# HM514260C/CL Series HM51S4260C/CL Series 

## 262,144-word $\times 16$-bit Dynamic Random Access Memory

The Hitachi HM51(S)4260C/CL are CMOS dynamic RAM organized as 262,144 -word $\times 16$ bit. HM51(S)4260C/CL have realized higher density, higher performance and various functions by employing $0.8 \mu \mathrm{~m}$ CMOS process technology and some new CMOS circuit design technologies. The HM51(S)4260C/CL offer Fast Page Mode as a high speed access mode. Multiplexed address input permits the HM51(S)4260C/CL to be packaged in standard 400-mil 40-pin plastic SOJ, standard 475-mil 40-pin plastic Zip and standard 400-mil 44-pin plastic TSOP II. Internal refresh timer enables HM51S4260C/CL self refresh operation.

## Features

- Single 5 V ( $\pm 10 \%$ )
- High speed
- Access time:
$60 \mathrm{~ns} / 70 \mathrm{~ns} / 80 \mathrm{~ns}(\max )$
- Low power dissipation
- Active mode:

$$
825 \mathrm{~mW} / 770 \mathrm{~mW} / 688 \mathrm{~mW} \text { (max) }
$$

- Standby mode 11 mW (max)
1.1 mW (max) (L-version)
- Fast page mode capability
- 512 refresh cycles: 8 ms

128 ms (L-version)

- $2 \overline{\mathrm{CAS}}$ byte control
- 2 variations of refresh
- $\overline{\text { RAS-only refresh }}$
- $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh
- Battery back up operation (L-version)
- Self refresh operation (HM51S4260C/CL)


## HM514260C/CL, HM51S4260C/CL Series

## Ordering Information

| Type No. | Access time | Package | Type No. | Access time | Package |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HM514260CJ-6 | 60 ns | 400-mil 40-pin | HM51S4260CJ-6 | 60 ns | 400-mil 40-pin plastic SOJ (CP-40DA) |
| HM514260CJ-7 | 70 ns | plastic SOJ | HM51S4260CJ-7 | 70 ns |  |
| HM514260CJ-8 | 80 ns | (CP-40DA) | HM51S4260CJ-8 | 80 ns |  |
| HM514260CZ-6 | 60 ns | 475-mil 40-pin | HM51S4260CTT-6 | 60 ns | 400-mil 44-pin plastic TSOP II (TTP-44/40DB) |
| HM514260CZ-7 | 70 ns | plastic ZIP | HM51S4260CTT-7 | 70 ns |  |
| HM514260CZ-8 | 80 ns | (ZP-40) | HM51S4260CTT-8 | 80 ns |  |
| HM514260CTT-6 | 60 ns | 400-mil 44-pin | HM51S4260CLJ-6 | 60 ns | 400-mil 40-pin plastic SOJ (CP-40DA) |
| HM514260CTT-7 | 70 ns | plastic TSOP II | HM51S4260CLJ-7 | 70 ns |  |
| HM514260CTT-8 | 80 ns | (TTP-44/40DB) | HM51S4260CLJ-8 | 80 ns |  |
| HM514260CLJ-6 | 60 ns | 400-mil 40-pin | HM51S4260CLTT-6 | 60 ns | 400-mil 44-pin plastic TSOP II (TTP-44/40DB) |
| HM514260CLJ-7 | 70 ns | plastic SOJ | HM51S4260CLTT-7 | 70 ns |  |
| HM514260CLJ-8 | 80 ns | (CP-40DA) | HM51S4260CLTT-8 | 80 ns |  |
| HM514260CLZ-6 | 60 ns | 475-mil 40-pin |  |  |  |
| HM514260CLZ-7 | 70 ns | plastic ZIP |  |  |  |
| HM514260CLZ-8 | 80 ns | (ZP-40) |  |  |  |
| HM514260CLTT-6 | 60 ns | 400-mil 44-pin |  |  |  |
| HM514260CLTT-7 | 70 ns | plastic TSOP II |  |  |  |
| HM514260CLTT-8 | 80 ns | (TTP-44/40DB) |  |  |  |

## Pin Arrangement



| HM514260CTT/CLTT Series HM51S4260CTT/CLTT Series |  |  |
| :---: | :---: | :---: |
| $V_{C C} \triangle 10$ | 44 | $\mathrm{V}_{\text {SS }}$ |
| I/OO $\square 2$ | 43 | 1/O15 |
| I/O1 $\square 3$ | 42 | 1/014 |
| I/O2 $\square 4$ | 41 | 1/013 |
| I/O3 $\square 5$ | 40 | 1/012 |
| $V_{C C} \square 6$ | 39 |  |
| I/O4 $\square 7$ | 38 | 1/011 |
| I/O5 $\square 8$ | 37 | 1/010 |
| 1/O6 $\square 9$ | 36 | 1/09 |
| 1/O7 $\square 10$ | 35 | 1/08 |
| NC $\square 13$ | 32 | NC |
| NC $\square 14$ | 31 | $\overline{\text { LCAS }}$ |
| $\overline{\text { WE }} \square 15$ | 30 | UCAS |
| $\overline{\text { RAS }} \square 16$ | 29 | OE |
| NC $\square 17$ | 28 | A8 |
| A0 $\square 18$ | 27 | A7 |
| A1 $\square 19$ | 26 | A6 |
| A2 $\square 20$ | 25 | A5 |
| A3 $\square 21$ | 24 |  |
| VCC $\square 22$ | 23 |  |
| (Top View) |  |  |

## Pin Description

| Pin name | Function |
| :--- | :--- |
| A0 to A8 | Address input |
|  | - Row address A0 to A8 |
|  | - Column address A0 to A8 |
|  | Refresh address A0 to A8 |
| I/O0 to I/O15 | Data-in/data-out |
| $\overline{\text { RAS }}$ | Row address strobe |
| $\overline{\overline{U C A S}, \overline{\text { LCAS }}}$ | Column address strobe |
| $\overline{\text { WE }}$ | Read/write enable |
| $\overline{\text { OE }}$ | Output enable |
| $V_{\text {CC }}$ | Power (+5 V) |
| $V_{\text {SS }}$ | Ground |

## HM514260C/CL, HM51S4260C/CL Series

Block Diagram


## Operation Mode

The HM51(S)4260C/CL series has the following 11 operation modes.

1. Read cycle
2. Early write cycle
3. Delayed write cycle
4. Read- modify-write cycle
5. $\overline{\mathrm{RAS}}$-only refresh cycle
6. $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh cycle
7. Self refresh cycle (HM51S4260C/CL)
8. Fast page mode read cycle
9. Fast page mode early write cycle
10. Fast page mode delayed write cycle
11. Fast page mode read- modify-write cycle

Inputs

| RAS | LCAS | $\overline{\text { UCAS }}$ | WE | $\overline{O E}$ | Output | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | H | H | D | D | Open | Standby |
| H | L | L | H | L | Valid | Standby |
| L | L | L | H | L | Valid | Read cycle |
| L | L | L | L*2 | D | Open | Early write cycle |
| L | L | L | $\mathrm{L}^{*}{ }^{2}$ | H | Undefined | Delayed write cycle |
| L | L | L | H to L | L to H | Valid | Read-modify-write cycle |
| L | H | H | D | D | Open | $\overline{\mathrm{RAS}}$-only refresh cycle |
| H to L | H | L | D | D | Open | $\overline{\text { CAS-before- } \overline{\mathrm{RAS}} \text { refresh cycle }}$ |
|  | L | H |  |  |  | Self refresh cycle (HM51S4260C/CL) |
|  | L | L |  |  |  |  |
| $\underline{L}$ | H to L | H to L | H | L | Valid | Fast page mode read cycle |
| L | H to L | H to L | $\mathrm{L}^{*}{ }^{2}$ | D | Open | Fast page mode early write cycle |
| $\underline{L}$ | H to L | H to L | L*2 | H | Undefined | Fast page mode delayed write cycle |
| L | H to L | H to L | H to L | L to H | Valid | Fast page mode read-modify-write cycle |


| L | L | L | $H$ | $H$ | Open | Read cycle (Output disabled) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes: 1. H: High (inactive) L: Low (active) D: H or L
2. twcs $\geq 0$ ns Early write cycle
$t_{\text {wcs }}<0 \mathrm{~ns}$ Delayed write cycle
3. Mode is determined by the OR function of the $\overline{\text { UCAS }}$ and $\overline{\text { LCAS. (Mode is set by the earliest of }}$ $\overline{U C A S}$ and $\overline{\text { LCAS }}$ active edge and reset by the latest of UCAS and LCAS inactive edge.) However write OPERATION and output HIZ control are done independently by each UCAS, LCAS.
ex. if $\overline{R A S}=H$ to $L, \overline{L C A S}=L, \overline{U C A S}=H$, then $\overline{C A S}$-before- $\overline{R A S}$ refresh cycle is selected.

## HM514260C/CL, HM51S4260C/CL Series

## Absolute Maximum Ratings

| Parameter | Symbol | Value | Unit |
| :--- | :--- | :--- | :--- |
| Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}}$ | $\mathrm{V}_{\mathrm{T}}$ | -1.0 to +7.0 | V |
| Supply voltage relative to $\mathrm{V}_{\mathrm{SS}}$ | $\mathrm{V}_{\mathrm{CC}}$ | -1.0 to +7.0 | V |
| Short circuit output current | lout | 50 | mA |
| Power dissipation | $\mathrm{P}_{\mathrm{T}}$ | 1.0 | W |
| Operating temperature | Topr | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |

Recommended DC Operating Conditions $\left(\mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Min | Typ | Max | Unit | Note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | $\mathrm{V}_{\mathrm{SS}}$ | 0 | 0 | 0 | V | 2 |
|  | $\mathrm{~V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V | 1,2 |
| Input high voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | - | 6.5 | V | 1 |
| Input low voltage | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | - | 0.8 | V | 1 |

Note: 1. All voltage referred to $\mathrm{V}_{\mathrm{SS}}$.
2. The supply voltage with all $\mathrm{V}_{\mathrm{CC}}$ pins must be on the same level. The supply voltage with all $\mathrm{V}_{\mathrm{SS}}$ pins must be on the same level.

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 | -8 |  |  | Unit | Test conditions |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Operating current ${ }^{* 1,{ }^{*}{ }^{*} \text { 2 }}$ | $\mathrm{I}_{\mathrm{CC} 1}$ | - | 150 | - | 140 | - | 125 | mA | $\overline{\text { RAS }}, \overline{\text { LCAS }}$ or $\overline{\text { UCAS }}$ cycling $\mathrm{t}_{\mathrm{RC}}=\min$ |
| Standby current | $\mathrm{I}_{\mathrm{CC} 2}$ | - | 2 | - | 2 | - | 2 | mA | TTL interface <br> $\overline{\text { RAS }}, \overline{\text { LCAS }}, \overline{\mathrm{UCAS}}=\mathrm{V}_{\mathrm{IH}}$ <br> Dout $=$ High-Z |
|  |  | - | 1 | - | 1 | - | 1 |  | CMOS interface <br> RAS, LCAS, UCAS, <br> $\overline{\mathrm{OE}}, \overline{\mathrm{WE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ <br> Dout = High-Z |
| Standby current (L-version) | $\mathrm{I}_{\mathrm{CC2}}$ | - | 200 | - | 200 | - | 200 | $\mu \mathrm{A}$ | CMOS interface <br> $\overline{\text { RAS }}, \overline{L C A S}, \overline{O E}, \overline{W E}$ <br> $\overline{U C A S} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ <br> Dout $=$ High-Z |
| RAS-only refresh current*2 | $\mathrm{ICC3}$ | - | 140 | - | 130 | - | 110 | mA | $\mathrm{t}_{\mathrm{RC}}=\mathrm{min}$ |
| Standby current ${ }^{* 1}$ | ICC5 | - | 5 | - | 5 | - | 5 | mA | $\begin{aligned} & \overline{\mathrm{RAS}}=\frac{\mathrm{V}_{\mathrm{IH}},}{\overline{\text { LCAS }},} \mathrm{UCAS}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Dout }=\text { enable } \end{aligned}$ |
| $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh current ${ }^{*} 2$ | ICC6 | - | 140 | - | 130 | - | 110 | mA | $\mathrm{t}_{\mathrm{RC}}=\mathrm{min}$ |
| Fast page mode current ${ }^{* 1, * 3}$ | $\mathrm{ICC7}$ | - | 150 | - | 130 | - | 120 | mA | $t_{\text {PC }}=\mathrm{min}$ |
| Battery back up current ${ }^{*}$ (Standby with CBR refresh) (L-version) | $\mathrm{I}_{\mathrm{CC} 10}$ | - | 300 | - | 300 | - | 300 | $\mu \mathrm{A}$ | Standby: CMOS interface <br> Dout = High-Z <br> CBR refresh: $\mathrm{t}_{\mathrm{RC}}=250 \mu \mathrm{~s}$ $t_{\text {RAS }} \leq 1 \mu \mathrm{~s}$, <br> $\overline{\text { LCAS }}, \overline{\mathrm{UCAS}}=\mathrm{V}_{\mathrm{IL}}$ <br> $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ |
| Self-refresh mode current <br> (HM51S4260C) | ICC11 | - | 1 | - | 1 | - | 1 | mA | CMOS interface <br> $\overline{R A S}, \overline{\text { LCAS }}, \overline{U C A S} \leq 0.2 \mathrm{~V}$, <br> Dout $=$ High-Z |
| Self-refresh mode current <br> (HM51S4260CL) |  | - | 200 | - | 200 | - | 200 | $\mu \mathrm{A}$ | CMOS interface <br> $\overline{R A S}, \overline{\text { LCAS }}, \overline{U C A S} \leq 0.2 \mathrm{~V}$, <br> Dout $=$ High-Z |
| Input leakage current | $\mathrm{I}_{\mathrm{LI}}$ | -10 | 10 | -10 | 10 | -10 | 10 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{Vin} \leq 6.5 \mathrm{~V}$ |
| Output leakage current | lo | -10 | 10 | -10 | 10 | -10 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & 0 \mathrm{~V} \leq \text { Vout } \leq 6.5 \mathrm{~V} \\ & \text { Dout = disable } \end{aligned}$ |
| Output high voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 | $\mathrm{V}_{\mathrm{CC}}$ | 2.4 | $\mathrm{V}_{\mathrm{CC}}$ | 2.4 | $\mathrm{V}_{\mathrm{CC}}$ | V | High lout $=-5.0 \mathrm{~mA}$ |
| Output low voltage | $\mathrm{V}_{\mathrm{OL}}$ | 0 | 0.4 | 0 | 0.4 | 0 | 0.4 | V | Low lout $=4.2 \mathrm{~mA}$ |

## HM514260C/CL, HM51S4260C/CL Series

Notes: 1. I ICC depends on output load condition when the device is selected. I ICC max is specified at the output open condition.
2. Address can be changed once or less while $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}}$.
3. Address can be changed once or less while $\overline{\mathrm{LCAS}}$ and $\overline{\mathrm{UCAS}}=\mathrm{V}_{\mathrm{IH}}$.
4. $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, 0 \leq \mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V}$, Address can be changed once or less while $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}}$
5. All the $\mathrm{V}_{\mathrm{CC}}$ pins shall be supplied with the same voltage. And all the $\mathrm{V}_{\mathrm{SS}}$ pins shall be supplied with the same voltage.

Capacitance $\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right)$

| Parameter | Symbol | Typ | Max | Unit | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Input capacitance (Address) | $\mathrm{C}_{11}$ | - | 5 | pF | 1 |
| Input capacitance (Clocks) | $\mathrm{C}_{\mid 2}$ | - | 7 | pF | 1 |
| Output capacitance (Data-in, Data-out) | $\mathrm{C}_{\mid / \mathrm{O}}$ | - | 10 | pF | 1,2 |

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. $\overline{\mathrm{LCAS}}$ and $\overline{\mathrm{UCAS}}=\mathrm{V}_{\mathbb{I}}$ to disable Dout.

AC Characteristics $\left(\mathrm{Ta}=0 \text { to }+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)^{* 1,}{ }^{* 14, *}{ }^{*} 15,{ }^{*} 17,{ }^{* 18}$

## Test Conditions

- Input rise and fall times: 5 ns
- Input timing reference levels: $0.8 \mathrm{~V}, 2.4 \mathrm{~V}$
- Output load: 2 TTL gate $+\mathrm{C}_{\mathrm{L}}(100 \mathrm{pF})$ (Including scope and jig)
- Input levels: $0 \mathrm{~V}, 3 \mathrm{~V}$

Read, Write, Read-Modify-Write and Refresh Cycles (Common parameters)

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Random read or write cycle time | $\mathrm{t}_{\mathrm{RC}}$ | 110 | - | 130 | - | 150 | - | ns |  |
| RAS precharge time | $\mathrm{t}_{\mathrm{RP}}$ | 40 | - | 50 | - | 60 | - | ns |  |
| $\widehat{R A S}$ pulse width | $\mathrm{t}_{\text {RAS }}$ | 60 | 10000 | 70 | 10000 | 80 | 10000 | ns |  |
| $\overline{\mathrm{CAS}}$ pulse width | $\mathrm{t}_{\text {CAS }}$ | 15 | 10000 | 20 | 10000 | 20 | 10000 | ns | 23 |
| Row address setup time | $\mathrm{t}_{\text {ASR }}$ | 0 | - | 0 | - | 0 | - | ns |  |
| Row address hold time | $\mathrm{t}_{\text {RAH }}$ | 10 | - | 10 | - | 10 | - | ns |  |
| Column address setup time | $\mathrm{t}_{\text {ASC }}$ | 0 | - | 0 | - | 0 | - | ns | 19 |
| Column address hold time | $\mathrm{t}_{\text {CAH }}$ | 15 | - | 15 | - | 15 | - | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | $\mathrm{t}_{\mathrm{RCD}}$ | 20 | 45 | 20 | 50 | 20 | 60 | ns | 8 |
| $\overline{\text { RAS }}$ to column address delay time | $\mathrm{t}_{\text {RAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 9 |
| $\overline{\text { RAS }}$ hold time | $\mathrm{t}_{\text {RSH }}$ | 15 | - | 20 | - | 20 | - | ns |  |
| $\overline{\text { CAS }}$ hold time | $\mathrm{t}_{\text {CSH }}$ | 60 | - | 70 | - | 80 | - | ns |  |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | tcre | 10 | - | 15 | - | 15 | - | ns | 20 |
| $\overline{\mathrm{OE}}$ to Din delay time | todd | 15 | - | 20 | - | 20 | - | ns |  |
| OE delay time from Din | $\mathrm{t}_{\text {Dzo }}$ | 0 | - | 0 | - | 0 | - | ns |  |
| $\overline{\text { CAS setup time from Din }}$ | $\mathrm{t}_{\text {DZC }}$ | 0 | - | 0 | - | 0 | - | ns |  |
| Transition time (rise and fall) | ${ }_{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 7 |
| Refresh period | $\mathrm{t}_{\text {REF }}$ | - | 8 | - | 8 | - | 8 | ms |  |
| Refresh period (L-version) | $\mathrm{t}_{\text {REF }}$ | - | 128 | - | 128 | - | 128 | ms |  |

## HM514260C/CL, HM51S4260C/CL Series

## Read Cycle

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Access time from $\overline{\mathrm{RAS}}$ | $\mathrm{t}_{\text {RAC }}$ | - | 60 | - | 70 | - | 80 | ns | 2, 3 |
| Access time from $\overline{\mathrm{CAS}}$ | $\mathrm{t}_{\mathrm{CAC}}$ | - | 15 | - | 20 | - | 20 | ns | 3, 4, 13 |
| Access time from address | $\mathrm{t}_{\mathrm{AA}}$ | - | 30 | - | 35 | - | 40 | ns | 3, 5, 13 |
| Access time from $\overline{\mathrm{OE}}$ | toac | - | 15 | - | 20 | - | 20 | ns | 23 |
| Read command setup time | $\mathrm{t}_{\mathrm{RCS}}$ | 0 | - | 0 | - | 0 | - | ns | 19 |
| Read command hold time to $\overline{\mathrm{CAS}}$ | $\mathrm{t}_{\mathrm{RCH}}$ | 0 | - | 0 | - | 0 | - | ns | 16, 20 |
| Read command hold time to $\overline{\text { RAS }}$ | $\mathrm{t}_{\text {RRH }}$ | 0 | - | 0 | - | 0 | - | ns | 16 |
| Column address to RAS lead time | $\mathrm{t}_{\text {RAL }}$ | 30 | - | 35 | - | 40 | - | ns |  |
| Output buffer turn-off time | toff1 | 0 | 15 | 0 | 15 | 0 | 15 | ns | 6 |
| Output buffer turn-off to $\overline{\mathrm{OE}}$ | tofF2 | 0 | 15 | 0 | 15 | 0 | 15 | ns | 6 |
| $\overline{\mathrm{CAS}}$ to Din delay time | $\mathrm{t}_{\text {CDD }}$ | 15 | - | 15 | - | 15 | - | ns |  |

## Write Cycle

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Write command setup time | twcs | 0 | - | 0 | - | 0 | - | ns | 10, 19 |
| Write command hold time | ${ }_{\text {twCH }}$ | 15 | - | 15 | - | 15 | - | ns | 19 |
| Write command pulse width | twp | 10 | - | 10 | - | 10 | - | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | $\mathrm{t}_{\text {RWL }}$ | 15 | - | 20 | - | 20 | - | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | $\mathrm{t}_{\text {CWL }}$ | 15 | - | 20 | - | 20 | - | ns | 21 |
| Data-in setup time | $\mathrm{t}_{\mathrm{DS}}$ | 0 | - | 0 | - | 0 | - | ns | 11 |
| Data-in hold time | $t_{\text {DH }}$ | 15 | - | 15 | - | 15 | - | ns | 11 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{OE}}$ delay time | $\mathrm{t}_{\text {COD }}$ | - | 0 | - | 0 | - | 0 | ns | 23 |

## Read-Modify-Write Cycle

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Read-modify-write cycle time | $t_{\text {RWC }}$ | 150 | - | 180 | - | 200 | - | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\text { WE }}$ delay time | $t_{\text {RWD }}$ | 80 | - | 95 | - | 105 | - | ns | 10 |
| $\overline{\mathrm{CAS}}$ to $\overline{\text { WE }}$ delay time | $\mathrm{t}_{\text {CWD }}$ | 35 | - | 45 | - | 45 | - | ns | 10 |
| Column address to WE delay time | $t_{\text {AWD }}$ | 50 | - | 60 | - | 65 | - | ns | 10, 13 |
| OE hold time from $\overline{\text { WE }}$ | toen | 15 | - | 20 | - | 20 | - | ns |  |

Refresh Cycle

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\mathrm{CAS}}$ setup time (CBR refresh cycle) | tcsR | 10 | - | 10 | - | 10 | - | ns | 19 |
| $\overline{\mathrm{CAS}}$ hold time (CBR refresh cycle) | $\mathrm{t}_{\text {CHR }}$ | 10 | - | 10 | - | 10 | - | ns | 20 |
| RAS precharge to CAS hold time | $\mathrm{t}_{\text {RPC }}$ | 10 | - | 10 | - | 10 | - | ns | 19 |
| $\overline{\mathrm{CAS}}$ precharge time in normal mode | $\mathrm{t}_{\text {CPN }}$ | 10 | - | 10 | - | 10 | - | ns | 22 |

Fast Page Mode Cycle

| Parameter | Symbol | HM514260C/CL, HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| Fast page mode cycle time | tpc | 40 | - | 45 | - | 50 | - | ns |  |
| Fast page mode $\overline{\mathrm{CAS}}$ precharge time | $\mathrm{t}_{\mathrm{CP}}$ | 10 | - | 10 | - | 10 | - | ns | 22 |
| Fast page mode $\overline{\mathrm{RAS}}$ pulse width | $t_{\text {RASC }}$ | - | 100000 | - | 100000 | - | 100000 | ns | 12 |
| Access time from $\overline{\text { CAS }}$ precharge | $\mathrm{t}_{\text {ACP }}$ | - | 35 | - | 40 | - | 45 | ns | 3, 13, 20 |
| $\overline{\text { RAS }}$ hold time from $\overline{\text { CAS }}$ precharge | $\mathrm{t}_{\text {RHCP }}$ | 35 | - | 40 | - | 45 | - | ns |  |
| Fast page mode read-modify-write cycle CAS precharge to WE delay time | $\mathrm{t}_{\text {CPW }}$ | 55 | - | 65 | - | 70 | - | ns |  |
| Fast page mode read-modify-write cycle time | tPCM | 80 | - | 95 | - | 100 | - | ns |  |

## HM514260C/CL, HM51S4260C/CL Series

## Self-refresh Mode

| Parameter | Symbol | HM51S4260C/CL |  |  |  |  |  | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -6 |  | -7 |  | -8 |  |  |  |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\overline{\mathrm{RAS}}$ pulse width (self-refresh) | $t_{\text {RASS }}$ | 100 | - | 100 | - | 100 | - | $\mu \mathrm{s}$ | $\begin{aligned} & 24,25, \\ & 26 \end{aligned}$ |
| $\overline{\text { RAS }}$ precharge time (self-refresh) | $\mathrm{t}_{\text {RPS }}$ | 110 | - | 130 | - | 150 | - | ns |  |
| $\overline{\mathrm{CAS}}$ hold time (self-refresh) | $\mathrm{t}_{\mathrm{CHS}}$ | -50 | - | -50 | - | -50 | - | ns | 21 |

Notes: 1. AC measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
2 Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value shown in this table, $t_{\text {RAC }}$ exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
4. Assumes that $t_{R C D} \geq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max).
5. Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \geq t_{R A D}$ (max).
6. toff (max) defines the time at which the output achieves the open circuit condition and is not referred to output voltage levels.
7. $\mathrm{V}_{\mathrm{IH}}(\min )$ and $\mathrm{V}_{\mathrm{IL}}$ (max) are reference levels for measuring timing of input signals. Also, transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
8. Operation with the $t_{R C D}$ (max) limit insures that $t_{R A C}$ (max) can be met, $t_{R C D}$ (max) is specified as a reference point only, if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
9. Operation with the $t_{\text {RAD }}$ (max) limit insures that $t_{R A C}$ (max) can be met, $t_{\text {RAD }}$ (max) is specified as a reference point only, if $t_{\text {RAD }}$ is greater than the specified $t_{\text {RAD }}$ (max) limit, then access time is controlled exclusively by $t_{A A}$.
10. $t_{\text {WCS }}, t_{\text {RWD }}, t_{\text {CWD }}$ and $t_{\text {AWD }}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if $t_{W C S} \geq t_{W C S}(m i n)$, the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{R W D} \geq t_{R W D}(\min ), t_{C W D} \geq t_{C W D}(\min ), t_{A W D} \geq t_{A W D}(\min )$ and $t_{C P W} \geq t_{C P W}(m i n)$, the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
11. These parameters are referred to $\overline{\mathrm{CAS}}$ leading edge in an early write cycle and to $\overline{W E}$ leading edge in a delayed write or a read-modify-write cycle.
12. $t_{\text {RASC }}$ defines $\overline{R A S}$ pulse width in fast page mode cycles.
13. Access time is determined by the longer of $t_{A A}$ or $t_{C A C}$ or $t_{A C P}$.
14. An initial pause of $100 \mu$ s is required after power up followed by a minimum of eight initialization cycles ( $\overline{R A S}-o n l y ~ r e f r e s h ~ c y c l e ~ o r ~ \overline{C A S}-b e f o r e-\overline{R A S}$ refresh cycle). If the internal refresh counter is used, a minimum of eight $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh cycles is required.
15. In delayed write or read-modify-write cycles, $\overline{\mathrm{OE}}$ must disable output buffer prior to applying data to the device.
16. Either $t_{R C H}$ or $t_{R R H}$ must be satisfied for a read cycle.
17. When both $\overline{\text { LCAS }}$ and $\overline{U C A S}$ go low at the same time, all 16-bits data are written into the device. $\overline{\text { LCAS }}$ and UCAS cannot be staggered within the same write/read cycles.
18. All the $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{SS}}$ pins shall be supplied with the same voltages.
19. $t_{\text {ASC }}, t_{C A H}, t_{\text {RCS }}, t_{R C H}, t_{W C S}, t_{W C H}, t_{C S R}$ and $t_{R P C}$ are determined by the earlier falling edge of UCAS or LCAS.
20. $t_{C R P}, t_{C H R}, t_{A C P}, t_{R C H}$ and $t_{C P W}$ are determined by the later rising edge of $\overline{U C A S}$ or $\overline{\text { LCAS }}$.
21. $t_{C W L}, t_{D H}, t_{D S}$ and $t_{C H S}$ should be satisfied by both $\overline{U C A S}$ and $\overline{\text { LCAS. }}$
22. $\mathrm{t}_{\mathrm{CPN}}$ and $\mathrm{t}_{\mathrm{CP}}$ are determined by the time that both $\overline{\mathrm{UCAS}}$ and $\overline{\text { LCAS }}$ are high.
23. When output buffers are enabled once, sustain the low impedance state until valid data is obtained. When output buffer is turned on and off within a very short time, generally it causes large $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{SS}}$ line noise, which causes to degrade $\mathrm{V}_{\mathrm{IH}} \mathrm{min} / \mathrm{V}_{\mathrm{IL}}$ max level.
24. If you use distributed CBR refresh mode with $15.6 \mu$ s interval in normal read/write cycle, CBR refresh should be executed within $15.6 \mu$ s immediately after exiting from and before entering into self refresh mode.
25. If you use $\overline{R A S}$ only refresh or CBR burst refresh mode in normal read/write cycle, 512 cycles of distributed CBR refresh with $15.6 \mu \mathrm{~s}$ interval should be executed within 8 ms immediately after exiting from and before entering into the self refresh mode.
26. Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self refresh mode, all memory cells need to be refreshed before re-entering the self refresh mode again.

## Notes concerning $2 \overline{\mathbf{C A S}}$ control

Please do not separate the $\overline{\text { UCAS }} / \overline{\mathrm{LCAS}}$ operation timing intentionally. However skew between $\overline{\mathrm{UCAS}} / \overline{\mathrm{LCAS}}$ are allowed under the following conditions.

1. Each of the $\overline{\mathrm{UCAS}} / \overline{\mathrm{LCAS}}$ should satisfy the timing specifications individually.
2. Different operation mode for upper/lower byte is not allowed; such as following.
$\frac{\text { UCS }}{\overline{\mathrm{LCAS}}}$
3. Closely separated upper/lower byte control is not allowed. However when the condition ( $\mathrm{t}_{\mathrm{CP}} \leq \mathrm{t}_{\mathrm{UL}}$ ) is satisfied, fast page mode can be performed.


## HM514260C/CL, HM51S4260C/CL Series

## Timing Waveforms ${ }^{* 27}$

## Read Cycle



Notes: 27. $\square$ $H$ or $L\left(H: V_{I H}(\min ) \leq V_{I N} \leq V_{I H}(\max ), L: V_{I L}(\min ) \leq V_{I N} \leq V_{I L}(\max )\right)$

## Early Write Cycle



High-Z
Dout

* $\overline{O E}$ : HorL


## HM514260C/CL, HM51S4260C/CL Series

## Delayed Write Cycle



* Do not enable Dout during delayed write cycle.


## Read-Modify-Write Cycle



## HM514260C/CL, HM51S4260C/CL Series

## RAS-Only Refresh Cycle



## $\overline{\text { CAS-Before-RAS }}$ Refresh Cycle



* $\overline{W E}$ : HorL
** Do not extend tRAS $\geq$ tRAS (max). Untested self refresh mode may be activated and loss of data may be resulted (HM514260C/CL).


## HM514260C/CL, HM51S4260C/CL Series

Fast Page Mode Read Cycle


## Fast Page Mode Early Write Cycle



* $\overline{\mathrm{OE}}: ~ \mathrm{HorL}$


## HM514260C/CL, HM51S4260C/CL Series

Fast Page Mode Delayed Write Cycle


Fast Page Mode Read-Modify-Write Cycle


## HM514260C/CL, HM51S4260C/CL Series

## Self Refresh Cycle



* $\overline{\text { WE }} \overline{\mathrm{OE}}: \mathrm{HorL}$

The low self refresh current is achieved by introducing extremely long internal refresh cycle.
Therefore some care needs to be taken on the refresh.

1. Please do not use $t_{\text {RASS }}$ timing, $10 \mu \mathrm{~s} \leq \mathrm{t}_{\text {RASS }} \leq 100 \mu \mathrm{~s}$. During this period, the device is in transition state from normal operation mode to self refresh mode. If ${ }^{\mathrm{t}}$ RASS $\geq 100 \mu \mathrm{~s}$, then RAS precharge time should use $t_{\text {RPS }}$ instead of $t_{\text {RP }}$.
2.If you use $\overline{R A S}$ only refresh or CBR burst refresh mode in normal read/write cycle, 512 cycles of distributed CBR refresh with $15.6 \mu \mathrm{~s}$ interval should be executed within 8 ms immediately after exiting from and before entering into the self refresh mode.
2. If you use distributed CBR refresh mode with $15.6 \mu \mathrm{~s}$ interval in normal read/write cycle, CBR refresh should be executed within $15.6 \mu$ s immediately after exiting from and before entering into self refresh mode.
4.Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self refresh mode, all memory cells need to be refreshed before re-entering the self refresh mode again.

## Package Dimensions

HM514260CJ/CLJ Series
HM51S4260CJ/CLJ Series (CP-40DA)
Unit: mm


HM514260CZ/CLZ Series (ZP-40)
Unit: mm


## HM514260C/CL, HM51S4260C/CL Series

## Package Dimensions

## HM514260CTT/CLTT Series

HM51S4260CTT/CLTT Series (TTP-44/40DB)


When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor product. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales office when planning to use the products in MEDICAL APPLICATIONS.

## HITACHI

Semiconductor \& IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan
Tel : Tokyo (03) 3270-2111
Fax : (03) 3270-5109

For further information write to:

| Hitachi America, Ltd. | Hitachi Europe GmbH | Hitachi Europe Ltd. | Hitachi Asia (Hong Kong) Ltd. |
| :--- | :--- | :--- | :--- |
| Semiconductor \& IC Div. | Electronic Components Group | Electronic Components Div. | Unit 706, North Tower, |
| 2000 Sierra Point Parkway | Continental Europe | Northern Europe Headquarters | World Finance Centre, |
| Brisbane, CA 94005-1835 | Dornacher StraBe 3 | Wihtebrook Park | Habour City, Canton Road, |
| U. S. A. | D-85622 Feldkirchen | Lower Cookham Road | Tsim Sha Tsui, Kowloon, |
| Tel : 415-589-8300 | München | Maidenhead | Hong Kong |
| Fax : 415-583-4207 | Tel : 089-9 91 80-0 | Berkshire SL6 8YA | Tel : 27359218 |
|  | Fax :089-9 29 30 00 | United Kingdom | Fax :27306071 |
|  | Tel :0628-585000 | Hitachi Asia Pte. Ltd. |  |
|  | Fax :0628-778322 | 16 Collyer Quay \#20-00 |  |
|  |  | Hitachi Tower |  |
|  |  | Singapore 0104 |  |
|  |  | Tel :535-2100 |  |
|  |  | Fax :535-1533 |  |

## HM514260C/CL, HM51S4260C/CL Series

## Revision Record



