## FEATURES

Low On Resistance < $0.5 \Omega$ max at 5 V supply
$0.1 \Omega$ On Resistance Flatness
+1.8 V to +5.5 V Single Supply
100pA Leakage Currents
14ns Switching Times
Extended Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
High Current Carrying Capability
Tiny 6 lead SOT23 and 8 Lead $\mu$ SOIC Packages
Low Power Consumption
TTL/CMOS Compatible Inputs
Pin Compatible with ADG701/ADG702

## APPLICATIONS

## Power Routing

Audio and Video Signal Routing
Cellular Phones
Modems
PCMCIA Cards
Hard Drives
Data Acquisition Systems
Communication Systems
Relay replacement
Audio and Video Switching
Battery Powered Systems

## GENERAL DESCRIPTION

The AD G 801/AD G 802 are monolithic CM OS SPST (Single Pole, Single Throw) switches with On Resistance of less than $0.5 \Omega$. These switches are designed on an advanced submicron process that provides extremely low on resistance, high switching speed and low leakage currents.
The low On Resistance of $<0.5 \Omega$ means these parts are ideal for applications where low on resistance switching is critical.
The AD G 801 is a normally open ( NO ) switch, while the AD G802 is normally closed (NC). E ach switch conducts equally well in both directions when ON .
T he AD G 801 and AD G 802 are available in 6-lead SOT-23 and 8 Lead $\mu$ SOIC packages.

FUNCTIONAL BLOCK DIAGRAMS


SWITCHES SHOWN FOR A LOGIC "1" INPUT

## PRODUCT HIGHLIGHTS

1. Low On Resistance ( $0.25 \Omega$ typical).
2. +1.8 V to +5.5 V Single Supply Operation.
3. Tiny 6 Lead SOT 23 and 8 Lead $\mu$ SOIC Packages.
4. Pin C ompatible with AD G 701 (AD G 801)

Pin Compatible with ADG 702 (AD G 802).

## REV. PrE J an ‘02

[^0]
## ADG801/ADG802- SPECIFICATIONS ${ }^{1}$

( $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{5 S}=\mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.)

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance ( $\mathrm{RON}_{\mathrm{ON}}$ ) <br> On-Resistance Flatness ( $\left.\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}\right)$ | $\begin{aligned} & 0.25 \\ & 0.4 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 0.75 \\ & 0.2 \end{aligned}$ | V <br> $\Omega$ typ $\Omega$ max $\Omega$ typ $\Omega$ max | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ;$ <br> Test Circuit 1 <br> $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
| LEAKAGE CURRENTS <br> Source OFF Leakage IS (OFF) <br> Drain OFF Leakage $I_{D}$ (OFF) <br> Channel ON Leakage $I_{D}, I_{S}(O N)$ | $\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$ | $\pm 1$ <br> $\pm 1$ <br> $\pm 1$ | tbd <br> tbd <br> tbd | nA typ nA max nA typ nA max nA typ nA max | $\begin{aligned} & \mathrm{V}_{D D}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \\ & \mathrm{T} \text { est Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \\ & \mathrm{T} \text { est Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; } \\ & \mathrm{T} \text { est Circuit 3 } \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current <br> $I_{\text {INL }}$ or $I_{\text {INH }}$ <br> $\mathrm{C}_{I N}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 5 \end{aligned}$ |  | $\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$ | $V \min$ <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A} \max$ <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| ```DYNAMIC CHARACTERISTICS2 ton toff Charge Injection Off Isolation Bandwidth -3 dB Cs(OFF) CD (OFF) CD``` | $\begin{aligned} & 30 \\ & \text { T B D } \\ & \\ & 20 \\ & \text { T B D } \\ & \pm 20 \\ & -65 \\ & \\ & 30 \\ & 55 \\ & 55 \\ & 110 \end{aligned}$ |  | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$ | ns typ ns max <br> ns typ ns max pC typ <br> dB typ <br> M Hz typ pF typ pF typ pF typ |  |
| POWER REQUIREMENTS $I_{D D}$ | 0.001 |  | 1.0 | $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{D D}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$ |

NOTES
${ }^{1}$ Temperature ranges are as follows: Extended Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance ( $\mathrm{Ron}_{\text {on }}$ ) On-Resistance Flatness( $\left.\mathrm{R}_{\text {FLAT(ON })}\right)$ | $\left\lvert\, \begin{aligned} & 0.3 \\ & 0.7 \\ & 0.1 \end{aligned}\right.$ | 0.8 | $\begin{aligned} & 0 \mathrm{~V} \text { to } V_{D D} \\ & 1 \\ & 0.3 \end{aligned}$ |  | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; <br> T est Circuit 1 <br> $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ |
| leakage currents <br> Source OFF Leakage $I_{S}$ (OFF) <br> Drain OFF Leakage $I_{D}$ (OFF) <br> Channel ON Leakage $I_{D}, I_{S}(O N)$ | $\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$ | $\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \end{aligned}$ | tbd <br> tbd <br> tbd | nA typ nA max nA typ nA max nA typ $n A$ max | $\begin{aligned} & \hline \mathrm{V}_{D D}=+3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \\ & \mathrm{T} \text { est Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; } \\ & \mathrm{T} \text { est Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V} \text {; } \\ & \text { Test Circuit 3 } \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current <br> $\mathrm{I}_{\text {InL }}$ or $\mathrm{I}_{\text {INH }}$ <br> $\mathrm{C}_{\mathrm{IN}_{N}}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 5 \end{aligned}$ |  | $\begin{array}{r} 2.0 \\ 0.4 \\ \\ \pm 0.1 \end{array}$ | $V$ min <br> V max <br> $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| ```DYNAMIC CHARACTERISTICS}\mp@subsup{}{}{2 ton toff Charge Injection Off Isolation Bandwidth -3 dB CS(OFF) CD (OFF) CD, Cs(ON)``` | $\begin{array}{\|l} 50 \\ \text { T B D } \\ 40 \\ \text { T B D } \\ \pm 20 \\ -65 \\ \\ 30 \\ 55 \\ 55 \\ 110 \\ \hline \end{array}$ |  | TBD TBD | ns typ ns max ns typ pC typ <br> dB typ <br> M Hz typ <br> pF typ <br> pF typ <br> pF typ |  |
| POWER REQUIREMENTS $I_{D D}$ | 0.001 |  | 1.0 | $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$ |

NOTES
${ }^{1}$ Temperature ranges are as follows: Extended Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

## ADG801/ADG802

## ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$


$V_{D D}$ to GND ...................................... -0.3 V to +7 V
Analog Inputs ${ }^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
....................... . or 30 mA , Whichever Occurs First
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 400 mA
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . 800 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max )
Operating Temperature Range

NOTES
${ }^{1}$ Stresses above those listed under Absolute $M$ aximum Ratings may cause permanent damage to the device. $T$ his is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2} O$ vervoltages at IN , S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table

| ADG801 In | ADG802 In | Switch Condition |
| :--- | :--- | :--- |
| 0 | 1 | OF F |
| 1 | 0 | ON |

## PINCONFIGURATIONS

## 6-Lead Plastic Surface Mount (SOT-23) <br> (RT-6)



## 8-Lead Small Outline $\mu$ SOIC <br> (RM-8)



## ORDERING GUIDE

| Model | Temperature Range | Supply Option ${ }^{1}$ | Brand ${ }^{1}$ | Package Descriptions | Package Options |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AD G 801BRT | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SLB | SOT-23 (Plastic Surface M ount) | RT-6 |
| ADG801BRM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SL B | $\mu$ SOIC (Small Outline) | R M -8 |
| AD G 802BRT | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SM B | SOT-23 (Plastic Surface M ount) | RT-6 |
| AD G 802BRM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SM B | $\mu$ SOIC (Small Outline) | R M -8 |

[^1]
## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG801/ADG802 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## TERMINOLOGY

| $V_{D D}$ | M ost positive power supply potential. |
| :---: | :---: |
| $I_{\text {D }}$ | Positive supply current. |
| GND | Ground ( 0 V ) reference. |
| S | Source terminal. M ay be an input or output. |
| D | D rain terminal. M ay be an input or output. |
| IN | Logic control input. |
| $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ | A nalog voltage on terminals D, S |
| $\mathrm{R}_{\text {ON }}$ | O hmic resistance between D and S . |
| $\mathrm{R}_{\text {Flat (ON) }}$ | F latness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range. |
| $\mathrm{I}_{S}$ (OFF) | Source leakage current with the switch "OFF." |
| $I_{\text {D }}$ (OFF) | D rain leakage current with the switch "OFF." |
| $I_{D}, I_{S}(O N)$ | Channel leakage current with the switch "ON." |
| $V_{\text {INL }}$ | $M$ aximum input voltage for logic " 0 ". |
| $\mathrm{V}_{\text {INH }}$ | $M$ inimum input voltage for logic " 1 ". |
| $\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$ | Input current of the digital input. |
| $\mathrm{C}_{5}$ (OFF) | "OFF" switch source capacitance. M easured with reference to ground. |
| $C_{\text {D }}(0 F F)$ | "OFF" switch drain capacitance. M easured with reference to ground. |
| $C_{D}, C_{S}(O N)$ | "ON" switch capacitance. M easured with reference to ground. |
| $\mathrm{C}_{\text {IN }}$ | D igital input capacitance. |
| $\mathrm{t}_{\text {ON }}$ | D elay between applying the digital control input and the output switching on. See T est Circuit 4. D elay between applying the digital control input and the output switching off. |
| C harge Injection | A measure of the glitch impulse transferred from the digital input to the analog output during switching. |
| Off Isolation | A measure of unwanted signal coupling through an "OFF" switch. |
| Crosstalk | A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. |
| Bandwidth | The frequency at which the output is attenuated by 3 dBs . |
| On Response | The Frequency response of the "ON" switch. |
| Insertion Loss | The loss due to the ON resistance of the switch. |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$


Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures


Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures


Figure 4. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$


Figure 5. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$


Figure 6. Leakage Currents as a function of Temperature


Figure 7. Leakage Currents as a Function of Temperature


Figure 8. Supply Currents vs. Input Switching Frequency


Figure 9. Charge Injection vs. Source Voltage


Figure 10. $T_{\text {ON }} / T_{\text {OFF }}$ Times vs. Temperature


Figure 11. Off Isolation vs. Frequency


Figure 12. Crosstalk vs. Frequency


Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times


Test Circuit 5. Charge Injection


Test Circuit 6. Off Isolation


Test Circuit 7. Bandwidth

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    ${ }^{1}$ Branding on SOT-23 and $\mu$ SOIC packages is limited to 3 characters due to space constraints.

