October 26, 2004 # **High Slew Rate Operational Amplifier** ## Features - This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. - High Slew Rate......50V/μs (Min) 65V/μs (Typ) - Wide Power Bandwidth 750kHz (Min) - Low Offset Current25nA (Min) 10nA (Typ) - High Input Impedance 50MΩ (Min) 100M Ω (Typ) - Wide Small Signal Bandwidth......12MHz (Typ) - Fast Settling Time (0.1% of 10V Step) 250ns (Typ) - Low Quiescent Supply Current6mA (Max) - Internally Compensated For Unity Gain Stability ## **Applications** - **Data Acquisition Systems** - RF Amplifiers - **Video Amplifiers** - Signal Generators - Pulse Amplification # Description The HA-2510/883 is a high performance operational amplifier which sets the standards for maximum slew rate and wide bandwidth operation in moderately powered, internally compensated, monolithic devices. In addition to excellent dynamic characteristics, this dielectrically isolated amplifier also offers low offset current and high input impedance. The ±50V/µs minimum slew rate and fast settling time of the HA-2510/883 are ideally suited for high speed D/A, A/D, and pulse amplification designs. The HA-2510/883's superior bandwidth and 750kHz minimum full power bandwidth are extremely useful in RF and video applications. To insure compliance with slew rate and transient response specifications, all devices are 100% tested for AC performance characteristics over full temperature limits. To improve signal conditioning accuracy, the HA-2510/883 provides a maximum offset current of 25nA and a minimum input impedance of $50M\Omega$, both at $25^{\circ}C$, as well as offset voltage adjust capa- # **Ordering Information** | PART NUMBER | TEMP.
RANGE (°C) | PACKAGE | PKG.
NO. | |--------------|---------------------|-------------|-------------| | HA7-2510/883 | -55 to 125 | 8 Ld CERDIP | F8.3A | ### Pinout HA-2510/883 (CERDIP) **TOP VIEW** ## **Absolute Maximum Ratings** | Voltage Between V+ and V- Terminals | 40V | |---------------------------------------|-------| | Differential Input Voltage | 15V | | Voltage at Either Input Terminal V+ t | to V- | | Peak Output Current50 | 0mA | | ESD Rating<20 |)00V | ## **Operating Conditions** | Temperature Range | 55°C to 125°C | |---------------------------------|---------------| | Supply Voltage | | | $V_{INICM} \le 1/2 (V + - V -)$ | | ## **Thermal Information** | Thermal Resistance (Typical, Note 1) | $\theta_{\sf JA}$ | θ JC | |---|-------------------------------------|-------------| | CERDIP Package | 120°C/W | 30°C/W | | Package Power Dissipation Limit at 75°C for | T _J ≤ 175 ⁰ C | | | CERDIP Package | | 870mW | | Package Power Dissipation Derating Factor A | | | | CERDIP Package | | | | Maximum Junction Temperature | | | | Maximum Storage Temperature Range | 65 ⁰ (| C to 150°C | | Maximum Lead Temperature (Soldering 10s) | | 300°C | | | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE $R_L \geq 2k\Omega$ θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. ## TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified. | PARAMETER | SYMBOL | CONDITIONS | GROUP A
SUBGROUPS | TEMP (°C) | MIN | MAX | UNITS | |--------------------|-------------------|--|----------------------|-----------|------|-----|-------| | Input Offset | V _{IO} | V _{CM} = 0V | 1 | 25 | -8 | 8 | mV | | Voltage | | | 2, 3 | 125, -55 | -18 | 10 | mV | | Input Bias Current | +I _B | $V_{CM} = 0V, +R_S = 100k\Omega, -R_S = 100\Omega$ | 1 | 25 | -200 | 200 | nA | | | | | 2, 3 | 125, -55 | -400 | 400 | nA | | | -I _B | $V_{CM} = 0V, +R_S = 100\Omega, -R_S = 100k\Omega$ | 1 | 25 | -200 | 200 | nA | | | | | 2, 3 | 125, -55 | -400 | 400 | nA | | Input Offset | I _{IO} | $V_{CM} = 0V, +R_S = 100k\Omega, -R_S = 100k\Omega$ | 1 | 25 | -25 | 25 | nA | | Current | | | 2, 3 | 125, -55 | -50 | 50 | nA | | Common Mode | +CMR | V+ = 5V, V- = -25V | 1 | 25 | +10 | - | ٧ | | Range | | | 2, 3 | 125, -55 | +10 | - | ٧ | | | -CMR | V+ = 25V, V- = -5V | 1 | 25 | - | -10 | ٧ | | | | | 2, 3 | 125, -55 | - | -10 | ٧ | | Large Signal | +A _{VOL} | $V_{OUT} = 0V$ and +10V, $R_L = 2k\Omega$ | 4 | 25 | 10 | - | kV/V | | Voltage Gain | | | 5, 6 | 125, -55 | 7.5 | - | kV/V | | | -A _{VOL} | $V_{OUT} = 0V$ and -10V, $R_L = 2k\Omega$ | 4 | 25 | 10 | - | kV/V | | | | | 5, 6 | 125, -55 | 7.5 | - | kV/V | | Common Mode | +CMRR | $\Delta V_{CM} = +10V$, V+ = +5V, V- = -25V, $V_{OUT} = -10V$ | 1 | 25 | 80 | - | dB | | Rejection Ratio | | | 2, 3 | 125, -55 | 80 | - | dB | | | -CMRR | $\Delta V_{CM} = -10V, V+ = +25V, V- = -5V, V_{OUT}$ | 1 | 25 | 80 | - | dB | | | | = +10V | 2, 3 | 125, -55 | 80 | - | dB | ## TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued) Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 100\Omega$, $R_{LOAD} = 500k\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified. | PARAMETER | SYMBOL | CONDITIONS | GROUP A
SUBGROUPS | TEMP (°C) | MIN | MAX | UNITS | |-----------------|----------------------|--|----------------------|-----------|--------------------|------|-------| | Output Voltage | +V _{OUT} | $R_L = 2k\Omega$ | 4 | 25 | 10 | - | V | | Swing | | | 5, 6 | 125, -55 | 10 | - | V | | | -V _{OUT} | $R_L = 2k\Omega$ | 4 | 25 | - | -10 | V | | | | | 5, 6 | 125, -55 | - | -10 | V | | Output Current | +l _{OUT} | V _{OUT} = -10V | 4 | 25 | 10 | - | mA | | | | | 5, 6 | 125, -55 | 7.5 | - | mA | | | -l _{OUT} | V _{OUT} = +10V | 4 | 25 | - | -10 | mA | | | | | 5, 6 | 125, -55 | - | -7.5 | mA | | Quiescent Power | +I _{CC} | V _{OUT} = 0V, | 1 | 25 | - | 6 | mA | | Supply Current | | I _{OUT} = 0mA | 2, 3 | 125, -55 | - | 6.5 | mA | | | -I _{CC} | V _{OUT} = 0V, | 1 | 25 | -6 | - | mA | | | | I _{OUT} = 0mA | 2, 3 | 125, -55 | -6.5 | - | mA | | , | +PSRR | ΔV _{SUP} = 10V, V+ = +20V, V- = -15V,
V+ = +10V, V- = -15V | 1 | 25 | 80 | - | dB | | Rejection Ratio | | | 2, 3 | 125, -55 | 80 | - | dB | | | -PSRR | ΔV _{SUP} = 10V, V+ = +15V, V- = -20V,
V+ = +15V, V- = -10V | 1 | 25 | 80 | - | dB | | | | V+ = +15V, V- = -10V | 2, 3 | 125, -55 | 80 | - | dB | | Offset Voltage | +V _{IO} Adj | Note 2 | 1 | 25 | V _{IO} -1 | - | mV | | Adjustment | | | 2, 3 | 125, -55 | V _{IO} -1 | - | mV | | | -V _{IO} Adj | Note 2 | 1 | 25 | V _{IO} +1 | - | mV | | | | | 2, 3 | 125, -55 | V _{IO} +1 | - | mV | ## NOTE: #### TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_{SOURCE} = 50\Omega$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, $A_{VCL} = +1V/V$, Unless Otherwise Specified. | PARAMETER | SYMBOL | CONDITIONS | GROUP A
SUBGROUPS | TEMP (°C) | MIN | MAX | UNITS | |-----------|--------|--|----------------------|-----------|-----|-----|-------| | Slew Rate | +SR | $V_{OUT} = -5V \text{ to } +5V, 25\% \le +SR \le 75\%$ | 7 | 25 | 50 | - | V/μs | | | | | 8A, 8B | 125, -55 | 45 | - | V/μs | | | -SR | $V_{OUT} = +5V \text{ to } -5V, 75\% \ge -SR \ge 25\%$ | 7 | 25 | 50 | - | V/μs | | | | | 8A, 8B | 125, -55 | 45 | - | V/µs | ^{2.} Offset adjustment range is [V_{IO} (Measured) ±1mV] minimum referred to output. This test is for functionality only to assure adjustment through 0V. ## TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued) Device Tested at: V_{SUPPLY} = ±15V, R_{SOURCE} = 50Ω, R_{LOAD} = 2kΩ, C_{LOAD} = 50pF, A_{VCL} = +1V/V, Unless Otherwise Specified. | PARAMETER | SYMBOL | CONDITIONS | GROUP A
SUBGROUPS | TEMP (°C) | MIN | MAX | UNITS | |-----------------------|----------------|---|----------------------|-----------|-----|-----|-------| | Rise and Fall
Time | t _r | $V_{OUT} = 0 \text{ to } +200 \text{mV}, 10\% \le t_r \le 90\%$ | 7 | 25 | - | 50 | ns | | Time | | | 8A, 8B | 125, -55 | - | 60 | ns | | | t _f | $V_{OUT} = 0 \text{ to -} 200 \text{mV}, \ 10\% \le t_f \le 90\%$ | 7 | 25 | - | 50 | ns | | | | | 8A, 8B | 125, -55 | - | 60 | ns | | Overshoot | +OS | V _{OUT} = 0 to +200mV | 7 | 25 | - | 40 | % | | | | | 8A, 8B | 125, -55 | - | 50 | % | | | -OS | V _{OUT} = 0 to -200mV | 7 | 25 | - | 40 | % | | | | | 8A, 8B | 125, -55 | - | 50 | % | #### TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS Device Characterized at: $V_{SUPPLY} = \pm 15V$, $R_{LOAD} = 2k\Omega$, $C_{LOAD} = 50pF$, Unless Otherwise Specified. | PARAMETER | SYMBOL | CONDITIONS | NOTES | TEMP (°C) | MIN | MAX | UNITS | |------------------------------------|-----------------|---|-------|------------|-----|-----|-------| | Differential Input
Resistance | R _{IN} | V _{CM} = 0V | 3 | 25 | 50 | - | ΜΩ | | Full Power
Bandwidth | FPBW | V _{PEAK} = 10V | 3, 4 | 25 | 750 | - | kHz | | Minimum Closed
Loop Stable Gain | CLSG | $R_L = 2k\Omega$, $C_L = 50pF$ | 3 | -55 to 125 | 1 | - | V/V | | Quiescent Power
Consumption | PC | V _{OUT} = 0V, I _{OUT} = 0mA | 3, 5 | -55 to 125 | - | 195 | mW | #### NOTES: - 3. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation. - 4. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/($2\pi V_{PEAK}$). - 5. Quiescent Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.) **TABLE 4. ELECTRICAL TEST REQUIREMENTS** | MIL-STD-883 TEST REQUIREMENTS | SUBGROUPS (SEE TABLES 1 AND 2) | |---|--------------------------------------| | Interim Electrical Parameters (Pre Burn-In) | 1 | | Final Electrical Test Parameters | 1 (Note 6), 2, 3, 4, 5, 6, 7, 8A, 8B | | Group A Test Requirements | 1, 2, 3, 4, 5, 6, 7, 8A, 8B | | Groups C and D Endpoints | 1 | #### NOTE: 6. PDA applies to Subgroup 1 only. ## Die Characteristics ## **DIE DIMENSIONS:** 65 mils x 57 mils x 19 mils 1650μm x 1450μm x 483μm ## **METALLIZATION:** Type: Al, 1% Cu Thickness: $16k\mathring{A} \pm 2k\mathring{A}$ ## **GLASSIVATION:** Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: $12k\text{\AA} \pm 2k\text{\AA}$ Nitride Thickness: $3.5k\text{\AA} \pm 1.5k\text{\AA}$ ## **WORST CASE CURRENT DENSITY:** $0.3 \times 10^5 \text{ A/cm}^2$ ## SUBSTRATE POTENTIAL (Powered Up): Unbiased ## TRANSISTOR COUNT: HA-2510/883: 40 PROCESS: Bipolar Dielectric Isolation # Metallization Mask Layout #### HA-2510/883 # **Burn-In Circuit** ## HA7-2510/883 $$\begin{split} R_1 &= 1 M \Omega, \pm 5\%, \, 1/4 W \; (\text{Min}) \\ C_1 &= C_2 = 0.01 \mu \text{F/Socket} \; (\text{Min}) \; \text{or} \; 0.1 \mu \text{F/Row} \; (\text{Min}) \\ C_3 &= 0.01 \mu \text{F/Socket} \; (10\%) \\ D_1 &= D_2 = 1 N4002 \; \text{or} \; \text{Equivalent/Board} \\ |\left(V+\right) - \left(V-\right)| &= 30 V \end{split}$$ # Ceramic Dual-In-Line Frit Seal Packages (CERDIP) #### NOTES: - Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. - The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied. - Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. - Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2. - This dimension allows for off-center lid, meniscus, and glass overrun. - 6. Dimension Q shall be measured from the seating plane to the base plane. - 7. Measure dimension S1 at all four corners. - 8. N is the maximum number of terminal positions. - 9. Dimensioning and tolerancing per ANSI Y14.5M 1982. - 10. Controlling dimension: INCH. F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE | | 11101 | INCHES MILLIMET | | MILLIMETERS | | | |--------|-------|------------------|-----------------|------------------|-------|--| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | | Α | - | 0.200 | - | 5.08 | - | | | b | 0.014 | 0.026 | 0.36 | 0.66 | 2 | | | b1 | 0.014 | 0.023 | 0.36 | 0.58 | 3 | | | b2 | 0.045 | 0.065 | 1.14 | 1.65 | - | | | b3 | 0.023 | 0.045 | 0.58 | 1.14 | 4 | | | С | 0.008 | 0.018 | 0.20 | 0.46 | 2 | | | c1 | 0.008 | 0.015 | 0.20 | 0.38 | 3 | | | D | - | 0.405 | - | 10.29 | 5 | | | Е | 0.220 | 0.310 | 5.59 | 7.87 | 5 | | | е | 0.100 | BSC | 2.54 BSC | | - | | | eA | 0.300 | BSC | 7.62 BSC | | - | | | eA/2 | 0.150 | BSC | 3.81 BSC | | - | | | L | 0.125 | 0.200 | 3.18 | 5.08 | - | | | Q | 0.015 | 0.060 | 0.38 | 1.52 | 6 | | | S1 | 0.005 | - | 0.13 | - | 7 | | | α | 90° | 105 ⁰ | 90 ⁰ | 105 ⁰ | - | | | aaa | - | 0.015 | - | 0.38 | - | | | bbb | - | 0.030 | - | 0.76 | - | | | ccc | - | 0.010 | - | 0.25 | - | | | М | - | 0.0015 | - | 0.038 | 2, 3 | | | N | 8 | 3 | 8 | 3 | 8 | | Rev. 0 4/94 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com