports Enable (0x49)
Hub Ports Speed (0x4A)
Hub Ports Suspend (0x4D)
Hub Ports Resume Status (0x4E)
Hub Ports SEO Status (0x4F)
Hub Ports Data (0x50)
Hub Downstream Force (0x51)

16.4 Timer Interrupt

There are two periodic timer interrupts: the 128-ps interrupt and the 1.024-ms interrupt. The user should disable both timer
interrupts before going into the suspend mode to avoid possible conflicts between servicing the timer interrupts first or the suspend
request first.

16.5 USB Endpoint Interrupts

There are five USB endpoint interrupts, one per endpoint. A USB endpoint interrupt is generated after the USB host writes to a
USB endpoint FIFO or after the USB controller sends a packet to the USB host. The interrupt is generated on the last packet of
the transaction (e.g. on the host's ACK during an IN, or on the device ACK during on OUT). If no ACK is received during an IN

transaction, no interrupt is generated.

16.6 USB Hub Interrupt

A USB hub interrupt is generated by the hardware after a connect/disconnect change, babble, or a resume event is detected by
the USB repeater hardware. The babble and resume events are additionally gated by the corresponding bits of the Hub Port
Enable Register (Figure 18-3). The connect/disconnect event on a port does not generate an interrupt if the SIE does not drive
the port (i.e., the port is being forced).

29

CY7C66013
PRELIMINARY CY7C66113

I
]

\
lllln

¥ CYPRESS

DAC Interrupt

Each DAC 1/O pin can generate an interrupt, if enabled. The interrupt polarity for each DAC I/O pin is programmable. A positive
polarity is a rising edge input while a negative polarity is a falling edge input. All of the DAC pins share a single interrupt vector,
which means the firmware needs to read the DAC port to determine which pin or pins caused an interrupt.

If one DAC pin has triggered an interrupt, no other DAC pins can cause a DAC interrupt until that pin has returned to its inactive
(non-trigger) state or the corresponding interrupt enable bit is cleared. The USB Controller does not assign interrupt priority to
different DAC pins and the DAC Interrupt Enable Register is not cleared during the interrupt acknowledge process.

|_\
o
\l'l

16.8 GPIO/HAPI Interrupt

Each of the GPIO pins can generate an interrupt, if enabled. The interrupt polarity can be programmed for each GPIO port as
part of the GPIO configuration. All of the GPIO pins share a single interrupt vector, which means the firmware needs to read the
GPIO ports with enabled interrupts to determine which pin or pins caused an interrupt. A block diagram of the GPIO interrupt
logic is shown in Figure 16-5. Refer to Sections 9.1 and 9.2 for more information about setting GPIO interrupt polarity and enabling

individual GPIO interrupts.

If one port pin has triggered an interrupt, no other port pins can cause a GPIO interrupt until that port pin has returned to its
inactive (non-trigger) state or its corresponding port interrupt enable bit is cleared. The USB Controller does not assign interrupt
priority to different port pins and the Port Interrupt Enable Registers are not cleared during the interrupt acknowledge process.

Port
Configuration GPIO Interrupt
Register OR Gate Flip Flop
(Linput per
GPIO pin) b @ Interrupt — IRQout
— M —) Priority
’ U] Encoder — Interrupt
GPIO . } Vector
Pin ’_17_ X / CLR
1 =Enable Port Interrupt
0 = Disable Enable Register
IRA
Global
1=Enable GPIO Interrupt [
0 = Disable Enable
(Bit 5, Register 0x20)

Figure 16-5. GPIO Interrupt Structure

When HAPI is enabled, the HAPI logic takes over the interrupt vector and blocks any interrupt from the GPIO bits, including
ports/bits not being used by HAPI. Operation of the HAPI interrupt is independent of the GPIO specific bit interrupt enables, and
is enabled or disabled only by bit 5 of the Global Interrupt Enable Register (0x20) when HAPI is enabled. The settings of the GP1O
bit interrupt enables on ports/bits not used by HAPI still effect the CMOS mode operation of those ports/bits. The effect of
modifying the interrupt bits while the Port Config bits are setto “10” is shown in Table 9-1. The events that generate HAPI interrupts

are described in Section 14.0.

16.9 1°C Interrupt

The I1°C |nterrupt occurs after various events on the 1°C bus to signal the need for firmware interaction. This generally |nvolves
reading the I°C Status and Control Register (Figure 13-2) to determine the cause of the interrupt, loading/reading the I°C Data
Register as appropriate, and finally writing the Status and Control Register to initiate the subsequent transaction. The interrupt
indicates that status bits are stable and it is safe to read and write the 1°C registers. Refer to Section 13.0 for details on the 1’C
registers.

When enabled, the 1°C state machines generate interrupts on completion of the following conditions. The referenced bits are in

the I1°C Status and Control Register.

30

CY7C66013
PRELIMINARY CY7C66113

il
V

\
lllln

¥ CYPRESS

. In slave receive mode, after the slave receives a byte of data. The Addr bit is set if this is the first byte since a start or restart
signal was sent by the external master. Firmware must read or write the data register as necessary, then set the ACK, Xmit
Mode, and Continue bits appropriately for the next byte.

. In slave receive mode, after a stop bit is detected. The Received Stop bit is set. If the stop bit follows a slave receive transaction
where the ACK bit was cleared to 0, no stop bit detection occurs.

. In slave transmit mode, after the slave transmits a byte of data. The ACK bit indicates if the master that requested the byte
acknowledged the byte. If more bytes are to be sent, firmware writes the next byte into the Data Register and then sets the
Xmit Mode and Continue bits as required.

. In master transmit mode, after the master sends a byte of data. Firmware should load the Data Register if necessary, and set
the Xmit Mode, MSTR Mode, and Continue/Busy bits appropriately. Clearing the MSTR Mode bit issues a stop signal to the
I>C bus and return to the idle state.

. In master receive mode, after the master receives a byte of data. Firmware should read the data and set the Ack and
Contlnue/Busy bits approprlately for the next byte. Clearlng the Master bit at the same time causes the master state machine
to issue a stop signal to the 1°C bus and leave the I12C hardware in the idle state.

. When the master loses arbltratlon This condition clears the Master bit and sets the Arbitration Lost bit immediately and then
waits for a stop signal on the 1°C bus to generate the interrupt.

The Continue/Busy bit is cleared by hardware prior to interrupt conditions 1 to 4. Once the Data Register has been read or written,
firmware should configure the other control bits and set the Continue bit for subsequent transactions.

Following an interrupt from master mode, firmware should perform only one write to the Status and Control Register that sets the
Continue bit, without checking the value of the Busy bit. The Busy bit may otherwise be active and 1’c register contents may be
changed by the hardware during the transaction, until the 1°c interrupt occurs.

[EnY

N

w

I

()]

(2]

17.0 USB Overview

The USB hardware includes a USB Hub repeater with one upstream and four downstream ports. The USB Hub repeater interfaces
to the microcontroller through a full-speed serial interface engine (SIE). An external series resistor of Rey must be placed in series
with all upstream and downstream USB outputs in order to meet the USB driver requirements of the USB specification. The
CY7C66x13 microcontroller can provide the functionality of a compound device consisting of a USB hub and permanently
attached functions.

17.1 USB Serial Interface Engine (SIE)

The SIE allows the CY7C66x13 microcontroller to communicate with the USB host through the USB repeater portion of the hub.
The SIE simplifies the interface between the microcontroller and USB by incorporating hardware that handles the following USB
bus activity independently of the microcontroller:

« Bit stuffing/unstuffing

» Checksum generation/checking
ACK/NAK/STALL

» Token type identification

» Address checking
Firmware is required to handle the following USB interface tasks:

» Coordinate enumeration by responding to SETUP packets

* Fill and empty the FIFOs

» Suspend/Resume coordination

« Verify and select DATA toggle values

17.2 USB Enumeration

The internal hub and any compound device function are enumerated under firmware control. The hub is enumerated first, followed
by any integrated compound function. After the hub is enumerated, the USB host can read hub connection status to determine
which (if any) of the downstream ports need to be enumerated. The following is a brief summary of the typical enumeration process
of the CY7C66x13 by the USB host. For a detailed description of the enumeration process, refer to the USB specification.

In this description, ‘Firmware’ refers to embedded firmware in the CY7C66x13 controller.
1. The host computer sends a SETUP packet followed by a DATA packet to USB address 0 requesting the Device descriptor.
2. Firmware decodes the request and retrieves its Device descriptor from the program memory tables.

3. The host computer performs a control read sequence and Firmware responds by sending the Device descriptor over the USB
bus, via the on-chip FIFOs.

31

CY7C66013

PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

. After receiving the descriptor, the host sends a SETUP packet followed by a DATA packet to address 0 assigning a new USB
address to the device.

. Firmware stores the new address in its USB Device Address Register (for example, as Address B) after the no-data control
sequence completes.

. The host sends a request for the Device descriptor using the new USB address.

. Firmware decodes the request and retrieves the Device descriptor from program memory tables.

. The host performs a control read sequence and Firmware responds by sending its Device descriptor over the USB bus.
. The host generates control reads from the device to request the Configuration and Report descriptors.

10.0Once the device receives a Set Configuration request, its functions may now be used.

11.Following enumeration as a hub, Firmware can optionally indicate to the host that a compound device exists (for example, the
keyboard in a keyboard / hub device).

12.The host carries out the enumeration process with this additional function as though it were attached downstream from the hub.
13.When the host assigns an address to this device, it is stored as the other USB address (for example, Address A).

I

a1

© 00 N O

18.0 USB Hub

A USB hub is required to support:

» Connectivity behavior: service connect/disconnect detection

» Bus fault detection and recovery

* Full-/Low-speed device support
These features are mapped onto a hub repeater and a hub controller. The hub controller is supported by the processor integrated
into the CY7C66013 and CY7C66113 microcontrollers. The hardware in the hub repeater detects whether a USB device is
connected to a downstream port and the interface speed of the downstream device. The connection to a downstream port is
through a differential signal pair (D+ and D-). Each downstream port provided by the hub requires external Rypy resistors from
each signal line to ground, so that when a downstream port has no device connected, the hub reads a LOW (zero) on both D+
and D-. This condition is used to identify the “no connect” state.

The hub must have a resistor Ryyp connected between its upstream D+ line and Vggg to indicate it is a full speed USB device.
The hub generates an EOP at EOF1, in accordance with the USB 1.1 Specification, Section 11.2.2.

18.1 Connecting/Disconnecting a USB Device

A low-speed (1.5 Mbps) USB device has a pull-up resistor on the D— pin. At connect time, the bias resistors set the signal levels
on the D+ and D- lines. When a low-speed device is connected to a hub port, the hub sees a LOW on D+ and a HIGH on D—.
This causes the hub repeater to set a connect bit in the Hub Ports Connect Status register for the downstream port. The hub
repeater also sets a bit in the Hub Ports Speed register to indicate this port is low-speed (see Figure 18-1 and Figure 18-2). Then
the hub repeater generates a Hub Interrupt to notify the microcontroller that there has been a change in the Hub downstream
status.

A full-speed (12 Mbps) USB device has a pull-up resistor from the D+ pin, so the hub sees a HIGH on D+ and a LOW on D-. In

this case, the hub repeater sets a connect bit in the Hub Ports Connect Status register, clears a bit in the Hub Ports Speed register
(for full-speed), and generates a Hub Interrupt to notify the microcontroller of the change in Hub status.

Connects are recorded by the time a non-SEO state lasts for more than 2.5 ys on a downstream port.

When a USB device is disconnected from the Hub, the downstream signal pair eventually floats to a single-ended zero state. The
hub repeater recognizes a disconnect once the SEO state on a downstream port lasts from 2.0 to 2.5 ps. On a disconnect, the
corresponding bit in the Hub Ports Connect Status register is cleared, and the Hub Interrupt is generated.

7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
Connect Connect Connect Connect
Status Status Status Status

Figure 18-1. Hub Ports Connect Status 0x48 (read/write), 1 = Connect, 0 = Disconnect

The Hub Ports Connect Status register is cleared to zero by reset or bus reset, then set to match the hardware configuration by
the hub repeater hardware. The Reserved bits [7:4] should always read as ‘0’ to indicate no connection.

32

CY7C66013

== L%YPRE aq PRELIMINARY CY7C66113
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
Speed Speed Speed Speed

Figure 18-2. Hub Ports Speed 0x4A (read/write), 1 = Low-Speed, 0 = Full-Speed

The Hub Ports Speed register is cleared to zero by reset or bus reset, then set to match the hardware configuration whenever a
connect occurs. Firmware may write this register if desired, to allow for firmware debouncing of the speed detection. The Reserved
bits [7:4] should always read as ‘0.

18.2 Enabling/Disabling a USB Device

After a USB device connection has been detected, firmware must update status change bits in the hub status change data
structure that is polled periodically by the USB host. The host responds by sending a packet that instructs the hub to reset and
enable the downstream port. Firmware then sets the bit in the Hub Ports Enable register, Figure 18-3, for the downstream port.
The hub repeater hardware responds to an enable bit in the Hub Ports Enable register by enabling the downstream port, so that
USB traffic can flow to and from that port.

If a port is marked enabled and is not suspended, it receives all USB traffic from the upstream port, and USB traffic from the
downstream port is passed to the upstream port (unless babble is detected). Low-speed ports do not receive full-speed traffic
from the upstream port.

When firmware writes to the Hub Ports Enable register to enable a port, the port is not enabled until the end of any packet currently
being transmitted. If there is no USB traffic, the port is enabled immediately.

When a USB device disconnection has been detected, firmware must update status bits in the hub change status data structure
that is polled periodically by the USB host. In suspend, a connect or disconnect event generates an interrupt (if the hub interrupt
is enabled) even if the port is disabled.

7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
Enable Enable Enable Enable

Figure 18-3. Hub Ports Enable Register 0x49 (read/write), 1 = Enabled, 0 = Disabled

The Hub Ports Enable register is cleared to zero by reset or bus reset to disable all downstream ports as the default condition. A
port is also disabled by internal hub hardware (enable bit cleared) if babble is detected on that downstream port. Babble is defined
as:

» Any non-idle downstream traffic on an enabled downstream port at EOF2

» Any downstream port with upstream connectivity established at EOF2 (i.e., no EOP received by EOF2)

18.3 Hub Downstream Ports Status and Control

Data transfer on hub downstream ports is controlled according to the bit settings of the Hub Downstream Ports Control Register
(Figure 18-4). Each downstream port is controlled by two bits, as defined in Table 18-1 below. The Hub Downstream Ports Control
Register is cleared upon reset or bus reset, and the reset state is the state for normal USB traffic. Any downstream port being
forced must be marked as disabled (Figure 18-3) for proper operation of the hub repeater.

Firmware should use this register for driving bus reset and resume signaling to downstream ports. Controlling the port pins through
this register uses standard USB edge rate control according to the speed of the port, set in the Hub Port Speed Register.

The downstream USB ports are designed for connection of USB devices, but can also serve as output ports under firmware
control. This allows unused USB ports to be used for functions such as driving LEDs or providing additional input signals. Pulling
up these pins to voltages above Vggr may cause current flow into the pin.

This register is not reset by bus reset. These bits must be cleared before going into suspend.

7 6 5 4 3 2 1 0
Port 4 Port 4 Port 3 Port 3 Port 2 Port 2 Port 1 Port 1
Control Bit1 | Control Bit0 | Control Bit1 | Control Bit0 | Control Bit1 | Control Bit0 | Control Bit 1 | Control Bit O

Figure 18-4. Hub Downstream Ports Control Register 0x4B (read/write)

33

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

Table 18-1. Control Bit Definition for Downstream Ports

Control Bits:
Bitl BitO Control Action
0 O Not Forcing (Normal USB Function)
0 1 Force Differential ‘1’ (D+ HIGH, D— LOW)
1 0 Force Differential ‘0’ (D+ LOW, D— HIGH)
1 1 Force SEO state

An alternate means of forcing the downstream ports is through the Hub Ports Force Low Register (Figure 18-5). With this register
the pins of the downstream ports can be individually forced low, or left unforced. Unlike the Hub Downstream Ports Control
Register, above, the Force Low Register does not produce standard USB edge rate control on the forced pins. However, this
register allows downstream port pins to be held LOW in suspend. This register can be used to drive SEO on all downstream ports

when unconfigured, as required in the USB 1.1 specification.

7 6 5 4 3 2 1 0
Force Low Force Low Force Low Force Low Force Low Force Low Force Low Force Low
DD4 D+ DD4 D- DD3 D+ DD3 D- DD2 D+ DD2 D- DD1 D+ DD1 D-

Figure 18-5. Hub Ports Force Low Register (read/write) 0x51, 1 = Force Low, 0 = No Force

The data state of downstream ports can be read through the HUB Ports SEO Status Register (Figure 18-6) and the Hub Ports
Data Register (Figure 18-7). The data read from the Hub Ports Data Register is the differential data only and is not dependent
on the settings of the Hub Ports Speed Register (Figure 18-2). When the SEO condition is sensed on a downstream port, the
corresponding bits of the Hub Ports Data Register hold the last differential data state before the SEO. Hub Ports SEQ Status

Register and Hub Ports Data Register are cleared upon reset or bus reset.

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
SEO Status SEO Status SEO Status SEO Status

Figure 18-6. Hub Ports SEO Status Register 0x4F (read only), 1 = SEO, 0 = Non-SEO

7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
Diff. Data Diff. Data Diff. Data Diff. Data

Figure 18-7. Hub Ports Data Register 0x50 (read only), 1 = (D+ > D-), 0 = (D+ < D-)

18.4 Downstream Port Suspend and Resume

The Hub Ports Suspend Register (Figure 18-8) and Hub Ports Resume Status Register (Figure 18-9) indicate the suspend and
resume conditions on downstream ports. The suspend register must be set by firmware for any ports that are selectively sus-
pended. Also, this register is only valid for ports that are selectively suspended.

If a port is marked as selectively suspended, normal USB traffic is not sent to that port. Resume traffic is also prevented from
going to that port, unless the Resume comes from the selectively suspended port. If a resume condition is detected on the port,
hardware reflects a Resume back to the port, sets the Resume bit in the Hub Ports Resume Register, and generates a hub
interrupt.

If a disconnect occurs on a port marked as selectively suspended, the suspend bit is cleared.

The Device Remote Wakeup bit (bit 7) of the Hub Ports Suspend Register controls whether or not the resume signal is propagated
by the hub after a connect or a disconnect event. If the Device Remote Wakeup bit is set, the hub will automatically propagate
the resume signal after a connect or a disconnect event. If the Device Remote Wakeup bit is cleared, the hub will not propagate
the resume signal. The setting of the Device Remote Wakeup flag has no impact on the propagation of the resume signal after

a downstream remote wakeup event. The hub will automatically propagate the resume signal after a remote wakeup event,
regardless of the state of the Device Remote wakeup bit. The state of this bit has no impact on the generation of the hub interrupt.

These registers are cleared on reset or bus reset.

34

= CY7C66013
—— - PRELIMINARY CY7C66113

7 6 5 4 3 2 1 0
Device Reserved Reserved Reserved Port 4 Port 3 Port 2 Port 1
Remote Selective Selective Selective Selective
Wakeup Suspend Suspend Suspend Suspend

Figure 18-8. Hub Ports Suspend Register 0x4D (read/write), 1 = Port is Selectively Suspended

7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Resume 4 Resume 3 Resume 2 Resume 1
Figure 18-9. Hub Ports Resume Status Register OX4E (read only), 1 = Port is in Resume State

Resume from a selectively suspended port, with the hub not in suspend, typically involves these actions:

1. Hardware detects the Resume, drives a K to the port, and generates the hub interrupt. The corresponding bit in the Resume
Status Register (Ox4E) reads ‘1’ in this case.

2. Firmware responds to hub interrupt, and reads register Ox4E to determine the source of the Resume.
3. Firmware begins driving K on the port for 10 ms or more through register 0x4B.

4. Firmware clears the Selective Suspend bit for the port (Ox4D), which clears the Resume bit (0x4E). This ends the hardware-driv-
en Resume, but the firmware-driven Resume continues. To prevent traffic being fed by the hub repeater to the port during or
just after the Resume, firmware should disable this port.

5. Firmware drives a timed SEO on the port for two low-speed bit times as appropriate. Note: Firmware must disable interrupts
during this SEO so the SEO pulse isn't inadvertently lengthened and appears as a bus reset to the downstream device.

6. Firmware drives a J on the port for one low-speed bit time, then it idles the port.
7. Firmware re-enables the port.
Resume when the hub is suspended typically involves these actions:

1. Hardware detects the Resume, drives a K on the upstream (which is then reflected to all downstream enabled ports), and
generates the hub interrupt.

2. The part comes out of suspend and the clocks start.

3. Once the clocks are stable, firmware execution resumes. An internal counter ensures that this takes at least 1 ms. Firmware
should check for Resume from any selectively suspended ports. If found, the Selective Suspend bit for the port should be
cleared; no other action is necessary.

4. The Resume ends when the host stops sending K from upstream. Firmware should check for changes to the Enable and
Connect Registers. If a port has become disabled but is still connected, an SEO has been detected on the port. The port should
be treated as having been reset, and should be reported to the host as newly connected.

Firmware can choose to clear the Device Remote Wake-up bit (if set) to implement firmware timed states for port changes. All
allowed port changes wake the part. Then, the part can use internal timing to determine whether to take action or return to
suspend. If Device Remote Wake-up is set, automatic hardware assertions take place on Resume events.

18.5 USB Upstream Port Status and Control

USB status and control is regulated by the USB Status and Control Register, as shown in Figure 18-10. All bits in the register are
cleared during reset.

7 6 5 4 3 2 1 0
R/W R/W R R R/C R/W R/W R/W
Endpoint Endpoint D+ D- Bus Activity Control Control Control
Size Mode Upstream Upstream Bit 2 Bit 1 Bit 0

Figure 18-10. USB Status and Control Register Ox1F (read/write)

The three control bits allow the upstream port to be driven manually by firmware. For normal USB operation, all of these bits must
be cleared. Table 18-2 shows how the control bits affect the upstream port.

35

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

Table 18-2. Control Bit Definition for Upstream Port

Control Bits Control Action
000 Not Forcing (SIE Controls Driver)
001 Force D+[0] HIGH, D-[0] LOW
010 Force D+[0] LOW, D—[0] HIGH
011 Force SEOQ; D+[0] LOW, D—[0] LOW
100 Force D+[0] LOW, D—[0] LOW
101 Force D+[0] HiZ, D—[0] LOW
110 Force D+[0] LOW, D—[0] Hiz
111 Force D+[0] HizZ, D—[0] Hiz

Bus Activity (bit 3) is a “sticky” bit that indicates if any non-idle USB event has occurred on the upstream USB port. Firmware
should check and clear this bit periodically to detect any loss of bus activity. Writing a ‘0’ to the Bus Activity bit clears it, while
writing a ‘1’ preserves the current value. In other words, the firmware can clear the Bus Activity bit, but only the SIE can set it.
The Upstream D— and D+ (bits 4 and 5) are read only. These give the state of each upstream port pin individually: 1 = HIGH,
0 =LOW.

Endpoint Mode (bit 6) and Endpoint Size (bit 7) are used to configure the number and size of USB endpoints. See Section 19.2
for a detailed description of these bits.

19.0 USB Serial Interface Engine Operation

The CY7C66x13 Serial Interface Engine (SIE) supports operation as a single device or a compound device. This section de-
scribes the two device addresses, the configurable endpoints, and the endpoint function.

19.1 USB Device Addresses

The USB Controller provides two USB Device Address Registers (A and B). Upon reset and under default conditions, Device A
has three endpoints and Device B has two endpoints. The USB Device Address Register contents are cleared during a reset,
setting the USB device addresses to zero and disabling these addresses. Figure 19-1 shows the format of the USB Address

Registers.

7 6 5 4 3 2 1 0
Device Device Device Device Device Device Device Device
Address Address Address Address Address Address Address Address
Enable Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure 19-1. USB Device Address Registers 0x10, 0x40 (read/write)

Bit 7 (Device Address Enable) in the USB Device Address Register must be set by firmware before the SIE can respond to USB
traffic to these addresses. The Device Address in bits [6:0] are set by firmware during the USB enumeration process to the
non-zero address assigned by the USB host.

19.2 USB Device Endpoints

The CY7C66x13 controller supports up to two addresses and five endpoints for communication with the host. The configuration
of these endpoints, and associated FIFOs, is controlled by bits [7,6] of the USB Status and Control Register (see Figure 18-10).
Bit 7 controls the size of the endpoints and bit 6 controls the number of addresses. These configuration options are detailed in
Table 19-1. Endpoint FIFOs are part of user RAM (as shown in Section 5.4.1).

36

= CY7C66013
—— - PRELIMINARY CY7C66113

Table 19-1. Memory Allocation for Endpoints

Two USB addr: 3 EP for Addr A, 2 EP for Addr B One USB address (A), 5 EP
Reg Ox1F, Bits [7,6] =[0,0] Reg Ox1F, Bits [7,6] =[1,0] | Reg Ox1F, Bits [7,6] =[0,1] | Reg Ox1F, Bits [7,6] =[1,1]
Start Start Start Start
Label Address Size Label | Address Size Label | Address Size Label | Address Size
EPB1 0xD8 8 EPBO 0xA8 8 EPA4 0xD8 8 EPA3 0xA8 8
EPBO O0xEO 8 EPB1 0xBO 8 EPA3 OxEO 8 EPA4 0xBO 8
EPA2 OxES8 8 EPAO 0xB8 8 EPA2 OxES8 8 EPAO 0xB8 8
EPA1 0xFO 8 EPA1 0xCO0 32 EPA1 0xFO 8 EPA1 0xCO0 32
EPAO 0xF8 8 EPA2 OxEO 32 EPAO O0xF8 8 EPA2 OxEO 32

When the SIE writes data to a FIFO, the internal data bus is driven by the SIE; not the CPU. This causes a short delay in the CPU
operation. The delay is three clock cycles per byte. For example, an 8-byte data write by the SIE to the FIFO generates a delay
of 2 pus (3 cycles/byte * 83.33 ns/cycle * 8 bytes).

19.3 USB Control Endpoint Mode Registers

All USB devices are required to have a control endpoint 0 (EPAO and EPBO) that is used to initialize and control each USB address.
Endpoint 0 provides access to the device configuration information and allows generic USB status and control accesses. Endpoint
0 is bidirectional to both receive and transmit data. The other endpoints are unidirectional, but selectable by the user as IN or
OUT endpoints.

The endpoint mode registers are cleared during reset. The endpoint zero EPAO and EPB0O mode registers use the format shown
in Figure 19-2. Note: In 5-endpoint mode, Register 0x42 serves as non-control endpoint 3, and has the format for non-control
endpoints shown in Figure 19-3.

7 6 5 4 3 2 1 0
Endpoint 0 Endpoint 0 Endpoint 0 ACK Mode Mode Mode Mode
SETUP IN ouT Bit 3 Bit 2 Bit 1 Bit 0
Received Received Received

Figure 19-2. USB Device Endpoint Zero Mode Registers 0x12 and 0x42, (read/write)

Bits[7:5] in the endpoint 0 mode registers are status bits that are set by the SIE to report the type of token that was most recently
received by the corresponding device address. These bits must be cleared by firmware as part of the USB processing.

The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’'s endpoint that completes with an ACK packet.

The SETUP PID status (bit 7) is forced HIGH from the start of the data packet phase of the SETUP transaction until the start of
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval, and subsequently, until the
CPU first does an IORD to this endpoint O mode register.

Bits[6:0] of the endpoint 0 mode register are locked from CPU write operations whenever the SIE has updated one of these bits,
which the SIE does only at the end of the token phase of a transaction (SETUP... Data... ACK, OUT... Data... ACK, or IN... Data...
ACK). The CPU can unlock these bits by doing a subsequent read of this register. Only endpoint 0 mode registers are locked
when updated. The locking mechanism does not apply to the mode registers of other endpoints.

Because of these hardware locking features, firmware must perform an IORD after an IOWR to an endpoint O register. This verifies
that the contents have changed as desired, and that the SIE has not updated these values.

While the SETUP bitis set, the CPU cannot write to the endpoint zero FIFOs. This prevents firmware from overwriting an incoming
SETUP transaction before firmware has a chance to read the SETUP data. Refer to Table 19-1 for the appropriate endpoint zero
memory locations.

The Mode bits (bits [3:0]) control how the endpoint responds to USB bus traffic. The mode bit encoding is shown inTable 20-1.
Additional information on the mode bits can be found inTable 20-2 and Table 20-3.

19.4 USB Non-Control Endpoint Mode Registers
The format of the non-control endpoint mode registers is shown in Figure 19-3.

37

CY7C66013

—— - PRELIMINARY CY7C66113
— 2 CYPRESS
7 6 5 4 3 2 1 0
STALL Reserved Reserved ACK Mode Mode Mode Mode
Bit 3 Bit 2 Bit 1 Bit 0

Figure 19-3. USB Non-Control Device Endpoint Mode Registers 0x14, 0x16, 0x44, (read/write)
The mode bits (bits [3:0]) of the Endpoint Mode Register control how the endpoint responds to USB bus traffic. The mode bit
encoding is shown in Table 20-1.
The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’'s endpoint that completes with an ACK packet.

If STALL (bit 7) is set, the SIE stalls an OUT packet if the mode bits are set to ACK-IN, and the SIE stalls an IN packet if the mode
bits are set to ACK-OUT. For all other modes, the STALL bit must be a LOW.

Bits 5 and 6 are reserved and must be written to zero during register writes.

19.5 USB Endpoint Counter Registers

There are five Endpoint Counter registers, with identical formats for both control and non-control endpoints. These registers
contain byte count information for USB transactions, as well as bits for data packet status. The format of these registers is shown
in Figure 19-4:

7 6 5 4 3 2 1 0
Data 0/1 Data Valid Byte Count Byte Count Byte Count Byte Count Byte Count Byte Count
Toggle Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure 19-4. USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write)

The counter bits (bits [5:0]) indicate the number of data bytes in a transaction. For IN transactions, firmware loads the count with
the number of bytes to be transmitted to the host from the endpoint FIFO. Valid values are 0 to 32, inclusive. For OUT or SETUP
transactions, the count is updated by hardware to the number of data bytes received, plus 2 for the CRC bytes. Valid values are
2 to 34, inclusive.

Data Valid bit 6 is used for OUT and SETUP tokens only. Data is loaded into the FIFOs during the transaction, and then the Data
Valid bit is set if a proper CRC is received. If the CRC is not correct, the endpoint interrupt occurs, but Data Valid is cleared to a
zero.

Data 0/1 Toggle bit 7 selects the DATA packet’s toggle state: 0 for DATAO, 1 for DATAL. For IN transactions, firmware must set this
bit to the desired state. For OUT or SETUP transactions, the hardware sets this bit to the state of the received Data Toggle bit.

Whenever the count updates from a SETUP or OUT transaction on endpoint 0, the counter register locks and cannot be written
by the CPU. Reading the register unlocks it. This prevents firmware from overwriting a status update on incoming SETUP or OUT
transactions before firmware has a chance to read the data. Only endpoint O counter register is locked when updated. The locking
mechanism does not apply to the count registers of other endpoints.

19.6 Endpoint Mode/Count Registers Update and Locking Mechanism

The contents of the endpoint mode and counter registers are updated, based on the packet flow diagram in Figure 19-5. Two
time points, UPDATE and SETUP, are shown in the same figure. The following activities occur at each time point:

UPDATE:
1. Endpoint Mode Register - All the bits are updated (except the SETUP bit of the endpoint 0 mode register).
2. Counter Registers - All bits are updated.

3. Interrupt - If an interrupt is to be generated as a result of the transaction, the interrupt flag for the corresponding endpoint is
set at this time. For details on what conditions are required to generate an endpoint interrupt, refer to Table 20-2.

4. The contents of the updated endpoint 0 mode and counter registers are locked, except the SETUP bit of the endpoint 0 mode
register which was locked earlier.

SETUP:
The SETUP bit of the endpoint 0 mode register is forced HIGH at this time. This bit is forced HIGH by the SIE until the end of the
data phase of a control write transfer. The SETUP bit can not be cleared by firmware during this time.

The affected mode and counter registers of endpoint 0 are locked from any CPU writes once they are updated. These registers
can be unlocked by a CPU read, only if the read operation occurs after the UPDATE. The firmware needs to perform a register
read as a part of the endpoint ISR processing to unlock the effected registers. The locking mechanism on mode and counter
registers ensures that the firmware recognizes the changes that the SIE might have made since the previous 10 read of that
register.

38

CY7C66013

PRELIMINARY CY7C66113
1. IN Token
e = «— —
a)
s| |alelc| |s]|a <l |s|a
Yy|!|D|[N]|R Y5 Y| ¢
NIN|p|D]|C N | A data i N | g
C R|P]|5 c|y 6 C
Token Packet Data Packet H/S Pkt T
update
4> <7
b)
S A|lE|C S
Yyl |DIN]|R Y | NAK/
N|Nipfp|c N [STALL
C R|lP]|5 C
Token Packet T H/S Pkt

update

2. OUT or SETUP Token without CRC error

—— 0nOI
mO—<<m0o

S 8 Alelc S [A) g s | Ack,
Y DIN|R Y Y
N[X|p|D]|cC n|T| daa |C N | VAK
clsetlrlp|s cl|A 1 C | STALL
up 1 6
Token Packet T Data Packet T H/S Pkt
Setup update
3. OUT or SETUP Token with CRC error
s{Ofalelc S [A) g
vy|lY[p|N]|R v [T A
N S}t Dlp|c N A data :
CIP®'IR|P |5 C
up 1 6
Token Packet Data Packet

update only if FIFO is
Written (see Table 20-3)

Figure 19-5. Token/Data Packet Flow Diagram

39

= CY7C66013
—— - PRELIMINARY CY7C66113

20.0 USB Mode Tables
Table 20-1. USB Register Mode Encoding

Mode Encoding Setup In Out Comments
Disable 0000 ignore ignore ignore | Ignore all USB traffic to this endpoint
Nak In/Out 0001 accept NAK NAK Forced from Setup on Control endpoint, from modes other
than 0000
Status Out Only 0010 accept stall check | For Control endpoints
Stall In/Out 0011 accept stall stall For Control endpoints
Ignore In/Out 0100 accept ignore ignore | For Control endpoints
Isochronous Out 0101 ignore ignore always | For Isochronous endpoints
Status In Only 0110 accept TXO0 stall For Control Endpoints
Isochronous In 0111 ignore TX cnt ignore | For Isochronous endpoints
Nak Out 1000 ignore ignore NAK | An ACK from mode 1001 --> 1000
Ack Out(sTALLPBI=0) 1001 ignore ignore ACK | This mode is changed by SIE on issuance of ACK --> 1000
Ack Out(sTaLLBI=1) 1001 ignore ignore stall
Nak Out - Status In 1010 accept TXO0 NAK | An ACK from mode 1011 --> 1010
Ack Out - Status In 1011 accept TXO0 ACK | This mode is changed by SIE on issuance of ACK --> 1010
Nak In 1100 ignore NAK ignore | An ACK from mode 1101 --> 1100
Ack IN(STALLEI=0) 1101 ignore TX cnt ignore | This mode is changed by SIE on issuance of ACK --> 1100
Ack IN(STALLBI=1) 1101 ignore stall ignore
Nak In - Status Out 1110 accept NAK check | An ACK from mode 1111 --> 111 Ack In - Status Out
Ack In - Status Out 1111 accept TX cnt check | This mode is changed by SIE on issuance of ACK -->1110

Note:
3. STALL bitis bit 7 of the USB Non-Control Device Endpoint Mode registers. For more information, refer to Section 19.4.

The ‘In’ column represents the SIE’s response to the token type.
A disabled endpoint remains disabled until it is changed by firmware, and all endpoints reset to the disabled state.

Any SETUP packet to an enabled endpoint with mode set to accept SETUPs is changed by the SIE to 0001 (NAKing). Any mode
set to accept a SETUP, ACKs a valid SETUP transaction.

Most modes that control transactions involving an ending ACK, are changed by the SIE to a corresponding mode which NAKs
subsequent packets following the ACK. Exceptions are modes 1010 and 1110.

A Control endpoint has three extra status bits for PID (Setup, In and Out), but must be placed in the correct mode to function as
such. Non-Control endpoints should not be placed into modes that accept SETUPs.

A ‘check’ on an Out token during a Status transaction checks to see that the Out is of zero length and has a Data Toggle (DTOG)
of ‘1'. Ifthe DTOG bitis set and the received Out Packet has zero length, the Out is ACKed to complete the transaction. Otherwise,
the Out is STALLed.

40

CY7C66013

pe-= PRELIMINARY CY7C66113

Table 20-2. Decode table for Table 20-3: “Details of Modes for Differing Traffic Conditions”

Properties of incoming packet
What the SIE does to Mode bits

PID Status bits i Interrupt?

End Point
Mode

]3 2 1 o] Response | int |

Encoding Status bits

End Point Mode

Joroc pvaL COUNT [setup |in Jou JAck

[3 2 1 o Jroken Jcount buffer dval

Setup

In

Out

The validity of the received data
The quality status of the DMA buffer
The number of received bytes Acknowledge phase completed
Legend: UC: unchanged TX: transmit TXO0: transmit 0-length packet

x: don't care RX: receive

l I available for Control endpoint only

The response of the SIE can be summarized as follows:

1. The SIE only responds to valid transactions and ignores non-valid ones.
2. The SIE generates an interrupt when a valid transaction is completed or when the FIFO is corrupted. FIFO corruption occurs
during an OUT or SETUP transaction to a valid internal address that ends with a non-valid CRC.

3. An incoming Data packet is valid if the count is < Endpoint Size + 2 (includes CRC) and passes all error checking.

4. An IN is ignored by an OUT configured endpoint and vice versa.
5. The IN and OUT PID status is updated at the end of a transaction.

6. The SETUP PID status is updated at the beginning of the Data packet phase.

7. The entire Endpoint 0 mode register and the count register are locked from CPU writes at the end of any transaction to that
endpoint in which either an ACK is transferred or the mode bits have changed. These registers are only unlocked by a CPU
read of these registers, and only if that read happens after the transaction completes. This represents about a 1-ps window in
which the CPU is locked from register writes to these USB registers. Normally, the firmware should perform a register read at
the beginning of the Endpoint ISRs to unlock and get the mode register information. The interlock on the Mode and Count
registers ensures that the firmware recognizes the changes that the SIE might have made during the previous transaction.

41

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

Table 20-3. Details of Modes for Differing Traffic Conditions (see Table 20-2 for the decode legend)

End Point Mode PID Set End Point Mode
| 2 | 1 | 0 | token | count | buffer | dval | DTOG | DVAL | COUNT | Setup | In | out | ACK |3 | 2| 1| o| response | int
Setup Packet (if accepting)
See Table 20-1 | Setup | <= 10 | data valid updates | 1 updates | 1 uc (uc |1 0 | 0| 0| 1| ACK yes
See Table 20-1 | Setup | > 10 junk X updates | updates | updates | 1 uc (uUC | UuC NoChange | ignore yes
See Table 20-1 | Setup | X junk invalid updates | O updates | 1 uc (uUC | UucC NoChange | ignore yes
Disabled
| 0 | 0 | 0 | X | X | uc X uc | uc | uc | uc | uc | uc | uc | NoChange | ignore no
Nak In/Out
0|0 |0 |1 |Out X uc X uc uc uc uc uc (1 uc NoChange | NAK yes
0|0 |0 |1 |In X uc X uc uc uc uc 1 uc | ucC NoChange | NAK yes
Ignore In/Out
0|1 |0 |0 |Out X uc X uc uc uc uc uc (uUC | ucC NoChange | ignore no
0|1 |0]|0 [In X uc X uc uc uc uc uc (uUC | ucC NoChange | ignore no
Stall In/Out
0O (0 |11 |Out X uc X uc uc uc uc uc |1 uc NoChange | Stall yes
0O (0 |1 (1 |In X uc X uc uc uc uc 1 uc | ucC NoChange | Stall yes
Control Write
Normal Out/premature status In
1 {0 |11 |Out <=10 | data valid updates | 1 updates | UC uc |1 1 1 | 0| 1| 0| ACK yes
1|1 |Out > 10 junk X updates | updates | updates | UC uc (1 uc NoChange | ignore yes
O [1 (1 |Out X junk invalid updates | O updates | UC uc |1 uc NoChange | ignore yes
1 ({0 |11 |In X uc X uc uc uc uc 1 uc |1 NoChange | TXO0 yes
NAK Out/premature status In
1 {0 |1][0 |Out <=10 | UC valid uc uc uc uc uc (1 uc NoChange | NAK yes
1 {0 |10 |Out > 10 uc X uc uc uc uc uc (uUC | ucC NoChange | ignore no
1 {0 |1][0 |Out X uc invalid uc uc uc uc Uuc (UC | UucC NoChange | ignore no
1 ({0 |11]0 |In X uc X uc uc uc uc 1 uc |1 NoChange | TXO0 yes
Status In/extra Out
o1]1]o]ou [<=10]uc valid uc uc uc uc uc [1 Juc Jofo[1]1]stl yes
0O (1 |10 |Out > 10 uc X uc uc uc uc uc |uUcC |ucC NoChange | ignore no
0O (1 |10 |Out X uc invalid uc uc uc uc uc |uUcC |ucC NoChange | ignore no
O (1 |10 |In X uc X uc uc uc uc 1 uc |1 NoChange | TX0 yes
Control Read
Normal In/premature status Out
1 ({1 |11 |Out 2 uc valid 1 1 updates | UC uc |1 1 NoChange | ACK yes
1 ({1 |11 |Out 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |11 |Out 1=2 uc valid updates | 1 updates | UC uc |1 uc 00|11 Stall yes
1 ({1 |11 |Out > 10 uc X uc uc uc uc Uuc (uUC | ucC NoChange | ignore no
1 ({1 |11 |Out X uc invalid uc uc uc uc uc (uUC | ucC NoChange | ignore no
111221 m X uc X uc uc uc uc 1 |uc [1 1 | 1| 1| 0| ACK (back) yes
Nak In/premature status Out
1 ({1 |1|0 |Out 2 uc valid 1 1 updates | UC uc |1 1 NoChange | ACK yes
1 ({1 |10 |Out 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |10 |Out 1=2 uc valid updates | 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |1[0 |Out > 10 uc X uc uc uc uc Uuc (uUC | UucC NoChange | ignore no
1 ({1 |1|0 |Out X uc invalid uc uc uc uc uc (UC | UucC NoChange | ignore no
1 ({1 |11]0 |In X uc X uc uc uc uc 1 uc | uc NoChange | NAK yes
Status Out/extra In
0|0 |1 |0 |Out 2 uc valid 1 1 updates | UC uc (1 1 NoChange | ACK yes
0|0 |1 |0 |Out 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
0|0 |1]|0 |Out 1=2 uc valid updates | 1 updates | UC uc (1 uc 00|11 Stall yes

42

CY7C66013
PRELIMINARY CY7C66113

iy
]

\
lllln

¥ CYPRESS

Table 20-3. Details of Modes for Differing Traffic Conditions (see Table 20-2 for the decode legend) (continued)

End Point Mode PID Set End Point Mode

3210 [token [count |buffer [dval DTOG | DVAL [COUNT [setup [in [out [Ack |3]2] 1] 0] response int
0|0 [|1]0 [Out > 10 uc X uc uc uc uc uc |ucC |ucC NoChange | ignore no
0|0 |1 |0 |Out X uc invalid uc uc uc uc 1 uc | ucC NoChange | ignore no
olof1lo|m X uc X uc uc uc uc 1 |uc |uc 0 | 0| 1| 1| stall yes

Out endpoint

Normal Out/erroneous In

1 {0 |0 |1 |Out <=10 | data valid updates | 1 updates | UC uc (1 1 1 | 0| 0| 0| ACK yes
1 {0 |0 |1 |Out > 10 junk X updates | updates | updates | UC uc |1 uc NoChange | ignore yes
1 {0 |0 |1 |Out X junk invalid updates | O updates | UC uc (1 uc NoChange | ignore yes
1 ({0 (0|1 |In X uc X uc uc uc uc uc (uUC | ucC NoChange | ignore no
(STALLEI = 0)
1 ({0 (0|1 |In X uc X uc uc uc uc uc (uUC | ucC NoChange | Stall no
(STALLEI = 1)
NAK Out/erroneous In
0 |0 |0 |Out <=10 | UC valid uc uc uc uc uc |1 uc NoChange | NAK yes
0 |0 |0 |Out > 10 uc X uc uc uc uc uc |uUcC |ucC NoChange | ignore no
0 |0 |0 |Out X uc invalid uc uc uc uc uc |uUcC |ucC NoChange | ignore no
110 (0|0 |In X uc X uc uc uc uc Uuc |uUcC |ucC NoChange | ignore no
Isochronous endpoint (Out)
0O (1 |0 |1 |Out X updates | updates | updates | updates | updates | UC uc |1 1 NoChange | RX yes
0 (1|0 (1 |In X uc X uc uc uc uc uc |uUcC |ucC NoChange | ignore no
In endpoint
Normal In/erroneous Out
1 ({1 |0 |1 |Out X uc X uc uc uc uc uc (uUC | UucC NoChange | ignore no
(STALLBI = 0)
1 ({1 |0 |1 |Out X uc X uc uc uc uc Uuc (uUC | UucC NoChange | stall no
(STALLEI = 1)
1|1]of1|m X uc X uc uc uc uc 1 |uc |1 1 | 1| o| 0] ACK (back) | yes
NAK In/erroneous Out
1 ({1 |0 |0 |Out X uc X uc uc uc uc uc (uUC | UucC NoChange | ignore no
1 ({1]01]0 |In X uc X uc uc uc uc 1 uc | ucC NoChange | NAK yes
Isochronous endpoint (In)
0|1 |1]|1 |Out X uc X uc uc uc uc uc (uUC | UucC NoChange | ignore no
0|1 |1 |1 |In X uc X uc uc uc uc 1 uc | ucC NoChange | TX yes

43

N CY7C66013

=:;;?5YPRE aq PRELIMINARY CY7C66113
21.0 Absolute Maximum Ratings

SEOrAgE TEMPEIAIUIEoiiieieiei oottt ettt et eeeeaeeeses e e ook ok ke be e bee et ettt eeeeeeeaes e e e e e es ks be e bbebeseeeeeeaaeaeaenenann —65°C to +150°C
Ambient Temperature With POWEr APPIEM ettt et ee e e s e te e e e st ae e e e e stnneeaeas 0°C to +70°C
SUPPlY VOItAgE ON Vo TEIALIVE 10 VGG turiiuuriiiitiiieiitiie ettt ettt sttt e et e e re e en e e e ere e ennes —0.5V to +7.0V
DC INPUE VOIAIGE ...ttt et sae e s se e s e e e e —0.5V to +Vt+0.5V

DC Voltage applied to Outputs in High Z State —0.5V to +Vc+0.5V

Power DisSSipationcocoueeieaniiieiie e iiiieeee s

StatiC DISCRAIGE VOIAGEeeeiiioi ettt ettt e ettt et e e okttt e e e e he bt ee e 2 ehe et e e e em et eeeeambe et eeaan s et aeaaannnaeaaeanns
(I Lo g 0 o O U ¢ (=T o | PP PR U POUPUPR

Max Output Sink Current into Port 0, 1, 2, 3, and DAC[L1:0] PiNSuiiiiiiaiieie et et et ee e e e
Max Output Sink Current into DAC[7:2] Pins
Max Output Source Current from Port 1, 2, 3, 4

22.0 Electrical Characteristics
Fosc = 6 MHz; Operating Temperature = 0 to 70°C, V¢ = 4.0 to 5.25 Volts

Parameter Min. Max. Unit Conditions
General
VREE Reference Voltage 3.15 3.45 \Y 3.3V 5%
Vop Programming Voltage (disabled) -0.4 0.4 Y,
lcc V¢ Operating Current 50 mA No GPIO source current
lsg1 Supply Current—Suspend Mode 50
lref Vref Operating Current 10 mA No USB Traffic!!
Iy Input Leakage Current 1 HA Any pin
USB Interface
Vi Differential Input Sensitivity 0.2 \% | (D+)—(D-) |
Vem Differential Input Common Mode Range 0.8 25 \
Vse Single Ended Receiver Threshold 0.8 2.0 \
Cin Transceiver Capacitance 20 pF
lo Hi-Z State Data Line Leakage -10 10 MA 0V <Vj,<3.3V
Rext External USB Series Resistor 19 21 Q In series with each USB pin
Ruup External Upstream USB Pull-up Resistor | 1.425 | 1.575 kQ 1.5 kQ +5%, D+ to VReg
Rupn External Downstream Pull-down Resistors | 14.25 | 15.75 kQ 15 kQ +5%, downstream USB pins
Power-On Reset
tyees Vcc Ramp Rate 0 100 ms Linear ramp OV to VCC[S]
USB Upstream/Downstream Port
VUoH Static Output High 2.8 3.6 \ 15 kQ +5% to Gnd
VyoL Static Output Low 0.3 \ 1.5 kQ +5% to VRee
Zo USB Driver Output Impedance 28 44 Q Including Re,; Resistor
General Purpose I/0O (GPIO)
Rup Pull-up Resistance (typical 14 kQ) 8.0 24.0 kQ
ViTH Input Threshold Voltage 20% 40% Vee | All ports, LOW to HIGH edge
Vy Input Hysteresis Voltage 2% 8% Vee | All ports, HIGH to LOW edge
VoLo Port 0,1,2 Output Low Voltage 0.4 \Y, loL =3 mA
2.0 \ loL =5 mA

44

CY7C66013

=9~ CYPRESS PRELIMINARY CY7C66113
Parameter Min. Max. Unit Conditions
Vors Port 3 Output Low Voltage 0.4 \ loL =3 mA
2.0 Vo |lg.=8mA
VoH Output High Voltage 2.4 mA lon = 1.9 mA (all ports 0,1,2,3)
DAC Interface

Rup DAC Pull-up Resistance (typical 14 kQ) 8.0 24.0 kQ

lsinko(0) DACI7:2] Sink Current (0) 0.1 0.3 mA | Vot = 2.0V DC

lsinko(F) DAC[7:2] Sink Current (F) 0.5 15 mA | Vout = 2.0V DC

lsink1(0) DAC[1:0] Sink Current (0) 1.6 4.8 mA | Vout = 2.0V DC

lsink1(F) DACI1:0] Sink Current (F) 8 24 mA | Vot = 2.0V DC

lrange Programmed Isink Ratio: max/min 6 Vout = 2.0V Dclél

Tratio Tracking Ratio DAC[1:0] to DAC[7:2] 14 22 Vout = 2.0V

lsinkDAC DAC Sink Current 1.6 4.8 mA | Vout = 2.0V DC

liin Differential Nonlinearity 0.6 LSB | DAC Portl®l
Notes:

4. Add 18 mA per driven USB cable (upstream or downstream). This is based on transitions every 2 full-speed bit times on average.

5. Power-on Reset occurs whenever the voltage on V¢ is below approximately 2.5V.

6. Irange: Isinkn(15)/ Isinkn(0) for the same pin.

7. Tatio = Isink1[1:0](n)/Isink0[7:2](n) for the same n, programmed.

8. |“n measured as largest step size vs. nominal according to measured full scale and zero programmed values.

45

N CY7C66013
= = PRELIMINARY CY7C66113

23.0 Switching Characteristics (fosc=6.0 MHz)

Parameter Description Min. Max. Unit

Clock Source

fosc Clock Rate 6 +0.25% MHz

teye Clock Period 166.25 167.08 ns

ten Clock HIGH time 0.45 teye ns

teL Clock LOW time 0.45 teye ns

USB Full Speed Signaling[®

tefs Transition Rise Time 4 20 ns

tis Transition Fall Time 4 20 ns

tefmis Rise / Fall Time Matching; (t,/t;) 90 111 %

taratefs Full Speed Date Rate 12 £0.25% Mb/s
DAC Interface

tsink Current Sink Response Time 0.8 Us

HAPI Read Cycle Timing

trRD Read Pulse Width 15 ns

toep OE LOW to Data Valid1% 1] 40 ns

toez OE HIGH to Data High-z*1] 20 ns

toEDR OE LOW to Data_Ready Deasserted[*% 11 0 60 ns

HAPI Write Cycle Timing

twr Write Strobe Width 15 ns

tpsTE Data Valid to STB HIGH (Data Set-up Time)1%] 5 ns

tsTRz STB HIGH to Data High-Z (Data Hold Time)*%] 15 ns

tSTBLE STB LOW to Latch_Empty Deasserted[9: 11] 0 50 ns
Timer Signals

twatch WatchDog Timer Period 8.192 14.336 ms

Notes:

9. Per Table 7-6 of revision 1.1 of USB specification.
10. For 25-pF load. o
11. Assumes chip select CS is asserted (LOW).

< teve >
4— tcH—Pp

CLOCK _/ 1

4— tcL—Ppf

Figure 23-1. Clock Timing

46

CY7C66013
PRELIMINARY CY7C66113

X

I

Iy

CYPRESS

«t: t

90% 90%

10% 10%

Figure 23-2. USB Data Signal Timing

Interrupt Generated

CS (P2.6, input) \

OE (P2.5, input)

oy
| -
« teo /_

DATA (output) D[23:0] -
— logp —» > tos—

STB (P2.4, input)

—>{loeprle—
DReadyPin (P2.3, output) (Ready)
(Shown for DRDY Polarity=0)
Internal Write /_\/A

Internal Addr ><Port0><

Figure 23-3. HAPI Read by External Interface from USB Microcontroller

47

= CY7C66013
o

= PRELIMINARY CY7C66113
=2 CYPRESS

Interrupt Generated Int

CS (P2.6, input) \ /7

L e twr > /

STB (P2.4, input)

+— s —>
DATA (input) D[23:0]
—— tosre—>

OE (P2.5, input)

—» lsrpie
LEmptyPin (P2.2, output) l (not empty) v/

(Shown for LEMPTY Polarity=0)

Internal Read

Internal Addr ><Port0><

Figure 23-4. HAPI Write by External Device to USB Microcontroller

24.0 Ordering Information

PROM Package Operating
Ordering Code Size Name Package Type Range
CY7C66013-PVC 8 KB 048 48-Pin (300-Mil) SSOP Commercial
CY7C66013-PC 8 KB P25 48-Pin (600-Mil) PDIP Commercial
CY7C66113-PVC 8 KB 056 56-Pin (300-Mil) SSOP Commercial

Document #: 38-00591-E

48

25.0

CY7C66013

e PRELIMINARY CY7C66113

Package Diagrams

48-Lead Shrunk Small Outline Package 048

= 020
IC

24
0.395
0.420
3835 DIMENSIONS IN INCHES MIN.
MAX.
SEATING PLANE \
A

0.095
/ 4{\
(2] 0.004
0 040 51-85061-B

56-Lead Shrunk Small Outline Package O56

.I te— 020
]

28
@ 0395
0420
0.295 DIMENSIONS IN INCHES MIN.
MAX.
SEATING PLANE

‘°: e o N;! é %\om AW

49

PRELIMINARY

wn

CY7C66112
CY7C66113

* CYPRESS

Package Diagrams (continued)

il
Wy
@

1

24
ke T ke T ke T e e S e B ke W ke e B

PN
o
ulfun
Ul
ole

TUYYYY TV UY
25 48
J

48-Lead (600-Mil) Molded DIP P25

DIMENSIONS IN INCHES MIN.
MAX.

n

0.570
0.625

3° MIN.
0.600
0.700
51-85020-A

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

