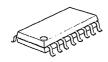
. 5


VIDEO SWITCH WITH 8dB AMPLIFIER

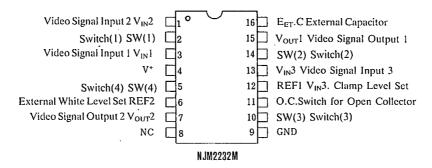
■ GENERAL DESCRIPTION

The NJM2223 is an integrated bipolar video switch with 8dB amplifier which selects one video signal from three different composit video signals.

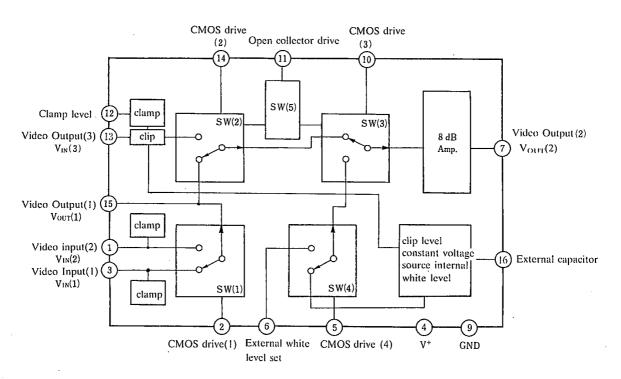
The NJM2223 has also function of superimposer and synchronous signal clipping and is suit to picture in picture configuration

■ PACKAGE OUTLINE

NJM2223M


■ FEATURES

- 12V operation.
- 3 input video signal.
- 2 output video signal.
- Switch operates with CMOS level.
- Super imposer function.
- Internal 8dB Amp.
- Package Outline


DMP16

Bipolar Technology

PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	TINGS UNIT	
Supply Voltage	V ⁺	15	V	
Power Dissipation	PD	(DMP16)350	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	· Tsig	-40~+125	°C	

ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=12V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc		_	14	19	mA
Voltage Gain (1)	Gı	V _{IN} =1MHz, 1V _{P-P}	-1	0	1	dB
Voltage Gain (2)	G_2	V _{IN} =1MHz, 1V _{p-p}	7	8	9	dB
Frequency Charact. (1)	G ₁₋₁	G ₂ ':voltage gain at V _{IN} =1V _{p-p} , 5MHz 5MHz G ₂₋₂ =G ₂ '-G ₂	- t	0	1	dB
Frequency Charact. (2)	G ₂₋₂	G_1' : voltage gain at $V_{1N} = iV_{P-P}$, 5MHz $G_{1-1} = G_1' - G_1$	-1	0	1	dB
Differential Gain	DG	Stair Case, 1 V _{p-p}	_		3	%
Differential Phase	DP	Stair Case, IV _{P-P}			3	deg
Threshold Level (1)	V _{TH-1}	SW (1) input	1.4	2.2	3.0	V
Threshold Level (2)	V _{TH-2}	SW (2) input	1.4	2.2	3.0	V
Threshold Level (3)	V _{TH-3}	SW (3) input	1.4	2.2	3.0	V
Threshold Level (4)	V _{TH-4}	SW (4) input	1.4	2.2	3.0	V
Threshold Level (5)	V _{TH-5}	Open collector input	0.5	1.0	2.0	V
Clipping Level	V _{CLIP}	SW (2) — ON $V_{IN} (1) = IV_{P,P}, \text{ stair case}$	32	40	48	IRE
Inside White Level	V _{IN}	SW (3) — ON V _{IN} (1)=1V _{P-P} 92 100		108	IRE	
Cross-talk	СТ	f _{IN} =4MHz	_	-50	_	dB

■ OUTPUT SELECT CODE

• Video Output (1)

SW (1)	V _{OUT} (1) Output Signal		
0	V _{IN} (1)		
1	V _{IN} (2)		

• Video Output (2)

SW (1)	SW (2)	SW (3)	V _{OUT} (2) Output Signal
0	0	0	V _{IN} (1)
0	1	0	V _{IN} (3)
1	0	0	V _{IN} (2)
1	1	0	V _{IN} (2)

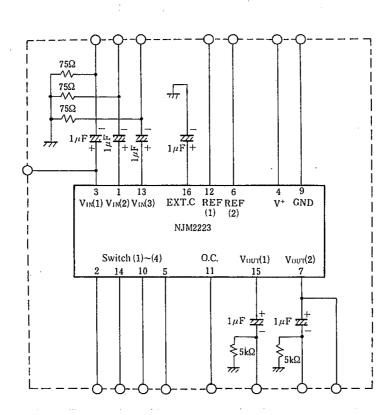
• Super Imposer

1. Switching of SW (3), it imposes DC level in video signal regardless to SW (1), SW (2) Condition.

SW (3)	V _{OUT} (2) Output Signal			
	Vour (2) Output Signal			
0	Video Signal			
1	DC Level			
	1			

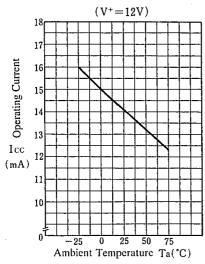
Switching of SW (4), it selects DC level at internal white level (100 IRE) or external setting level.

SW (4)	V _{OUT} (2) Output Signal		
0	Internal White Level		
1	External Set Level		

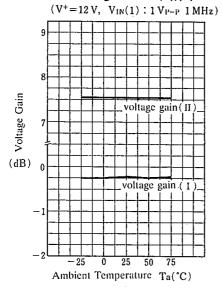

• Open Collector Drive Switch-

This switch has function to make SW (2), SW (3) no working and V_{OUT} (2) output signal to the same output signal of V_{OUT} (1). It operates in CMOS level.

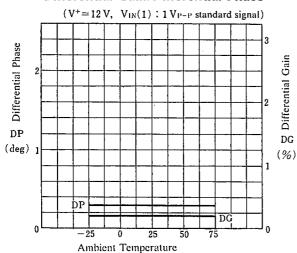
■ TERMINAL FUNCTION

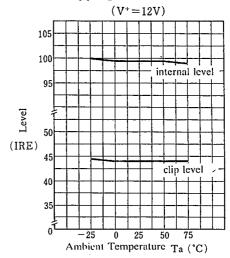

PIN.	EQUIVALENL CCT	PIN.	EQUIVALENT CCT
1	- V ⁺	9	
	▎─ぢ≹〕▏▏		
V _{IN} 2		GND	
2	7	10	厂厂
	0		0
SW(1)	GND	SW(3)	GND
3	Q V [†]	11	V+
	_{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	open.	
V _{IN} 1	<u></u>	O.C.	GND
4		12	V+
			, , , , , , , , , , , , , , , , , , ,
V ⁺		REF1	GND
5	_ J	13	₹ 0 V+
	0-w		│ ─ ₹
SW(4)	GND	V _{IN} 3	
6	V+	14	_ "
			1 0-m - 1
REF2		SW(2)	GND
7	V+	15	V+
V 3		37 1	-5
V _{OUT} 2	GND	Vourl	
8		16	V+
		Г С	<u> </u>
NC		E _{ET} .C	GND

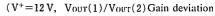
■ TEST CIRCUIT

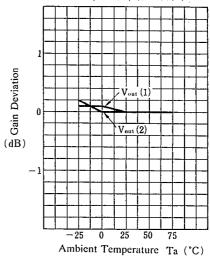


TYPICAL CHARACTERISTICS

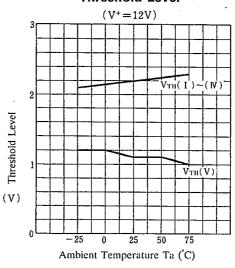

Operating Current


Voltage Gain (1),(2)

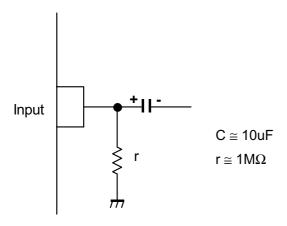

Differential Gain/Differential Phase



Clipping/Internal Level



Gain Change Ratio (5MHz/1MHz)



Threshold Level

■APPLICATION

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.