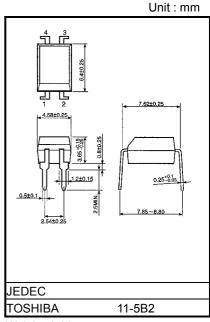
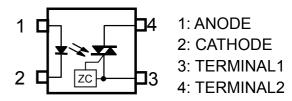
Preliminary


TOSHIBA Photocoupler GaAs IRED & PHOTO-TRIAC

TLP361J

Triac Driver
Programmable Controllers
AC-Output Module
Solid State Relay


TOSHIBA TLP361J consists of a zero voltage crossing turn-on photo-triac optically coupled to a gallium arsenide infrared emitting diode in a four lead plastic DIP package.

Peak Off-State Voltage : 600V(Min)
 Trigger LED Current : 10mA(Max)
 On-State Current : 70mA(Max)
 Isolation Voltage : 5000Vrms(Min)

Weight: 0.26 g

PIN CONFIGURATION (TOP VIEW)

Construction Mechanical Rating

	7.62 mm pich standard type	10.16 mm pich TLPXXXF type
Creepage Distance	7.0 mm (Min)	8.0 mm (Min)
Clearance	7.0 mm (Min)	8.0 mm (Min)
Insulation Thickness	0.4 mm (Min)	0.4 mm (Min)

Trigger LED Current

Classi– fication*	Trigger LED V _T =6V,	Marking Of Classification	
lication	Min.	Max.	Classification
(IFT7)	_	7	T7
Standard	1	10	T7, blank

*Ex. (IFT7); TLP361J(IFT7)

(Note) Application type name for certification test, please use standard product type name, i.e.

TLP361J(IFT7): TLP361J

Maximum Ratings (Ta=25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT		
	Forward Current			50	mA	
	Forward Current Derating (Ta≥53°C)		ΔI _F /°C	-0.7	mA /°C	
LED	Peak Forward Current (100µs pulse, 100pps)		I _{FP}	1	Α	
	Reverse Voltage		V _R	5	V	
	Junction Temperature		Tj	125	°C	
Off-State Output Terminal Voltage				600	V	
	On-State RMS Current	Ta = 25°C	I _{T(RMS)}	70	mA	
OR	on state rand durient	Ta = 70°C	11 (RIVIS)	40		
DETECTOR	On-State Current Derating (Ta≥25°C)		ΔI _T /°C	-0.67	mA /°C	
DE	Peak On-State Current (100µs pulse, 120pps)		I _{TP}	2	Α	
	Peak Nonrepetitive Surge Current (Pw=10ms,DC=10%)			1.2	Α	
	Junction Temperature	Tj	100	°C		
Stor	rage Temperature Range	T _{stg}	-55~125	°C		
Оре	Operating Temperature Range			-40~100	°C	
Lea	Lead Soldering Temperature (10s)			260	°C	
Isola	ation Voltage (AC,1min. , R.H.≤60%)	BVS	5000	Vrms		

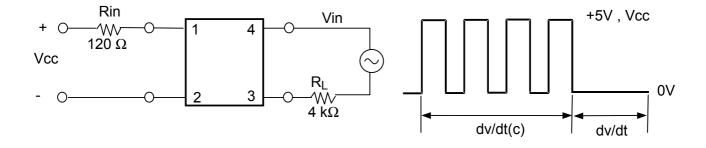
(Note 1): Pins1 and 2 shorted together and pin3 and pin4 shorted together.

Recommended Operating Conditions

9					
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{AC}	_	_	240	V_{ac}
Forward Current	I _F	15	20	25	mA
Peak On-State Current	I _{TP}	_	_	1	Α
Operating Temperature	T _{opr}	-25	_	85	°C

Electrical Characteristics (Ta=25°C)

CHARACTERISTIC SYMBOL TEST CONDITION		TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
	Forward Voltage	V _F	I _F = 10 mA	1.0	1.15	1.3	V
LED	Reverse Current	I _R	V _R = 5 V	_	_	10	μA
	Capacitance	C _T	V = 0, f = 1MHz	_	30	_	pF
2	Peak Off-State Current	I _{DRM}	V _{DRM} = 600V	_	10	1000	nA
0 _	Peak On-State Voltage	V _{TM}	I _{TM} = 70mA	_	1.7	2.8	V
O	Holding Current	lΗ	_	_	0.6	_	mA
I E	Critical Rate of Rise of Off-State Voltage	dv/dt	Vin = 240Vrms , Ta = 85°C (Note2)	_	500	_	V/µs
D E	Critical Rate of Rise of Commutating Voltage	dv/dt(c)	Vin = 60Vrms , I _T = 15mA (Note2)	_	0.2	_	V/µs


Coupled Electrical Characteristics (Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I _{FT}	V _T = 6V	_	_	10	mA
Inhibit Voltage	V _{IH}	I _F = Rated I _{FT}	_	_	20	V
Leakage in Inhibited State	lін	I_F = Rated I_{FT} V_{T} = Rated V_{DRM}	_	200	600	μA
Turn-on Time	t _{ON}	V_D = 6 \rightarrow 4V , R_L = 100 Ω I_F = Rated I_{FT} X1.5		30	100	μs

Isolation Characteristics (Ta = 25°C)

oolation onalastonistics	(14 = 20 0)					
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance (Input to Output)	CS	V _S =0 , f=1MHz	_	0.8	_	pF
Isolation Resistance	R _S	V _S =500V, R.H.≤60%	1×10 ¹²	10 ¹⁴	_	Ω
Isolation Voltage		AC , 1minute	5000	_	_	Vrms
	BV_S	AC , 1second,in oil	_	10000	_	VIIIIS
		DC , 1minute,in oil	_	10000	_	Vdc

(Note 2): dv/dt TEST CIRCUIT

RESTRICTIONS ON PRODUCT USE

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.