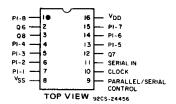


Data sheet acquired from Harris Semiconductor SCHS024A – Revised March 2002

CMOS 8-Stage Static Shift Registers

High-Voltage Types (20-Volt Rating) CD4014B:

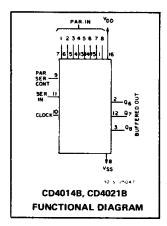

Synchronous Parallel or Serial Input/Serial Output

CD4021B:

Asynchronous Parallel Input or Synchronous Serial Input/Serial Output

■ CD4014B and CD4021B series types are 8-stage parallel- or serial-input/serial output registers having common CLOCK and PARALLEL/SERIAL CONTROL inputs. a single SERIAL data input, and individual parallel "JAM" inputs to each register stage. Each register stage is a D-type, master-slave flip-flop. In addition to an output from stage 8, "Q" outputs are also available from stages 6 and 7. Parallel as well as serial entry is made into the register synchronously with the positive clock line transition in the CD4014B. In the CD4021B serial entry is synchronous with the clock but parallel entry is asynchronous. In both types, entry is controlled by the PARALLEL/SERIAL CONTROL input. When the PARALLEL/SERIAL CON-TROL input is low, data is serially shifted into the 8-stage register synchronously with the positive transition of the clock line. When the PARALLEL/SERIAL CONTROL input is high, data is jammed into the 8-stage register via the parallel input lines and synchronous with the positive transition of the clock line. In the CD4021B, the CLOCK input of the internal stage is "forced" when asynchronous parallel entry is made. Register expansion using multiple packages is permitted.

The CD4014B and CD4021b series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

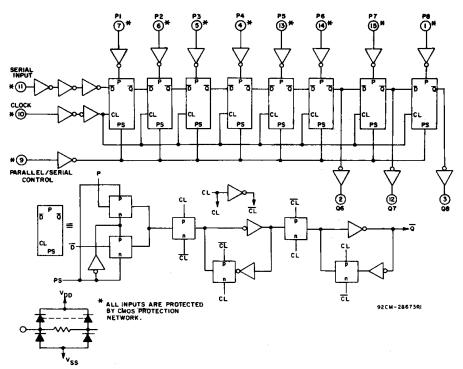


TERMINAL DIAGRAM CD4014B, CD4021B

CD4014B, CD4021B Types

Features:

- Medium-speed operation . . . 12 MHz (typ.) clock rate at VDD-VSS = 10 V
- Fully static operation
- 8 master-slave flip-flops plus output buffering and control gating
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) = 1 V at V_{DD} = 5 V
 2 V at V_{DD} = 10 V
 2.5 V at V_{DD} = 15 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Parallel input/serial output data queueing
- Parallel to serial data conversion
- General-purpose register

RECOMMENDED OPERATING CONDITIONS AT $T_A \approx 25^{\circ}$ C, Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	V _{DD}	LIP	UNITS	
	(V)	Min.	Max.	- UNITS
Supply-Voltage Range (T _A = Full Package-Temperature Range)		3	18	v
Clock Pulse Width, t _W	5 10 15	180 80 50	-	ns
Clock Frequency, f _{CL}	5 10 15	_ _ _	3 6 8.5	MHz
Clock Rise and Fall Time, t _r CL, t _f CL	5 10 15	_ _ ~	15 15 15	μs
Set-up Time, t _s : Serial Input (ref. to CL)	5 10 15	120 80 60	_ _ _	ns
Parallel Inputs CD4014B (ref. to CL)	5 10 15	80 50 40	- - -	ns
Parallel Inputs CD4021B (ref. to P/S)	5 10 15	50 30 20	- - -	ns
Parallel/Serial Control CD4014B (ref. to CL)	5 10 15	180 80 60	- - -	ns
Parallel/Serial Pulse Width, t _W (CD4021B)	5 10 15	160 80 50	<u>-</u> `.	ns
Parallel/Serial Removal Time, †REM (CD4021B)	5 10 15	280 140 100	- - -	ns

CD4014B, CD4021B Types

TRUTH TABLE — CD4014B

CL SER PAR SER | PI-1 | PI-1 | Q1 | (INTER-NALI) |

X 1 0 0 0 0 0 |

X 1 1 0 1 0 1 0 |

X 1 1 1 1 1 1 1 1 |

0 0 0 X X 0 Qn-1 |

1 0 X X 1 Qn-1 |

X X X X X Q1 Qn NC

X = DON'T CARE CASE

NC = NO CHANGE

Fig. 1 — Logic diagram for CD4014B.

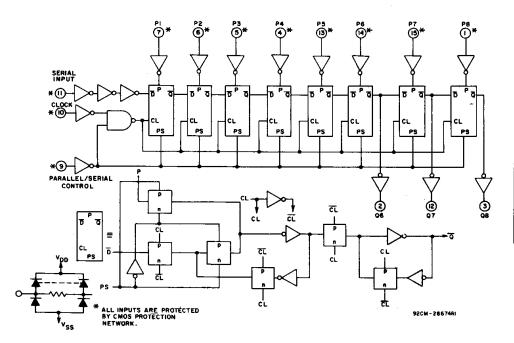


Fig. 2 — Logic diagram for CD40218.

TRUTH TABLE - CD4021B

CL	Serial Input	Parallel/ Serial Control	PI-1	Pl-n	Q ₁ (Internal)	an
X	×	1	0	0	0	0
х	х	1	0	1	0	1
х	x	1	1	0	i	0
х	×	1	1	1	1	1
<u></u>	0	0	x	х	0	Q _n ·1
$\underline{\mathcal{L}}$	1	0	X	X	1	Q _n 1
_	х	0	х	х	Q ₁	an
			X = DO	N'T CA	RE CASE	

CD4014B, CD4021B Types.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	1 1
Voltages referenced to V _{SS} Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C Derate Linearity	at 12mW/OC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA).	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tale)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for 10s max	+265°C

STATIC ELECTRICAL CHAR	ACTERISTIC	:s

CHARAC- TERISTIC	CON	DITIO	TONS LIMITS AT INDICATED TEMPERATURES (°C						°C)	U N I T	
	V _O	VIN	V _{DD}					+25			s
	(V)	(V)	(V)	-55	_40	+85	+125	Min.	Тур.	Max.	L
Quiescent		0,5	5	5	5	150	150		0.04	5	
Device		0,10	10	10	10	300	300		0.04	10	ļμA
Current,		0,15	15	20	20	600	600	_	0.04	20	
		0,20	20	100	100	3000	3000	_	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_	
Output High	4.6	0,5	5	-0.64	-0.61	-0,42	-0.36	-0.51	-1	_	mΑ
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	1
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_	_
тон	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	
Output Voltage:	_	0,5	5	0.05				_	0	0.05	
Low-Level,		0,10	.10	0.05				_	0	0.05	
V _{OL} Max.	-	0,15	15	0.05				-	0	0.05	l۷
Output		0,5	5	4.95				· 4.95	. 5	1	
Voltage: High-Level,	_	0,10	10		9.	9.95	10				
VOH Min.	-	0,15	15		14.	14.95	15	Ţ			
Input Low	0.5,4.5		5			-	_	1.5			
Voltage	1,9	_	10			-	_	3	Ì		
V _{IL} Max.	1.5,13.5	_	15			_	_	4	l v		
Input High Voltage, V _{IH} Min.	0.5,4.5	-	5	3.5 3.					_	_	-]
	1,9	-	10	7				7	_	_	
	1.5,13.5	-	15			11		11	_	_	
Input Current I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

Fig. 3 — Typical output low (sink) current characteristics.

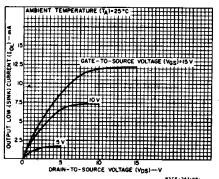


Fig. 4 – Minimum output low (sink) current characteristics.

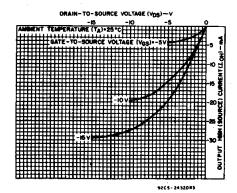


Fig. 5 — Typical output high (source) current characteristics.

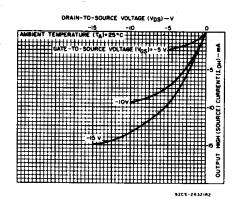


Fig. 6 — Minimum output high (source) current characteristics.

CD4014B, CD4021B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A=25°C, Input $t_{\rm f},t_{\rm f}$ =20 ns, C_=50 pF, R_1=200 K Ω

	TEST CONDITIONS					
CHARACTERISTIC		V _{DD}	Min.	Тур.	Max.	UNITS
Propagation Delay Time,		5	_	160	320	
tPLH, tPHL		10	-	80	160	ns
PCH, PHL		15	-	60	120	
Transition Time.		5	_	100	200	
tTHL, tTLH		10	-	50	100	ns
THEFTER		15	-	40	80	
Maximum Clock Input		5	3	6	_	
Frequency, f _{CL}	1	10	6	12	_	MHz
- reducitey; ICL	1.	15	8.5	17	_	
Minimum Clock Pulse		. 5		90	180	
Width, tw		10	_	40	80	ns
motil, tw		15		25	50	
Clock Rise and Fall Time,		5		_	15	<u> </u>
t _r CL, t _f CL*	. .	10	_	_	15	μs
· · · · · · · · · · · · · · · · · · ·		15		_	15	
Minimum Set-up Time, ts:		5		60	120	-
Serial Input	1	10		40	80	ns
(ref. to CL)		15		30	60	
Parallel Inputs		5	_	40	80	
CD4014B	i i	10	_	25	50	ns
(ref. to CL)		15	,	20	40	
Parallel Inputs		5	_	25	50	
CD4021B	·	10	_	15	30	ns
(ref. to P/S)		15	-	10	20	
Parallel/Serial Control		5	_	90	180	
CD4014B		10	-	40	80	ns
(ref. to CL)	i	15	_	30	60	
Minimum Hold Time, tH:		5	_		0	
Serial In, Parallel In,		10	_	- 1	o l	ns
Parallel/Serial Control		15	_	_	0	
Minimum P/S Pulse Width,		5	_	80	160	
twH	}	10		40	80	ns
(CD4021B)		15	-	25	50	ı
Minimum P/S Removal Time,		5		140	280	
^t REM		10	-	70	140	ns
CD4021B (ref. to CL)		15	_	50	100	-
Average Input Capacitance, C	Δnv	Input		5	7.5	ρF

^{*} If more than one unit is cascaded t_rCL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

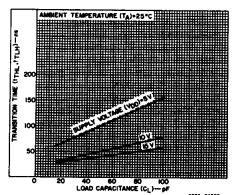


Fig. 7 — Typical transition time as a function of load capacitance.

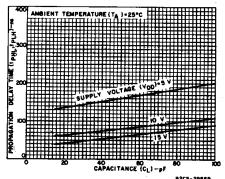


Fig. 8 — Typical propagation delay time as a function of load capacitance.

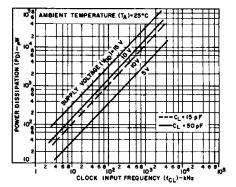


Fig. 9 — Typical dynamic power dissipation as a function of clock input frequency.

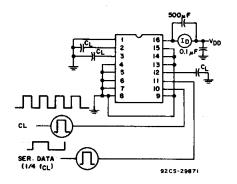


Fig. 10 - Dynamic power dissipation test circuit.

CD4014B, CD4021B Types

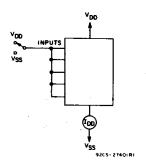


Fig. 11 - Quiescent device current test circuit.

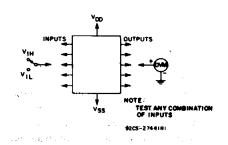


Fig. 12 - Input voltage test circuit.

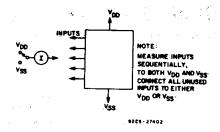
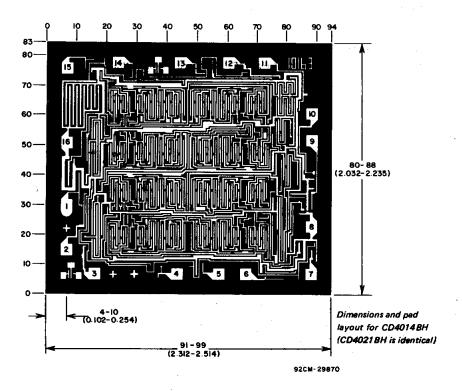



Fig. 13 - Input current test circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated