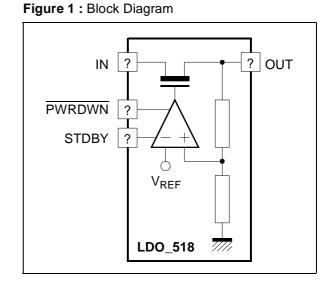


IP Library: Low Noise, High PSRR 100mA Low Dropout Voltage Regulator

0.02 to 0.6Ω is used for regulator stability.

APPLICATION NOTE


PRODUCT PREVIEW

- ULTRA LOW POWER REGULATOR
- ULTRA LOW CONSUMPTION : 45µA FULL LOAD
- VERY LOW NOISE: 30µV
- VERY LOW DROPOUT VOLTAGE: 50mV
- HIGH PSRR: 60dB
- SMALL DECOUPLING CERAMIC CAPACITOR
- NO CURRENT IN POWER DOWN MODE
- SHORT CIRCUIT PROTECTION

TYPICAL APPLICATIONS

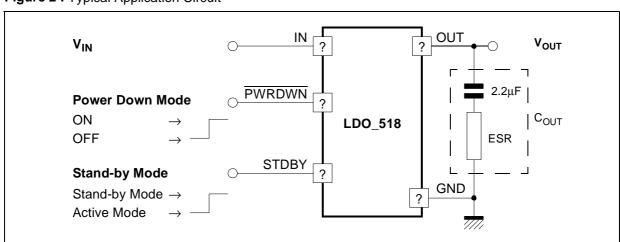

- Cellular and Cordless phones supplied by 1 cell Lithium-ion battery / 3 cells Ni-MH or Ni-Cd battery
- PDA (Personal Digital Assistant)
- Smart phone
- Portable equipment
- Supply for RF devices for cellular phone

Figure 2: Typical Application Circuit

An external capacitor ($C_{OUT} = 2.2\mu F$) with an

equivalent serial resistance (ESR) in the range of

June 2002 1/4

ELECTRICAL CHARACTERISTICS

 $2 \text{V} < \text{V}_{\text{IN}} < 5 \text{V}, \ -55 ^{\circ}\text{C} < \text{T}_{\text{A}} < +125 ^{\circ}\text{C}, \ \text{C}_{\text{OUT}} = 2.2 \mu\text{F} \ \pm 20 \%, \ 20 \ \text{m}\Omega < \text{ESR} < 0.6 \Omega, \ \text{I}_{\text{LOAD}} = 100 \text{mA}.$

Typical case : V_{IN} = 4V, T = 25°C, C_{OUT} = 2.2 μ F.

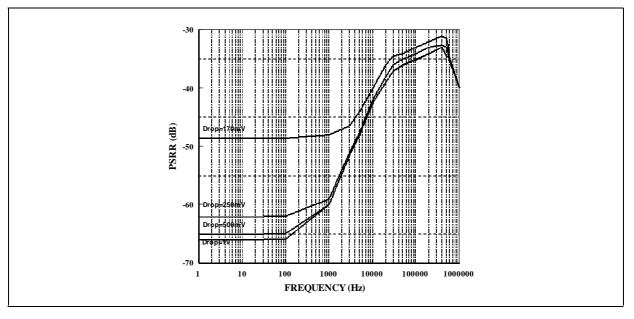
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Input Voltage Range (Note 1)	V _{IN}		2		5	V	
Output Voltage	V _{OUT}			1.8		V	
Output Voltage Accuracy				3		%	
Output current	I _{OUT}				100	mA	
Dropout Voltage	ΔV_{DO}	$\Delta V_{OUT} = 50$ mV, $I_{LOAD} = 100$ mA			50	mV	
		(Note 2)	170				
Quiescent current	ΙQ	$I_{LOAD} = 100 \mu A$		25		μA	
		I _{LOAD} = 1mA		25			
		I _{LOAD} = 10mA		30			
		I _{LOAD} = 50mA		35			
		I _{LOAD} =100mA		45	50		
Power down mode quiescent current	I_{QPDM}	Power down active		100		nA	
Power Supply Rejection Ratio	PSRR	$\Delta V_{DO} = 170 \text{mV}$; f < 1KHz	45	50		dB	
		f < 10KHz	35	40			
		$\Delta V_{DO} = 500 \text{mV};$ f < 100Hz	60	65			
		f < 1KHz	55	60			
		f < 10KHz	40	45		1	
Line Regulation	L _{IR}	$I_{LOAD} = 100 \text{mA},$ $V_{IN} = 2V \text{ to } 5V$		0.5	1	mV	
Load Regulation	L _{DR}	I _{LOAD} = 100μA - 100mA		15	20	mV	
Line Transient	L _{IRT}	$\Delta V_{IN} = 300 \text{mV}$ $t_{RISE} = t_{FALL} = 10 \mu \text{s}$		6	10	mV	
Load Transient	L_{DTR}	I _{LOAD} = 100μA - 100mA in 10μs		7	50	mV	
Output Noise Voltage	en	100Hz		140			
		1KHz		75		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	
		10KHz		70			
	en _{RMS}	BW : 100Hz to 100KHz		40		μV _{RMS}	
Settling time		I _{LOAD} = 100mA		35		μs	

Notes: 1. Above characteristics are given for 3V minimum input operating range voltage, but regulator is operational with 2.5V minimum input voltage.

2. All parameters are guaranteed with 170mV min Dropout voltage.

2/4

ELECTRICAL CHARACTERISTICS


 $2V < V_{IN} < 5V, \ -55^{\circ}C < T_{A} < +125^{\circ}C, \ C_{OUT} = 2.2 \mu F \ \pm 20\%, \ 0.02 \Omega < ESR < 0.6 \Omega, \ I_{LOAD} = 100 mA.$

Typical case : V_{IN} = 4V, Ambient temperature, I_{LOAD} = 100mA.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output decoupling Capacitor	C _{OUT}			2.2		μF
Cout equivalent serial resistor	ESR		0.02		0.6	Ω
Short Circuit Current Limit	I _{SHORT}		200	400	800	mA
Settling Time	t _S			35	60	μs

TYPICAL CHARACTERISTICS

Figure 3 : PSRR vs Frequency for Various Dropout ($V_{OUT} = 1.8V$, Full Load)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

47/