LZ37C1B

DESCRIPTION

The LZ37C1B is a 1/7-type (2.55 mm) solid-state color image sensor that consists of PN photodiodes and CMOS (Complementary Metal Oxide Semiconductor) devices. The sensor further includes a timing generator (TG), a correlated double sampling (CDS) circuit, an auto gain control (AGC) circuit and an analog-to-digital converter (ADC) circuit. With approximately 110 000 pixels (393 horizontal x 299 vertical), the sensor provides a stable digital color image with extremely low power consumption.

FEATURES

- · Progressive scan
- Square pixel
- · Compatible with CIF standard
- Number of image pixels : 367 (H) x 291 (V)
- Number of optical black pixels
 - Horizontal : 13 front and 13 rear
 - Vertical : 4 front and 4 rear
- Pixel pitch : 5.6 μm (H) x 5.6 μm (V)
- R, G, and B primary color mosaic filters
- Image inversion function (horizontally and/or vertically)
- Available for two types of power save mode
 - AGC and AD circuits become power-off with serial data.
 - All circuits become power-off with STBY pin
- Analog output and 8-bit digital output
- Variable gain control (3 to 30 dB)
- Variable electronic focal plane shutter (1/30 to 1/10 000 s)
- Single +2.8 V power supply
- Package : 36-pin LCC* (N-LCC036-S425A)

* Leadless Chip Carrier

1/7-type Color CMOS Image Sensor with 110 k Pixels

PIN CONNECTIONS

PRECAUTIONS

• Refer to "PRECAUTIONS FOR CMOS IMAGE SENSORS".

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	A/D	DESCRIPTION						
1	NC	-	-	No connection						
2	BIAS1	_	Analog	Analog bias voltage 1 for image sensor						
3	ADL	-	Analog	Bottom ADC reference voltage						
4	AGCOUT	0	Analog	AGC output						
5	ADH	-	Analog	Top ADC reference voltage						
6	CKI	I	Digital	Clock input for oscillator (9.0 MHz)						
7	СКО	0	Digital	Clock output for oscillator						
8	STBY	I	Digital	Standby control mode*						
9	NC	-	-	No connection						
10	DVdd	-	Digital	Digital power supply						
11	DGND	-	Digital	Digital ground						
12	D0	0	Digital	ADC signal output (LSB)						
13	D1	0	Digital	ADC signal output						
14	D2	0	Digital	ADC signal output						
15	D3	0	Digital	ADC signal output						
16	D4	0	Digital	ADC signal output						
17	D5	0	Digital	ADC signal output						
18	NC	-	-	No connection						
19	D6	0	Digital	ADC signal output						
20	DVdd	-	Digital	Digital power supply						
21	D7	0	Digital	ADC signal output (MSB)						
22	CLK	0	Digital	Clock output (9.0 MHz)						
23	DGND	-	Digital	Digital ground						
24	HD	I	Digital	Horizontal drive pulse input						
25	VD	I	Digital	Vertical drive pulse input						
26	SDI	I	Digital	Control data input (AGC gain, offset, shutter control,						
				image inversion, etc.)						
27	NC	-		No connection						
28	SCLK		Digital	Shift clock for SDI						
29	CLP		Analog	Analog bias voltage for clamp circuit						
30	OFS	-	Analog	Offset bias voltage for AGC output						
31	BIAS ₂	-	Analog	Analog bias voltage 2 for image sensor						
32	SIGOUT	0	Analog	Analog image signal output						
33	SIGIN	I	Analog	Analog image signal input						
34	AGND	_	Analog	Analog ground						
35	AVdd	_	Analog	Analog power supply						
36	NC	-	_	No connection						

* Standby mode functions

High level : Standby mode (all circuits power-off), Low level or open : Normal mode (all circuits active)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power supply voltage	Vdd	-0.3 to +4.6	V
Input signal voltage	Vø	-0.3 to VDD + 0.3	V
Storage temperature	Tstg	-40 to +80	°C

RECOMMENDED OPERATING CONDITIONS

PARAMET	ER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Power supply voltage		Vdd	2.6	2.8	3.0	V	
Operating temperatu	ıre	TOPR	-20	+25	+50	°C	
Oscillation frequency	ý	fск		9.0		MHz	
Digital input voltage	LOW level	Vø∟	0		0.2VDD	V	-
Digital input voltage	HIGH level	Vøн	0.8Vdd		Vdd	V	
Analog input voltage			(Conne	ct to pin			2
Analog input voltage			throu	ugh a ca	pacitor)		2
Analog bias voltage			(Conne	(Connect to GND			3
Analog bias voltage			throu	ugh a ca	pacitor)		3

NOTES :

- 1. Applied to input pins STBY, HD, VD, SDI and SCLK.
- 2. Applied to input pin SIGIN. Do not connect to DC directly.
- Applied to pins BIAS1, BIAS2, OFS, ADL, ADH, CLP. Do not connect to GND directly.

CHARACTERISTICS (1/30 s progressive scan readout mode)

(TA = +25°C, Operating conditions : The typical values specified in "**RECOMMENDED OPERATING CONDITIONS**". Color temperature of light source : 3 200 K, IR cut-off filter (CM-500, 1mmt) is used.)

• Measurement point : Analog image signal output (pin No.32), before AGC circuit and AD converter.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Standard output voltage	Vo		150		mV	1
Photo response non-uniformity	PRNU			14	%	2
Saturation output voltage	VSAT	400	700		mV	3
Dark output voltage	Vdark		2	6	mV	4
Dark signal non-uniformity	DSNU		3	10	mV	5
Sensitivity (Green channel)	R (G)	160	260		mV	6
Supply current	Ivdd		11		mA	7
Standby current	ISTBY		1	10	μΑ	8
Vertical line fixed pattern noise	VFPN		0.5	1.1	mVp-p	9

NOTES :

- 1. The average output voltage of G signal under uniform illumination. The standard exposure conditions are defined as when Vo is 150 mV.
- 2. The image area is divided into 10 x 10 segments under the standard exposure conditions. Each segment's voltage is the average output voltage of all pixels within the segment. PRNU is defined by (Vmax – Vmin)/Vo, where Vmax and Vmin are the maximum and minimum values of each segment's voltage respectively.
- The image area is divided into 10 x 10 segments. Each segment's voltage is the average output voltage of all pixels within the segment. VSAT is the minimum segment's voltage under 10 times exposure of the standard exposure conditions.
- 4. The difference between average output voltage of the image area and that of the OB area, under non-exposure conditions.

- The image area is divided into 10 x 10 segments under non-exposure conditions. DSNU is defined by (Vdmax – Vdmin), where Vdmax and Vdmin are the maximum and minimum values of each segment's voltage respectively.
- 6. The average output voltage of G signal when a 1 000 lux light source with a 90% reflector is imaged by a lens of F4, F50 mm.
- Total current of analog and digital power supplies, in the dark and at the standard load conditions. (Pin No.6 [oscillator] is external input. Pin No.7 is open.)
- Total current of power supply in standby mode. (Pin No.8 (STBY) is fixed to "H" level and other input pins are fixed to "H" level or "L" level.)
- 9. One mean horizontal line signal <bi> is obtained by adding all the horizontal line signals <aij> vertically and dividing them by the line number. <xi> is the deviation of the center pixel from the average of successive 5 pixels in <bi> VFPN is the maximum absolute value of <xi>.

PIXEL STRUCTURE

TIMING CHART

HORIZONTAL PULSE TIMING

- Do not insert the SDI and SCLK pulses between 36H* and 37H*. Refer to "VERTICAL PULSE TIMING".
- Refer to "SERIAL DATA INPUTS" for the contents of serial data from Do to D38.

* It means ordinal number of the HD pulse.

SERIAL DATA INPUTS

DATA	NAME	FUNCTION
Do		Not used.
D1		(Fix to low level.)
D2	AGC ₆ (MSB)	Auto gain control
D3	AGC5	(0 to 20 dB)
D4	AGC4	
D5	AGC3	
D6	AGC2	
D7	AGC1	
D8	AGC ₀ (LSB)	
D9		Not used.
D10		(Fix to low level.)
D11		
D12		
D13	OFS7 (MSB)	Offset level control of ADC
D14	OFS6	(0.9 to 1.5 V)
D15	OFS5	
D16	OFS4	
D17	OFS3	
D18	OFS2	
D19	OFS1	
D20	OFS ₀ (LSB)	
D21		Not used. (Fix to low level.)
D22	SHT8 (MSB)	Shutter speed control
D23	SHT7	(Exposure time is 1 to 1/330 frame period.)
D24	SHT6	
D25	SHT5	
D26	SHT4	
D27	SHT3]
D28	SHT2]
D29	SHT1]
D30	SHTo (LSB)]
D31	MIRH	H : Horizontal mirror inversion image, L : Normal image
D32	MIRV	H : Vertical mirror inversion image, L : Normal image
D33	SAD1 (MSB)	Phase selection of AD clock
D34	SADo (LSB)	(Fix to low level.)
D35	MAX ₂ (MSB)	Selection of fixed gain
D36	MAX1	(3 to 10 dB)
D37	MAX ₀ (LSB)]
D38	LPMD	H : Power save mode (AGC and AD off), L : Normal mode

Setting of Auto Gain Control

- One LSB of the gain code represents approximately 0.156 dB.
- Nominal gain values at typical codes are shown below.

AUTO GAIN CONTROL (dB)	D2	D3	D4	D5	D6	D7	D8
0	L	L	L	L	L	L	L
1	L	L	L	L	Н	н	L
2	L	L	L	Н	Н	L	H
3	L	L	Н	L	L	Н	Н
4	L	L	Н	Н	L	L	Ŧ
5	L	Н	L	L	L	Ļ	1
6	L	Н	L	L	H	Н	L
7	L	Н	L	Н	Н	L	L
8	L	Н	Н	L	L	Н	Н
9	L	Н	Н	н		L	Н
10	Н	L	L	L	L	L	L
11	Н	L	L	L	Н	Н	L
12	Н	L		Н	Н	L	L
13	Н	L	Н		L	Н	Н
14	Н	Ц	Н	Н	L	L	Н
15	Н	L	H	Н	Н	Н	Н
16	Н	H	L	L	Н	Н	L
17	Н	Ŧ	L	Н	Н	L	L
18	Н	H	Н	L	L	Н	Н
19	H	H	Н	Н	L	L	Н
20	н	Н	Н	Н	Н	Н	Н

Setting of Offset Level

- One LSB of the offset code represents approximately 0.002 V.
- Nominal offset values at typical codes are shown below.

OFFSET LEVEL (V)	D13	D14	D15	D16	D17	D 18	D 19	D 20
0.9	L	L	L	L	L	L	L	L
1.0	L	L	Н	L	Н	L	Н	Н
1.1	L	Н	L	Н	L	Н	L	Н
1.2	н	L	L	L	L	L	L	L
1.3	Н	L	Н	L	Н	L	Н	L
1.4	Н	Н	L	Н	L	Н	L	Н
1.5	Н	Н	Н	Н	Н	Н	Н	Н

Setting of Shutter Speed

• One LSB of the shutter speed code represents 1H, where 1H is the HD pulse period.

• Shutter speed values at typical codes are shown below.

SHUTTER SPEED (Exposure Time Unit : H)	D 22	D23	D 24	D 25	D26	D 27	D28	D29	D30
330	L	L	L	L	L	L	L	L	L
329	L	L	L	L	L	L	L	L	Н
328	L	L	L	L	L	L	L	H	L
•									
300	L	L	L	L	н	н	Ĥ	н	L
•									
•									
200	L	н	L	L	L	L		н	L
•									
•									
100	L	н	н	Н	L	L	н	Н	L
•									
•									
10	Н	L	н	L		L	L	L	L
•									
3	Н	L	H	L	L	L	н	Н	Н
2	Н	L	н	L	L	н	L	L	L
1	Н	L	H	L	L	Н	L	L	Н

Setting of Fixed Gain

• One LSB of the gain code represents 1 dB.

FIXED GAIN (dB)	D35	D36	D 37
3	L	L	L
4	L	L	Н
5	L	Н	L
6	L	Н	Н
7	Н	L	L
8	Н	L	Н
.9	Н	Н	L
10	Н	Н	Н

EXAMPLE OF OPERATION CIRCUIT

PACKAGE OUTLINES

PRECAUTIONS FOR CMOS IMAGE SENSORS

1. Package Breakage

In order to prevent the package from being broken, observe the following instructions :

1) The CMOS image sensor is a precise optical component and the package material is ceramic.

Therefore,

- Take care not to drop the device when mounting, handling, or transporting.
- Avoid giving a shock to the package.
 Especially when pins are fixed to the socket or the circuit board, small shock could break the package more easily than when the package isn't fixed.
- 2) When mounting the package on the housing, be sure that the package is not bent.
 - If a bent package is forced into place between a hard plate or the like, the package may be broken.
- If any damage or breakage occurs on the surface of the glass cap, its characteristics could deteriorate.

Therefore,

- Do not hit the glass cap.
- Do not give a shock large enough to cause distortion.
- Do not scrub or scratch the glass surface.
- Even a soft cloth or applicator, if dry, could cause flaws to scratch the glass.

2. Electrostatic Damage

As compared with general MOS-LSI, CMOS image sensor has lower ESD. Therefore, take the following antistatic measures when handling the CMOS image sensor :

1) Always discharge static electricity by grounding the human body and the instrument to be used. To ground the human body, provide resistance of about 1 M Ω between the human body and the ground to be on the safe side.

- When directly handling the device with the fingers, hold the part without pins and do not touch any pin.
- 3) To avoid generating static electricity,
 - a. do not scrub the glass surface with cloth or plastic.
 - b. do not attach any tape or labels.
 - c. do not clean the glass surface with dustcleaning tape.
- 4) When storing or transporting the device, put it in a container of conductive material.

3. Dust and Contamination

Dust or contamination on the glass surface could deteriorate the output characteristics or cause a scar. In order to minimize dust or contamination on the glass surface, take the following precautions :

- Handle the CMOS image sensor in a clean environment such as a cleaned booth. (The cleanliness level should be, if possible, class 1 000 at least.)
- Do not touch the glass surface with the fingers. If dust or contamination gets on the glass surface, the following cleaning method is recommended :
 - Dust from static electricity should be blown off with an ionized air blower. For antielectrostatic measures, however, ground all the pins on the device before blowing off the dust.
 - The contamination on the glass surface should be wiped off with a clean applicator soaked in isopropyl alcohol. Wipe slowly and gently in one direction only.
 - Frequently replace the applicator and do not use the same applicator to clean more than one device.
- Note : In most cases, dust and contamination are unavoidable, even before the device is first used. It is, therefore, recommended that the above procedures should be taken to wipe out dust and contamination before using the device.

4. Other

- Soldering should be manually performed within 2 seconds per pin at 400°C maximum at the tip of soldering iron.
- Avoid using or storing the CMOS image sensor at high temperature or high humidity as it is a precise optical component. Do not give a mechanical shock to the CMOS image sensor.
- Do not expose the device to strong light. For the color device, long exposure to strong light will fade the color of the color filters.