

Precision Air-Core Tach/Speedo Driver with Short Circuit Protection

Description

The CS-8191 is specifically designed for use with 4 quadrant air-core meter movements. The IC includes an input comparator for sensing input frequency such as vehicle speed or engine RPM, a charge pump for frequency to voltage conversion, a bandgap reference for stable operation and a function generator with sine and cosine ampli-

fiers that differentially drive the motor coils.

The CS-8191 has a higher torque output and better output signal symmetry than other competitive parts (CS-289, and LM1819). It is protected against short circuit and overvoltage (60V) fault conditions. Enhanced circuitry permits functional operation down to 8V.

Absolute Maximum Ratings

Supply Voltage (≤100ms pulse transient)	$V_{CC} = 60V$
(continuous)	$V_{CC} = 24V$
Operating Temperature Range4	60°C to +105°C
Junction Temperature Range4	60°C to +150°C
Storage Temperature Range5	55°C to +165°C
Electrostatic Discharge (Human Body Model)	4kV
Lead Temperature Soldering	
Wave Solder(through hole styles only)10 sec. ma	ax, 260°C peak
Reflow (SMD styles only)60 sec. max above 183°	C, 230°C peak

Block Diagram BIAS F/V_{OUT} Charge Pump CP-SQOUT FREQIN Voltage Regulator V_{REG} Gnd Gnd V_{REG} Gnd Gnd COS+ SINE+ COS Function SINE cos-SINE-High Voltage, Short Circuit Protection

Features Direct Sensor Input High Output Torque Wide Output Voltage Range High Impedance Inputs Accurate down to 10V V_{CC} **Fault Protection** Overvoltage Short Circuit Low Voltage Operation Package Options 16 Lead PDIP Vcc 1 16 F/Vour VREG 2 15 CP+ BIAS 3 14 CP-Gnd 4 13 Gnd Gnd 5 12 Gnd COS- 16 11 COS+ 10 SINE+ FREQN TA ∍] SQ_{ούτ} 20 Lead SOIC (internally fused leads) 20 F/V_{OUT} ig CP+ V_{REG} 2 BIAS 3 18 CP-NC 4 17 NC Gnd 5 16 Gnd Gnd 6 15 Gnd NC T7 14 NC COS- 8 13 COS+ SIN-12 SIN+ FREQ_{IN} 10 11 SQ_{OUT}

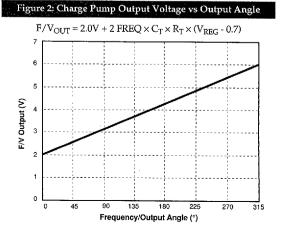
Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818-1530 Tel: (401)885-3600 Fax (401)885-5786 email: info@cherry-semi.com

■ 2067556 0003566 42T ■

Electrical Charac	teristics: $-40^{\circ}\text{C} \le T_{\text{A}} \le 105^{\circ}\text{C}$, $8\text{V} \le \text{V}_{\text{CO}}$	_C ≤16V unles	s otherwise sp	ecified.	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNI
Supply Voltage Section					
I _{CC} Supply Current	V _{CC} = 16V, -40°C, No Load		70 :	125	mA
V _{CC} Normal Operation Range		8.0	13.1	16.0	V
Input Comparator Section		*		-	
Positive Input Threshold		2.4	2.7	3.0	V
Negative Input Threshold		2.0	2.3		V
Input Hysteresis		200	400	1000	mV
Input Bias Current *	$0V \le V_{LN} \le 8V$		-2	±10	μA
Input Frequency Range		0 .		20	kH
Input Voltage Range	in series with $1k\Omega$	-1		$V_{\rm CC}$	\mathbf{v}
Output V _{SAT}	$I_{CC} = 10 \text{mA}$		0.15	0.40	V
Output Leakage	V_{CC} \pm $7V$			10	μA
Logic 0 Input Voltage	a kan katan ka Katan katan ka	2.0	. Province Control Control Control	Y 20 Y 20 A SERVICE STATE SELECT	V
ote: Input is clamped by an internal 12	V Zener.				-
Voltage Regulator Section					
Output Voltage		6.50	7.00	7.50	V
Output Load Current Output Load Regulation	0 to 10 mA		10	10 50	m/ m\
Output Line Regulation Power Supply Rejection	$8.0V \le V_{CC} \le 16V$ $V_{CC} = 13.1V, 1V_P/P 1kHz$	34	20 46	150	m\ dB
Charge Pump Section		-			
Inverting Input Voltage		1.5	2.0	2.5	V
Input Bias Current			40	150	nA
V _{BIAS} Input Voltage		1.5	2.0	2.5	V
Non Invert. Input Voltage	$I_{\text{IN}} = I \text{mA}$	1.0	0.7	1.1	V
Linearity*	@ 0, 87.5, 175, 262.5, + 350Hz	-0.10	0.28	+0.70	%
F/V _{OUT} Gain	@ 350Hz, $C_T = 0.0033\mu\text{F}$, $R_T = 243k\Omega$.		10	13	mV/
รับสารสาราช และ พื้นสาราช เลย		September Strate Contractors	programme on time sendence of the	Section of the sectio	10.000.001.001.001.001.00
Norton Gain, Positive	$I_{IN} = 15\mu A$	0.9	1.0	1.1	I/I
Norton Gain, Negative	$I_{IN} = -15\mu A$	0.9	1.0	1.1	I/I
ote: Applies to % of full scale (270°).					
	$40^{\circ} \le T_A \le 85^{\circ}C$, $V_{CC} = 13.1V$ unless of				
Differential Drive Voltage (V _{COS} + - V _{COS} -)	$10V \le V_{CC} \le 16V$ $\Theta = 0^{\circ}$	7.5	8.0	8.5	V
Differential Drive Voltage	$10V \leq V_{CC} \leq 16V$	7.5	8.0	8.5	V
(V _{SIN} + - V _{SIN} -)	$\Theta=90^\circ$				
and the control of th	$10V \le V_{CC} \le 16V$	-8.5	-8.0	-7.5	V
Differential Drive Voltage					
Differential Drive Voltage (V _{COS} + - V _{COS} -)	$\Theta = 180^{\circ}$		720077 20 English Mark on Broken.	SERVER PUR TURNER PROPERTY	ESTRETTO PROPERTY
Differential Drive Voltage		-8.5	28.0 m	Z.5	V
Differential Drive Voltage (V _{COS} + - V _{COS} -) Differential Drive Voltage	$\Theta = 180^{\circ}$ $10V \le V_{CC} \le 16V$ $\Theta = 270^{\circ}$ $10V \le V_{CC} \le 16V, -40^{\circ}C$	178	-8.0	7. 5	V Ω
Differential Drive Voltage (V _{COS} + - V _{COS} -) Differential Drive Voltage (V _{SIN} + - V _{SIN} -)	$\begin{split} \Theta &= 180^{\circ} \\ 10V \leq V_{CC} \leq 16V \\ \Theta &= 270^{\circ} \end{split}$		-8:0	7,5	ν Ω Ω

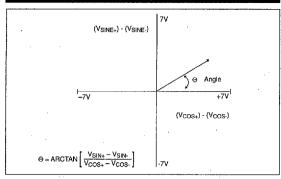
506

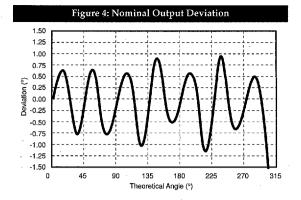
^{*}Note: Deviation from nominal per Table 1 after calibration at 0° and 270°.


	Package Lead Description				
PAC	CKAGE LEAD #	LEAD SYMBOL	FUNCTION		
16L	20L				
1	1	V _{CC}	Ignition or battery supply voltage.		
2	2.	V_{REG}	Voltage regulator output.		
3	3	BIAS	Test point or zero adjustment.		
4, 5, 12, 13	5, 6, 15, 16	Gnd	Ground Connections.		
6	8	COS-	Negative cosine output signal.		
7	9	SIN-	Negative sine output signal.		
8	10	$FREQ_{IN}$	Speed or rpm input signal.		
9	11	SQ _{OUT}	Buffered square wave output signal.		
10	12	SIN+	Positive sine output signal.		
11	13	COS+	Positive cosine output signal.		
14	18	CP-	Negative input to charge pump.		
15	19	CP+	Positive input to charge pump.		
16	20	F/V _{OUT}	Output voltage proportional to input signal frequency.		
	4, 7, 14, 17	NC	No connection.		

Typical Performance Characteristics

2067556 0003567 366


Figure 1: Function Generator Output Voltage


vs Degrees of Deflection

Typical Performance Characteristics: continued

Figure 3: Output Angle in Polar Form

Nominal Angle vs. Ideal Angle (After calibrating at 180°)

Note: Temperature, voltage and nonlinearity not included.

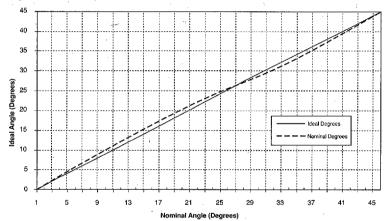


Table 1: Function Generator Output Nominal Angle vs. Ideal Angle (After calibrating at 270°)

Ideal Θ Degrees	Nominal ⊖ Degrees	Ideal Θ Degrees	Nominal ⊖ Degrees	ldeal Θ Degrees	Nominal Θ Degrees	Ideal Θ Degrees	Nominal ⊙ Degrees	Ideal Θ Degrees	Nominal ⊖ Degrees	Ideal ⊙ Degrees	Nominal Θ Degrees
0	0.0	17	17.98	34	33.04	75	74.00	160	159.14	245	244.63
1.1	1.09	18	18.96	35	34.00	80	79.16	165	164.00	250	249.14
2	2.19	19	19.92	36	35.00	85	84.53	170	169.16	255	254.00
3.	3.29	20	20.86	37	36:04	90	90.00	175	174.33	. 260	259.16
4	4.38	21	21.79	- 38	37.11	95	95.47	180	180.00	265	264.53
5	5.47	22	22.71	39	38.21	100	100.84	185	185.47	270	270.00
6	6.56	23	23.61	40	39.32	105	106.00	190	190.84	275	275.47
7	7.64	24	24.50	41	40.45	110	110.86	195	196.00	280	280.84
8	8.72	25	25.37	42	41.59	115	115.37	200	200.86	285	286.00
9	9.78	26	26.23	43	42.73	120	119.56	205	205.37	290	290.86
10	10.84	27	27.07	44	43.88	125	124.00	210	209.56	295	295.37
11	11.90	28	27.79	45	45.00	130	129.32	215	214.00	300	299.21
12	12.94	29	28.73	50	50.68	135	135.00	220	219.32	305	303.02
13	13.97	30	29.56	55	56:00	140	140.68	225	225.00		
14	14.99	31	30.39	60	60:44	145	146.00	230	230,58		
15	16.00	32	31.24	65	64.63	150	150.44	235	236.00		
16	17.00	33	32.12	70	69.14	155	154.63	240	240,44		

Note: Temperature, voltage and nonlinearity not included.

2067556 0003568 272

The CS-8191 is specifically designed for use with air-core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the motor coils.

From the simplified block diagram of Figure 5A, the input signal is applied to the FREQ $_{\rm IN}$ lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.7V and typical hysteresis of 0.4V. The output of the comparator, SQ $_{\rm OUT}$, is applied to the charge pump input CP+ through an external capacitor C $_{\rm T}$. When the input signal changes state, C $_{\rm T}$ is charged or discharged through R3 and R4. The charge accumulated on C $_{\rm T}$ is mirrored to C4 by the Norton Amplifier circuit comprising of Q1, Q2 and Q3. The charge pump output voltage, F/V $_{\rm OUT}$, ranges from 2V to 6.3V depending on the input signal frequency and the gain of the charge pump according to the formula:

$$F/V_{OUT} = 2.0V + 2 \times FREQ \times C_T \times R_T \times (V_{REG} - 0.7V)$$

R_T is a potentiometer used to adjust the gain of the F/V output stage and give the correct meter deflection. The F/V output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine amplifiers are derived from the on-chip amplifier and function generator circuitry. The various trip points for the circuit (i.e., 0°, 90°, 180°, 270°) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305° range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.

The output angle, Θ , is equal to the F/V gain multiplied by the function generator gain:

$$\Theta = A_{F/V} \times A_{FG}$$

where:

$$A_{FG} = 77^{\circ}/V \text{ (typ)}$$

The relationship between input frequency and output angle is:

$$\Theta = A_{FG} \times 2 \times FREQ \times C_T \times R_T \times (V_{REG} - 0.7V)$$

or,
$$\Theta = 970 \times FREQ \times C_T \times R_T$$

The ripple voltage at the F/V converter's output is determined by the ratio of C_T and C4 in the formula:

$$\Delta V = \frac{C_T(V_{REG} - 0.7V)}{C4}$$

Ripple voltage on the F/V output causes pointer or needle flutter especially at low input frequencies.

The response time of the F/V is determined by the time constant formed by R_T and C4. Increasing the value of C4 will reduce the ripple on the F/V output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unacceptable for many applications.

Design Example

Maximum meter Deflection = 270°
Maximum Input Frequency = 350Hz

1. Select R_T and C_T

$$\Theta = A_{GEN} \times \Delta_{F/V}$$

$$\Delta_{F/V} = 2 \times FREQ \times C_T \times R_T \times (V_{REG} - 0.7V)$$

$$\Theta = 970 \times FREQ \times C_T \times R_T$$

Let $C_T = 0.0033 \mu F$, Find R_T

$$R_T = \frac{270^{\circ}}{970 \times 350 Hz \times 0.0033 \mu F}$$

$$R_T=243k\Omega$$

 $R_{\rm T}$ should be a 250k $\!\Omega$ potentiometer to trim out any inaccuracies due to IC tolerances or meter movement pointer placement.

2. Select R3 and R4

Resistor R3 sets the output current from the voltage regulator. The maximum output current from the voltage regulator is 10mA, R3 must ensure that the current does not exceed this limit.

Choose R3 = $3.3k\Omega$

The charge current for C_T is:

$$\frac{V_{REG} - 0.7V}{3.3k\Omega} = 1.90 \text{mA}$$

C1 must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequency is 2.85ms. To ensure that C_T is discharged, assume that the (R3 + R4) C_T time constant is less than 10% of the minimum input frequency pulse width.

$$T = 285us$$

Choose $R4 = 1k\Omega$.

Charge time: $T = R3 \times C_T = 3.3k\Omega \times 0.0033\mu F = 10.9\mu s$

Discharge time: $T = (R3 + R4)C_T = 4.3k\Omega \times 0.0033\mu F = 14.2\mu s$

3. Determine C4

C4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement.

$$C4 = \frac{C_T(V_{REG} - 0.7V)}{V_{RIPPLE(MAX)}}$$

With $C4 = 0.47 \mu F$, the F/V ripple voltage is 44 mV.

Figure 7 shows how the CS-8191 and the CS-8441 are used to produce a Speedometer and Odometer circuit.

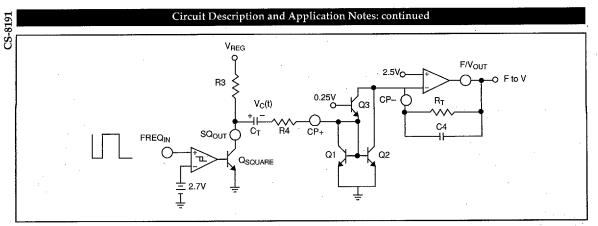


Figure 5A: Partial Schematic of Input and Charge Pump

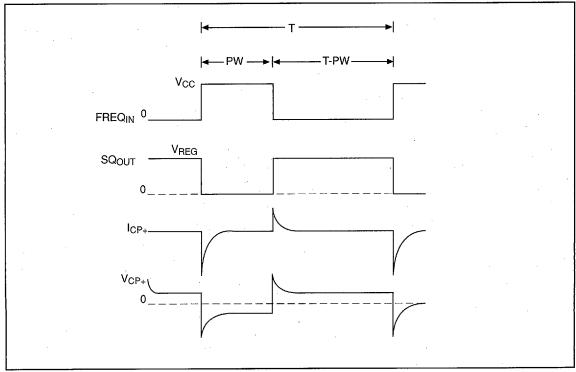


Figure 5B: Timing Diagram of FREQ $_{\mbox{\tiny IN}}$ and $I_{\mbox{\tiny CP}}$

≹R3

Speedometer/Odometer or Tachometer Application

Battery

Ground

Figure 7

ical Speedometer

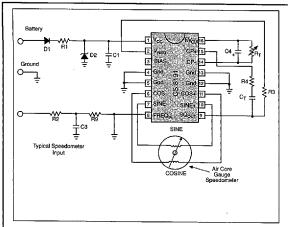


Figure 6

R1 - 3.9, 500mW

 $R2 - 10k\Omega$

 $R3 - 3k\Omega$ $R4 - 1k\Omega$

R_T - Trim Resistor +/- 20 PPM/DEG. C

C1 - 0.1uF

C2 - With CS-8441 application, 10µF

C3 - 0.1µF

C4 - 0.47µF

 C_T - 0.0033 μF , +/- 30 PPM/°C

D1 - 1A, 600 PIV

D2 - 50V, 500mW Zener

Note 4: The IC must be protected from transients above 60V and reverse battery conditions.

13

cos S cost 🗓

SINE

Stepper Motor 200Ω

SINE + 10-

Air Core
Gauge
Speedometer

Odometer

Note 5: Additional filtering on the $FREQ_{IN}$ lead may be required.

Note 1: The product of C4 and R4 have a direct effect on gain and therefore directly effect temperature compensation.

Note 2: C4 Range; 20pF to .2 μ F.

Note 3: R4 Range; $100k\Omega$ to $500k\Omega$.

In some cases a designer may wish to use the CS-8191 only as a driver for an air-core meter having performed the F/V conversion elsewhere in the circuit.

Figure 8 shows how to drive the CS-8191 with a DC voltage ranging from 2V to 6V. This is accomplished by forcing a voltage on the F/V_{OUT} lead. The alternative scheme shown in figure 9 uses an external op amp as a buffer and operates over an input voltage range of 0V to 4V.

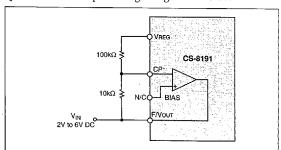


Figure 8. Driving the CS-8191 from an external DC voltage.

An alternative solution is to use the CS-4101 which has a separate function generator input lead and can be driven directly from a DC source.

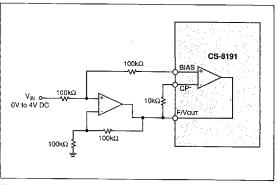
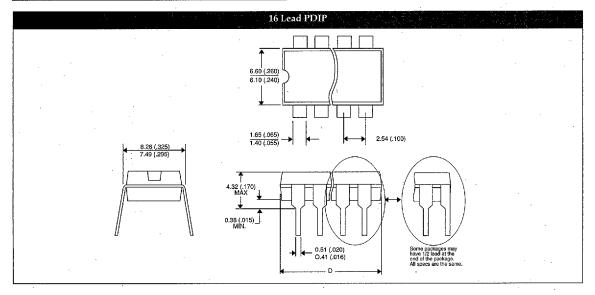
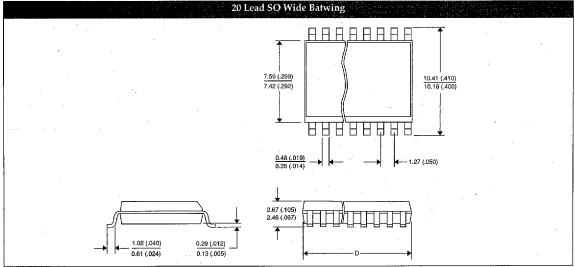


Figure 9. Driving the CS-8191 from an external DC voltage using an Op Amp Buffer.


Package Specification


PACKAGE DIMENSIONS IN mm (INCHES)

		D			
Lead Count	N	Metric English			
	Max	Min	Max	Min	
16L PDIP	19.18	18.92	.755	.745	
20L SOIC	12.95	12.70	.510	.500	

PACKAGE THERMAL DATA

Therm	al Data	16L PDIP (in	20L SOIC ternally fused l	leads)
$R_{\Theta JC}$	typ	15	9	°C/W
$R_{\Theta JA}$	typ	50	55	°C/W

Ordering Information		
Part Number	Description	
CS-8191N16	16L PDIP	
CS-8191DW20	20L SOIC (internally fused leads)	
CS-8191DWR20	20L SOIC (internally fused leads) Tape and Reel	

2067556 0003572 723