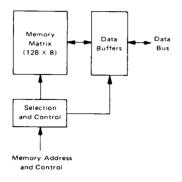
MCM6810

128 × 8-Bit Random-Access Memory

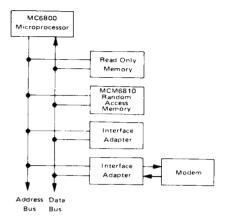
The MCM6810 is a byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcontroller Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Static Operation
- Bidirectional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low, Two Active High)
- Single 5-Vol Power Supply
- TTL Compatible
- Maximum Access Time = 450 ns MCM6810


360 ns - MCM68A10

250 ns - MCM68B10


3

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MCM6810 RANDOM ACCESS MEMORY **BLOCK DIAGRAM**

M6800 MICROCOMPUTER FAMILY **BLOCK DIAGRAM**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to $+7.0$	V
Input Voltage	Vin	-0.3 to $+7.0$	V
Operating Temperature Range MCM6810, MCM68A10, MCM68B10 MCM6810C, MCM68A10C	ТА	T _L to T _H 0 to + 70 40 to + 85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage le g., either Vss or V_{CC})

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Plastic Cerdip	ΑLθ	120 65	°C′W

POWER CONSIDERATIONS

The average chip-junction temperature, T_J, in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \cdot \theta_{JA}) \tag{1}$$

where:

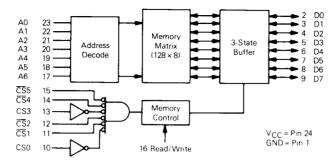
 T_A = Ambient Temperature, °C θ JA = Package Thermal Resistance, Junction-to-Ambient, °C/W

 P_D

 $= P_{INT} + P_{PORT}$ $= I_{CC} \times V_{CC}, Watts - Chip Internal Power$ PINT

= Port Power Dissipation, Watts — User Determined

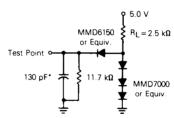
For most applications PPORT < PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.


An approximate relationship between PD and TJ (if PPORT is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 (2)

Solving equations (1) and (2) for K gives $K = P_D \cdot (T_A + 273^{\circ}C) + \theta_J A^{\bullet}P_D^2$

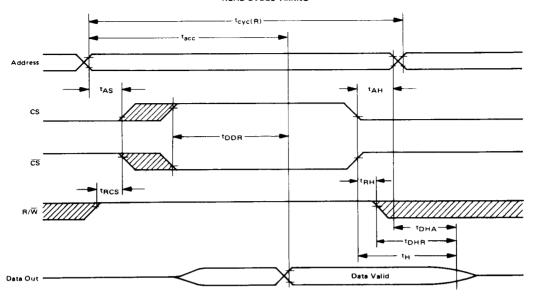
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA


BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS (VCC = 5 0 Vdc \pm 5%, VSS = 0, TA = TL to TH unless otherwise noted)

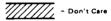
Characteristic	1	Symbol	Min	Max	Unit
Input High Voltage		VIH	V _{SS} + 2.0	Vcc	V
Input Low Voltage		VII	V _{SS} - 0.3	Vss+0.8	V
Input Current (A _n , R/ \overline{W} , \overline{CS}_n) (V _{In} = 0 to 5.25 V)	t	l _{in}		2.5	μΑ
Output High Voltage ($I_{OH} = -205 \mu A$)		Vон	2.4		V
Output Low Voltage (I _{OL} = 1.6 mA)		VOL		0.4	V
Output Leakage Current (Three-State) (CS = 0.8 V or \overline{CS} = 2.0 V, V_{out} = 0.4 V to 2.	4 V)	ITSI		10	μA
Supply Current $(V_{CC} = 5.25 \text{ V}, \text{All Other Pins Grounded})$ 1.5,	1.0 MHz 2.0 MHz	¹ CC	_	80 100	mA
Input Capacitance (A _n , R/ \overline{W} , CS _n , \overline{CS}_n) (V _{in} =0, T _A =25°C, f=1.0 MHz)		c _{in}		7.5	рF
Output Capacitance (Dn) (Vout=0, TA=25°C, f=1.0 MHz, CSO=0)		Cout	_	12.5	pF

AC TEST LOAD


*Includes Jig Capacitance

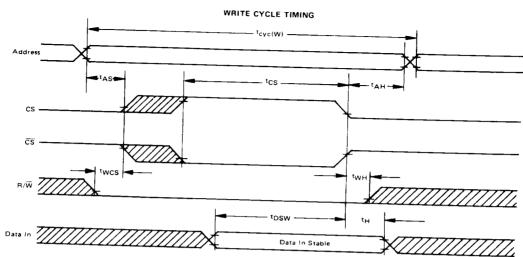
AC OPERATING CONDITIONS AND CHARACTERISTICS

READ CYCLE (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = T_L to T_H unless otherwise noted.)


	Symbol	MCM6810		MCM68A10		MCM68B10		
Characteristic		Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{cyc} (R)	450	-	360	_	250	-	ns
Access Time	tacc	-	450	-	360	_	250	ns
Address Setup Time	tAS	20	-	20	_	20		ns
Address Hold Time	t _A H	0		0	_	0	<u> </u>	ns
Data Delay Time (Read)	toda	T -	230	-	220	-	180	ns
Read to Select Delay Time	tRCS	0	_	0	_	0	-	ns
Data Hold from Address	t _{DHA}	10		10		10	-	ns
Output Hold Time	tH	10	_	10	-	10	-	ns
Data Hold from Read	^t DHR	10	80	10	60	10	60	ns
Read Hold from Chip Select	tRH	0	_	0	-	0	_	ns

READ CYCLE TIMING

NOTES:


- 1. Voltage levels shown are $V_L \le 0.4$ V, $V_H \ge 2.4$ V, unless otherwise specified. 2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified. 3. CS and $\overline{\text{CS}}$ have same timing.

WRITE CYCLE ($V_{CC} = 5.0 \text{ V} \pm 5\%$, $V_{SS} = 0$, $T_A = T_L$ to T_H unless otherwise noted.)

	Symbol	MCM6810		MCM68A10		MCM68B10		
Characteristic		Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	t _{cyc} (W)	450	-	360	_	250	_	ns
Address Setup Time	tAS	20	-	20	-	20	-	ns
Address Hold Time	t _{AH}	0		0	-	0	-	ns
Chip Select Pulse Width	tcs	300		250		210	_	ns
Write to Chip Select Delay Time	twcs	0	-	0	-	0	-	ns
Data Setup Time (Write)	tDSW	190		80	-	60	-	ns
Input Hold Time	tH	10	_	10	_	10	-	ns
Write Hold Time from Chip Select	twH	0	-	0	-	0	-	ns

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

NOTES:

- 1. Voltage levels shown are V_L \leq 0.4 V, V_H \geq 2.4 V, unless otherwise specified. 2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified. 3. CS and CS have same timing.

ORDERING INFORMATION

Package Type	Frequency (MHz)	Temperature	Order Number
Plastic P Suffix	1.0 1.0 1.5 1.5 2.0	0°C to 70°C -40°C to 85°C 0°C to 70°C -40°C to 85°C 0°C to 70°C	MCM6810P MCM6810CP MCM68A10P MCM68A10CF MCM68B10P
Cerdip S Suffix	1.0 1.0 1.5 1.5 2.0	0°C to 70°C - 40°C to 85°C 0°C to 70°C - 40°C to 85°C 0°C to 70°C	MCM6810S MCM6810CS MCM68A10S MCM68A10CS MCM68B10S

= Don't Care

PIN ASSIGNMENTS

