INTEGRATED CIRCUITS

DATA SHEET

NE594/SA594 Vacuum fluorescent display driver

Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook

Vacuum fluorescent display driver

NE594/SA594

DESCRIPTION

The NE594/SA594 is a display driver interface for vacuum fluorescent displays. The device is comprised of 8 drivers and a bias network, and is capable of driving the digits and/or segments of most vacuum fluorescent displays.

The inputs are designed to be compatible with TTL, DTL, NMOS, PMOS or CMOS output circuitry.

There is an active pull-down circuit on each output so that display ghosting is minimized and no external components are required for most fluorescent display applications.

FEATURES

- Digit and/or segment drivers
- Active output pull-down circuitry
- High output breakdown voltage
- Low supply voltage
- Input compatible with all logic outputs

APPLICATIONS

- Digital clocks
- Dashboard displays
- Panel displays

PIN CONFIGURATIONS

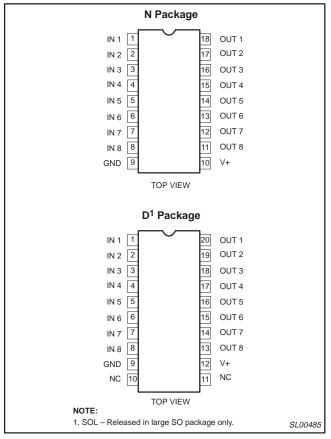


Figure 1. Pin Configurations

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
18-Pin Plastic DIP	0 °C to +70 °C	NE594N	SOT102-4
20-Pin Plastic SO	0 °C to +70 °C	NE594D	SOT163-1
18-Pin Plastic DIP	−40 °C to +85 °C	SA594N	SOT102-4
20-Pin Plastic SO	–40 °C to +85 °C	SA594D	SOT163-1

Vacuum fluorescent display driver

NE594/SA594

EQUIVALENT SCHEMATIC

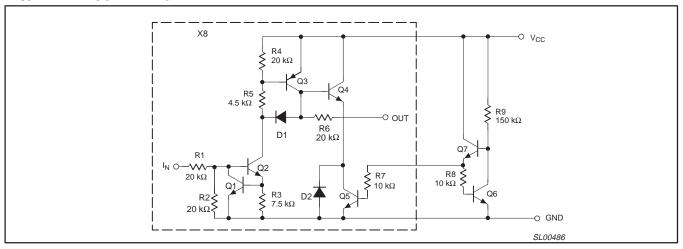


Figure 2. Equivalent Schematic

ABSOLUTE MAXIMUM RATINGS (at 25 °C, unless otherwise noted)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	45	V
V _{OUT}	Output voltage	V _{CC}	
V _{IN}	Input voltage	-0.3, +20	V
I _{OUT}	Output current Each output All outputs	50 200	mA mA
P _D	Maximum power dissipation, T _{amb} = 25 °C (still-air) ¹ N package D package	1690 1390	mW mW
T _{amb}	Operating ambient temperature range NE594 SA594	0 to +70 -40 to +85	°C °C
T _{stg}	Storage temperature range	+65 to +150	°C
Tj	Maximum junction temperature	-150	°C
T _{sld}	Lead soldering temperature (10 sec max)	230	°C

NOTE:

Derate above 25 °C, at the following rates:
 N package at 13.5 mW/°C
 D package at 11.1 mW/°C

Vacuum fluorescent display driver

NE594/SA594

DC ELECTRICAL CHARACTERISTICS

 $V_{CC}\text{=+4.75 V to +40 V; } T_{amb} = 0 \text{ }^{\circ}\text{C to +70 }^{\circ}\text{C (NE)}, \\ T_{amb} = -40 \text{ }^{\circ}\text{C to +85 }^{\circ}\text{C (SA)}, \\ \text{unless otherwise stated.}$

OVMDOL	DADAMETER	TEST SOMBITI	on o				
SYMBOL	PARAMETER	TEST CONDITION	UN5	Min	Тур	Max	UNIT
V _{CC}	Supply voltage range			4.75	35	40	V
I _{CCH}	Supply current (all outputs HIGH)	V _{CC} = 40 V; V _{IN} =	: 3.5 V		3	6	mA
I _{CCL}	Supply current (all outputs LOW)	V _{CC} = 40 V; V _{IN} =	: 0.4 V		0.4	1	mA
V _{IN}	Input voltage range			0		15	V
V _{IH}	Input voltage to ensure logic '1'			2.6			V
V_{IL}	Input voltage to ensure logic '0'					0.8	V
I _{IH}	Input current to ensure logic '1'			100			μΑ
I _{IL}	Input current to ensure logic '0'					10	μΑ
I _{IN}	Input current	V _{IN} = 2.6 V	V _{IN} = 2.6 V		60	130	μΑ
		V _{IN} = 5.0 V			180	330	μΑ
		V _{IN} = 15.0 \	/		0.68	1.3	mA
V _{OH}	Output high voltage	$V_{IN} = 3.5 \text{ V};$ $I_{OUT} = -25 \text{ mA}$	T _{amb} = 25 °C	V _{CC} -1.5	V _{CC} -1.1		V
		V _{OUT} with respect to V _{CC}	Over temp.	V _{CC} -2	V _{CC} -1.3		V
V _{OH}	Output high, no load voltage	$V_{IN} = 3.5 \text{ V}; I_{OUT} = 0; T_{A}$ V_{OUT} with respect		V _{CC} –1	V _{CC} -0.8		V
V _{OFF}	Output 'OFF' voltage level	V _{IN} = 0.8 V; I _{OU}	_T = 0		10	200	mV
I _{OH}	Available output current	$V_{CC} = 35 \text{ V}; V_{IN} = 3.5 \text{ V}; V_{OUT} = 30 \text{ V};$ $T_{amb} = 25 \text{ °C}$		-35			mA
I _{OUT}	Output pull-down current	$V_{CC} = V_{OUT} = 35 \text{ V; ir}$	puts open	100	200	400	μΑ
I _{CEX}	Output leakage current	T_{amb} = 25 °C; V_{IN} = V_{CC} = 40 V; V_{OUT}			-1 -1		μΑ

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 35 V; T_{amb} = 25 $^{\circ}C.$

SYMBOL	PARAMETER	TEST CONDITIONS		UNIT		
STWIBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNII
t _{PLH}	Propagation delay low-to-high output transition	50% V _{IN} to 50% V _{OUT}		1	5	μs
t _{PHL}	Propagation delay high-to-low output transition	50% V _{IN} to 50% V _{OUT}		3	10	μs
t _R	Output rise time	10% V _{OUT} to 90% V _{OUT}		0.5	3	μs
t _F	Output fall time	90% V _{OUT} to 10% V _{OUT}		1.5	5	μs

Vacuum fluorescent display driver

NE594/SA594

SWITCHING TIMES OF DRIVERS

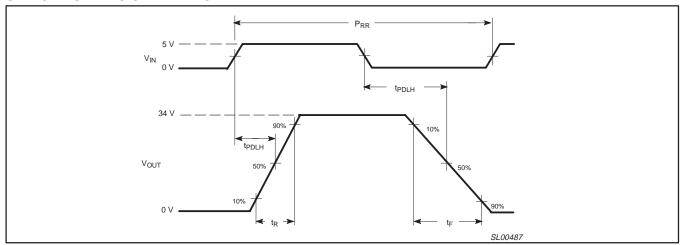


Figure 3. Switching Times of Drivers

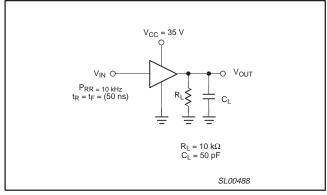


Figure 4. Test Circuit

2001 Aug 03 5

TYPICAL PERFORMANCE CHARACTERISTICS

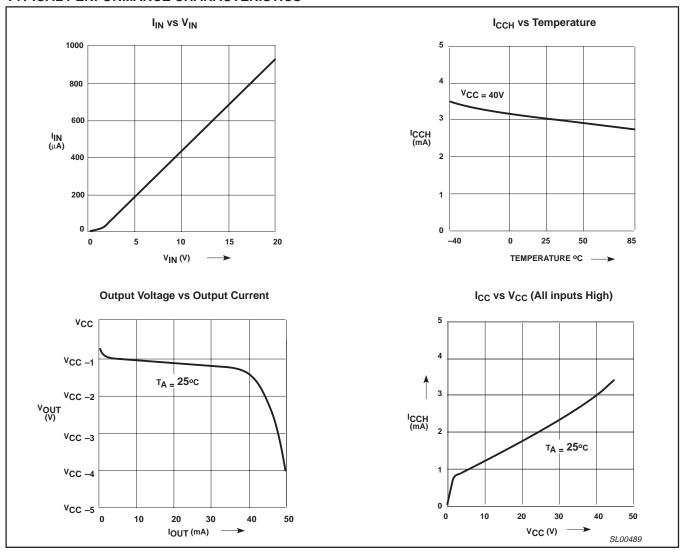


Figure 5. Typical Performance Characteristics

2001 Aug 03 6

Vacuum fluorescent display driver

NE594/SA594

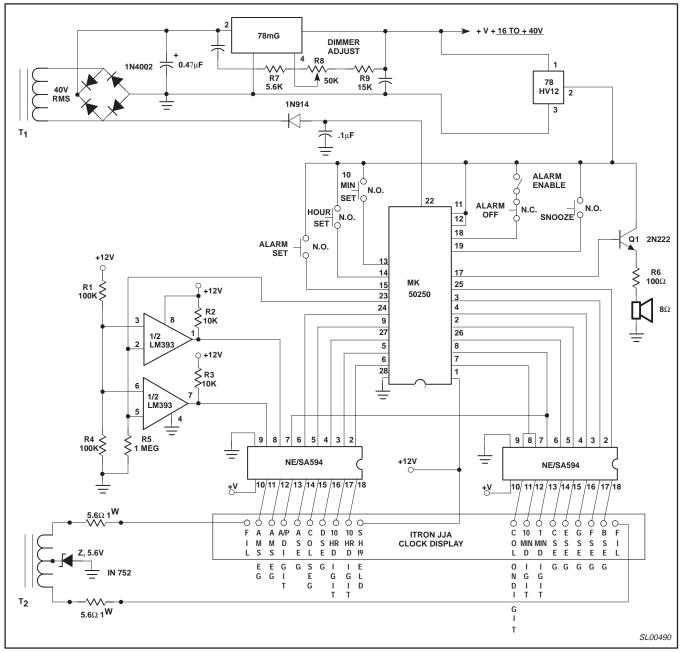
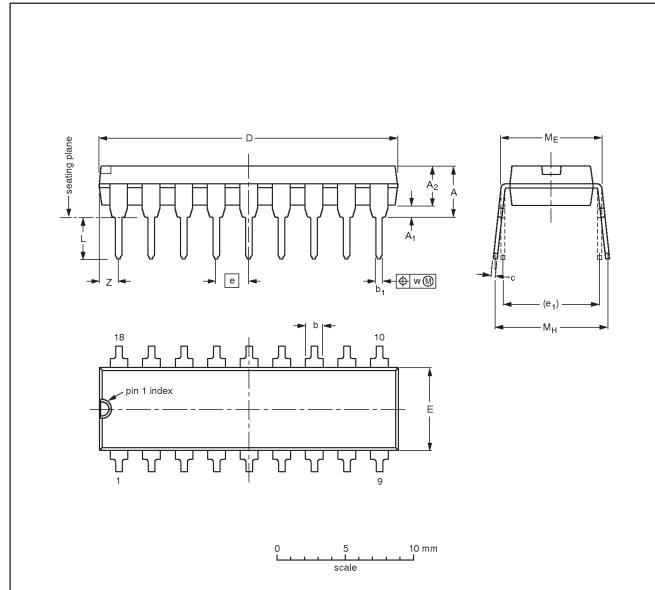


Figure 6. Typical Application: Digital Clock With Alarm


2001 Aug 03 7

Vacuum fluorescent display driver

NE594/SA594

DIP18: plastic dual in-line package; 18 leads (300 mil); long body

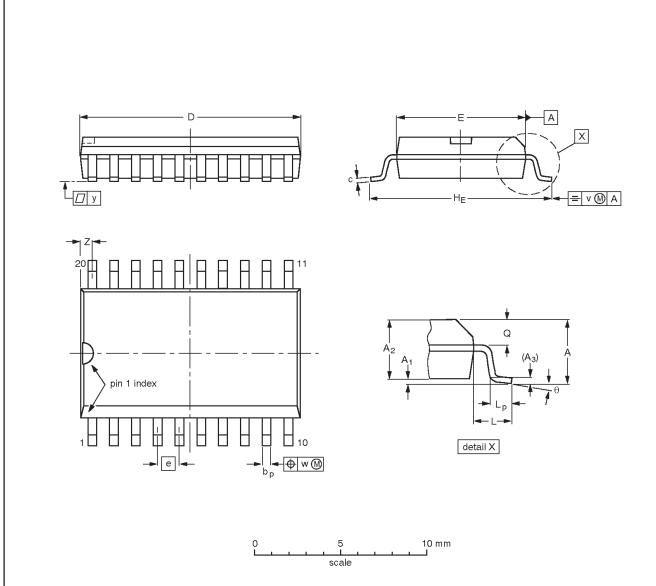
SOT102-4

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	ь	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.06	0.51	3.38	1.63 1.14	0.56 0.43	0.36 0.25	23.37 22.61	6.48 6.22	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	1.65
inches	0.160	0.020	0.140	0.064 0.045	0.022 0.017	0.014 0.010	0.920 0.890	0.255 0.245	0.100	0.300	0.138 0.120	0.32 0.30	0.395 0.300	0.01	0.065

Note

1. Plastic or metal protrusions of 0.01 inch maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT102-4		MS-001				-99-07-08- 99-12-27

Vacuum fluorescent display driver

NE594/SA594

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	o°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1330E DATE
SOT163-1	075E04	MS-013			-97-05-22 99-12-27

Vacuum fluorescent display driver

NE594/SA594

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2001 All rights reserved. Printed in U.S.A.

Date of release: 12-01

Document order number: 9397 750 09234

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.