RENESAS

M51348AVP VIF/SIF for Low Supply Voltage

REJ03F0062-0100Z Rev.1.0 Sep.19.2003

Description

The M51348 is a low supply voltage, low power semiconductor IC for compact TV sets which includes Video Intermediate Frequency (VIF), Sound Intermediate Frequency (SIF), and Synchronous Separation (Sync. Sep.) functions.

An IF amplifier. Video detector (with simultaneous sound detector), IF AGC, RF AGC (forward type), AFT, SIF limiter amplifier, FM detector electronic volume, and synchronous separation function are provided.

The package is of the 24-pin mini-flat type.

The M513848AFP has better DG and DP but less VIF input sensitivity than the M51348FP.

Features

- This IC can be used with very low supply voltage and low power and it comes in a mini-flat package to suit the compact TV or compact TV tuner.
 - Minimum operating power voltage

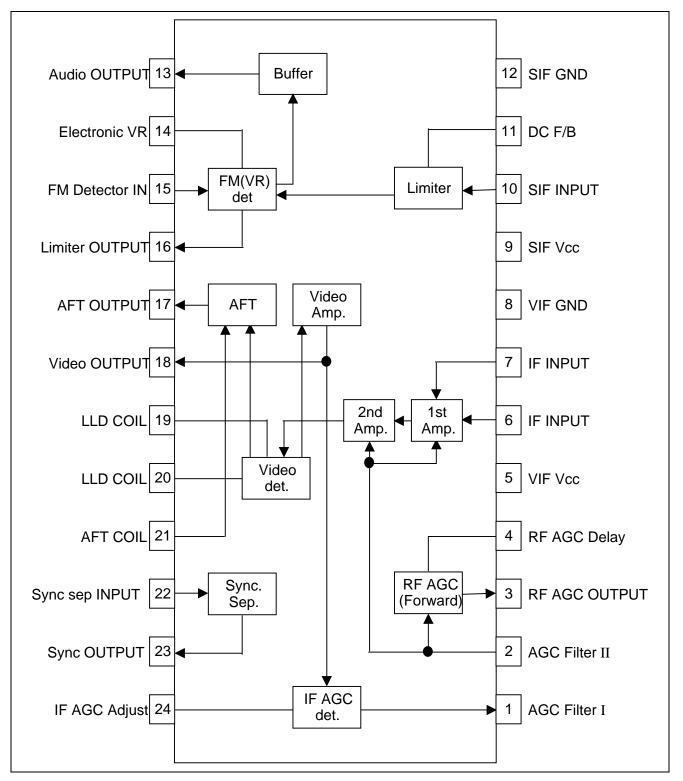
Consuming current

3V

16mA (when used with 4.5V supply voltage)

- Current automatically decreases to ensure power saving when a strong signal is received, when the electronic volume control is at its lowest.
- There are separate GND pins for the VIF/Sync. Sep. circuit and for the SIF circuit so that cross-interference is reduced.
- It is possible to adjust the video detector output amplitude by controlling the 24-pin voltage externally.
- The AGC works fast because of the 2-stage AGC filter. AGC has high stability against outside noise due to the AGC noise canceller.
- Emitter input circuit is used in Sync. Sep. Output is taken from the Sync. Positive polarity.

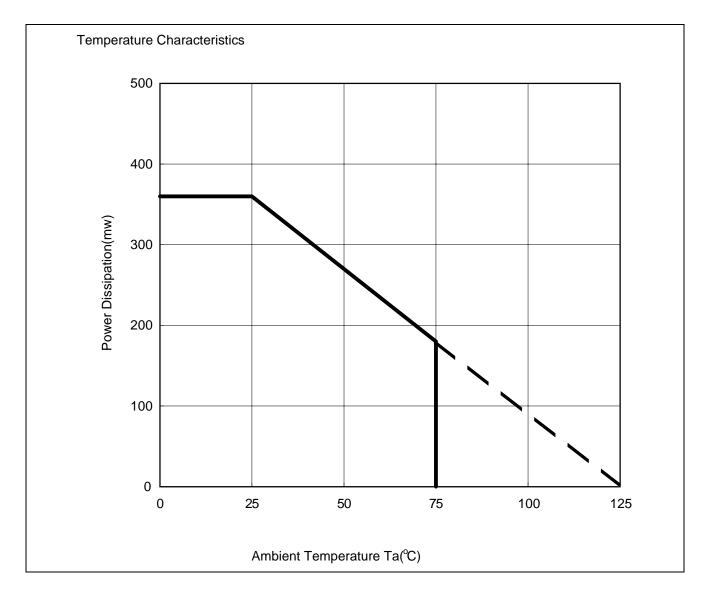
Application


Portable B/W, color TV

Recommend Operating Condition

Supply voltage range	3.0V to 6.0V
Rated supply voltage	4.5V

Block diagram & Pin configuration



M51348AVP

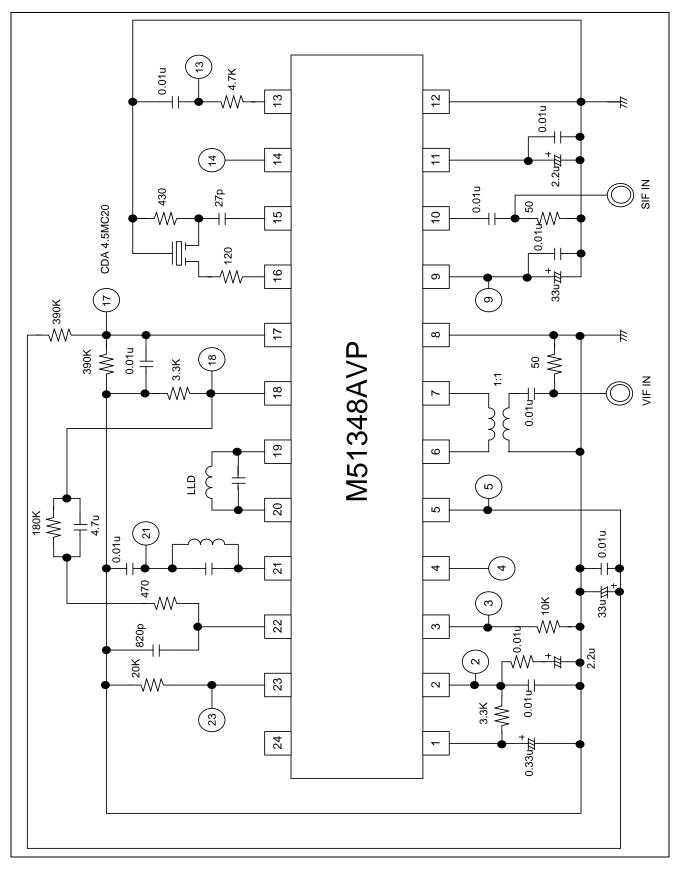
Absolute maximum ratings

(Ta=25°C,unless otherwise noted.)

Parameter	Symbol	Ratings	Unit	Note
Supply Voltage(1)	Vcc(5)	7.5	V	
Supply Voltage(2)	Vcc(9)	7.5	V	
Power Dissipation	Pd	360	mW	
Operating Temperature	Topr	- 20 to +75	°C	
Storage Temperature	Tstg	- 40 to +125	°C	

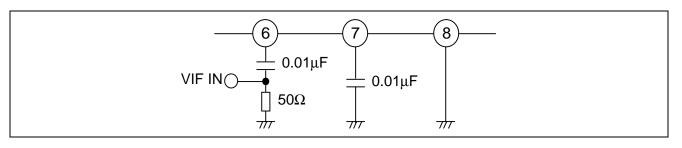
Electrical Characteristics

AC Characteristic (VIF)


					(Ta =	25°C, u	nless of	herwise	e noted.)
	Test Limits								
No	Parameter	symbol	point	Input	Test conditions	min	Тур.	max	Unit
1	Circuit current	I _{vif}	(5)	_	Input current with 4.5V in 5	10	15	20	mA
2	Video detector output	Vodet	18	SG1 90dBμ	Output amplitude.	0.7	0.9	1.1	Vp- p
3	Input sensitivity	Vinmin	18	SG1 Variable	Input level when output amplitude reaches 3dB less than Vo det.		45	55	dBμ
4	Maximum allowable input	Vinmax	18	SG1 Variable	Input level when output amplitude reaches 3dB more than Vo det.	100	111		dBμ
5	Video frequency characteristic	BW	18	SG2	BW is defined as f1- f2 whenoutput amplitude reaches - 3dB less than when f1- f2=1MHz.	6	7	_	MHz
6	RF AGC maximum voltage	$V_{_{3H}}$	3	SG4 90dBμ	Output DC voltage with 4.5V in(4).	3.2	3.7	_	Vo- p
7	RF AGC minimum voltage	$V_{_{3L}}$	3	SG4 90dBμ	Output DC voltage with 2V in (4)	—	0	0.2	Vo- p
8	AFT detector sensitivity	μ	17	SG5 90dBμ	Refer to note1	30	50	_	mV /KHz
9	DC voltage at AFT mute ON	V _{M17}	17	SG5 90dBμ	Output DC voltage with 0V in 20.	2	2.25	2.5	V
10	AFT center voltage	V_{AC}	17		Output DC voltage with 0V in (2)	0.5	1.4	2.5	V
11	Sync.Sep.output voltage	Vsync	23	SG1 90dBμ	Output amplitude.	3.5	3.8	4.1	Vp-р
12	Operating voltage	V_{vif}	5	SG1 90dBμ	Must be operated.	3	—	6	V
13	Video detector output at high or low voltage	VoHdet	18	SG1 90dΒμ	Output amplitude with 6.0V or 3.0V in (5)	0.95	1.25	1.55	Vp-р

AC Characteristic (SIF)

			Test			Limit	s		_
No	Parameter	symbol	point	Input	Test conditions	min	Тур.	max	Unit
1	Circuit current	I _{SIF}	9	_	Input current with 4.5V in 9	2.2	3.2	4.2	mA
2	Detector output• voltage	Vo _{af}	13	SG6 90dBμ	Output amplitude.	200	240	280	mVrms
3	Input limiting sensitivity	Vimin	13	SG6 Variable	Input level when input amplitude reaches - 3dB below Vo _{AF} .	—	32	49	dBμ
4	AM rejection ratio	AMR	13	SG7 90dΒμ	Where V_{AM} denotes output amplitude, AMR=20log $\frac{Vo_{AF}(mVrms)}{V_{AM}(mVrms)}$	40	53	_	dB
5	Bandwidth	BW(s)	13	SG8 90dBμ	Refer to note2.	100	130	_	kHz
6	Electronic volume	VR1	13	SG6	Ratio of output amplitude	3.0	3.9	4.8	dB
	control characteristic	VR2	_	90dBµ	and Vo _{ar} when (4) is changed from 4.0V to 1.0v.		-53	-45	-
7	Distortion	THD	13	SG9 90dBμ	Measured by distortion meter.		0.4	1.0	%
8	Operating voltage	$V_{_{SIF}}$	9	SG6 90dBμ	Must be operated.	3		6	V
9	Detector output	VoH _{AF}	13	SG6	Output amplitude with 6.0V	380	430	480	mVrms
	voltage at high or low voltage	VoL _{AF}		90dBµ	or 3.0V in(9)	53	64	75	-

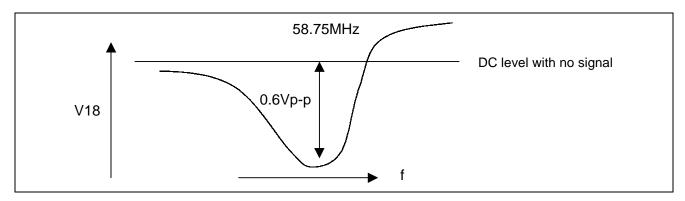

Test Circuit

Precaution concerning electical charactristics

- 1) Voltage Supplied (pins 5 and 9) is 4.5V unless otherwise noted in the conditions column.
- 2) VIF input amplitude (Vin)is the amplitude of VFI IN in the circuit below.Feed SG1 90dBµ signal into the circuit below, and measure the DC voltage V2 at (2)Set the circuit for AC voltage measurement and adjust the input amplitude, monitoring DC voltage at (2), until it reaches the level of V2.90dBµ is defined as the input amplitude at that time.

3) lnpu	it signals are shown below.		
SG1	fo=58.75MHz	fm=20KHz	77.8%AM
SG2	f1=58.75MHz	Vi=90dBµ	CW
	f2=53 ±5MHz	Vi=70dBµ	CW
SG3	fo=58.75MHz	Linearity 10step signal	
		(87.5% Video modulation	ı)
SG4	fo=58.75MHz		CW
SG5	fo=58.75 \pm 5MHz		CW(SWEEP)
SG6	fo=4.5MHz	FM 25KHz dev	fm=400Hz
SG7	fo=4.5MHz	AM 30%	fm=400Hz
SG8	fo=4.5MH• ±200KH•	FM 7.5KHz dev	fm=400Hz

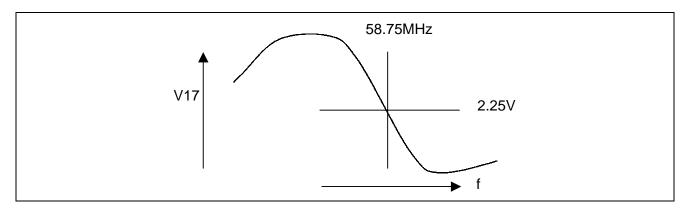
4) Adjustment of LLD coil

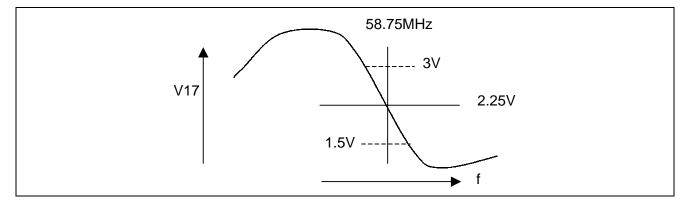

fo=4.5MH•

SG9

- 1. Feed SG5 Vi=90dBµ into VIF IN.
- 2. AFT coil must be shifted to detuned condition.
- 3. Feed outside voltage to 2 and check tank response at (8) as shown in the figure below.

FM 7.5KHz dev

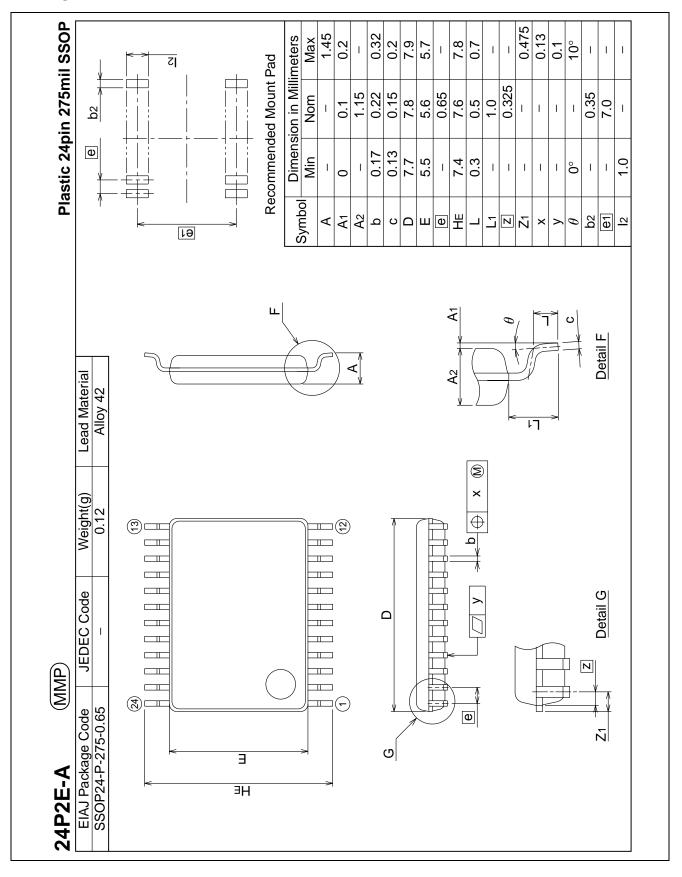

4. Adjust LLD coil so that peak comes at 58.75MHz.


fm=400Hz

- 5) Adjustment of AFT coil
 - 1. Feed SG5 Vi=90dB μ in VIF IN.
 - 2. Measure the voltage at pin (1) and adjust AFT coil as shown in the figure below.

Note1 AFT detector sensitivity "µ"

Where f_A denotes a frequency at A and f_B at B.


Note2 Bandwidth "BW(s)"

First, define Vo(DET)FM as the output amplitude when the signal fo=4.5MHz, fm=400Hz and fdev=±7.5KHz is given to SIF IN.

Decrease and increase the frequency to until the output amplitude reaches - 3dB than Vo(DET)FM. These are defined as fo L and fo H respectively. Bandwidth is defined as

BW(s) = foH- foL

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

- The party inst in your circuit designs:
 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product.
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to eva use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001