HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED
- U.L. RECOGNISED ISOWATT218 PACKAGE (U.L. FILE \# E81734 (N))

APPLICATIONS:

- HORIZONTAL DEFLECTION FOR MONITORS

DESCRIPTION

The THD200FI is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.
The THD series is designed for use in horizontal deflection circuits in televisions and monitors.

ISOWATT218

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	1500	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	700	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	10	V
I_{C}	Collector Current	10	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	20	A
I_{B}	Base Current	5	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	10	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	57	W
$\mathrm{~T}_{\mathrm{stg}}$	Storage Temperature	-65 to 150	150
$\mathrm{~T}_{\mathrm{j}}$	Max. Operating Junction Temperature	${ }^{\circ} \mathrm{C}$	

THERMAL DATA

$\mathrm{R}_{\mathrm{th} \text {-case }}$	Thermal Resistance Junction-case	Max	2.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current ($\mathrm{V}_{\mathrm{BE}}=0$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=1500 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=1500 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 0.2 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {ebo }}$	Emitter Cut-off Current $\left(I_{C}=0\right)$	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ceo(sus)* }}$	Collector-Emitter Sustaining Voltage (I c $=0$)	$\mathrm{Ic}=100 \mathrm{~mA}$	700			V
Vebo	Emitter-Base Voltage $\left(I_{B}=0\right)$	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$	10			V
$\mathrm{V}_{\text {CE(sat) }}{ }^{*}$	Collector-Emitter Saturation Voltage	$\mathrm{IC}_{\mathrm{C}}=7 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B}}=1.5 \mathrm{~A}$			1.5	V
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{*}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B}}=1.5 \mathrm{~A}$			1.3	V
hfE^{*}	DC Current Gain	$\begin{array}{lll} \hline \mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \\ \mathrm{IC}=7 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=10{ }^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} 6.5 \\ 4 \end{gathered}$		13	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	RESISTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V} & \mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=3.5 \mathrm{~A} \end{array}$		$\begin{aligned} & 2.1 \\ & 140 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 210 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} I_{\mathrm{C}}=7 \mathrm{~A} & \mathrm{f}=31250 \mathrm{~Hz} \\ \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=-3.5 \mathrm{~A} \\ \mathrm{~V}_{\text {ceflyback }}=1200 \sin \left(\frac{\pi}{5} 10^{6}\right) \mathrm{t} \end{array}$		$\begin{aligned} & 3.5 \\ & 320 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \begin{array}{l} I_{\mathrm{C}}=7 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{~A} \\ \mathrm{~V}_{\text {ceflyback }}=1200 \sin \left(\frac{\pi}{5} 10^{6}\right) \mathrm{I} 2=-3.5 \mathrm{KHz} \\ \mathrm{I} \end{array} \quad \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.7 \\ & 215 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

[^0]Safe Operating Area

Derating Curve

Collector Emitter Saturation Voltage

Thermal Impedance

DC Current Gain

Base Emitter Saturation Voltage

5

Power Losses at 32 KHz

Power Losses at 64 KHz

Switching Time Inductive Load at 32 KHz (see figure 2)

Switching Time Inductive Load at 64 KHz (see figure 2)

Reverse Biased SOA

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current $\mathrm{I}_{\mathrm{B} 1}$ has to be provided for the lowest gain $h_{F E}$ at T_{j} $=100^{\circ} \mathrm{C}$ (line scan phase). On the other hand, negative base current $\mathrm{I}_{\mathrm{B} 2}$ must be provided turn off the power transistor (retrace phase). Most of the dissipation, especially in the deflection application, occurs at switch-off so it is essential to determine the value of IB2 which minimizes power losses, fall time tf_{f} and, consequently, T_{j}. A new set of curves have been defined to give total power losses, t_{s} and t_{f} as a function of $l_{B 2}$ at both 32 KHz and 64 KHz scanning frequencies in order to choice the optimum negative drive. The test circuit is illustrated in fig. 1.

Inductance L_{1} serves to control the slope of the negative base current $\mathrm{I}_{\mathrm{B} 2}$ in order to recombine the excess carriers in the collector when base current is still present, thus avoiding any tailing phenomenon in the collector current.
The values of L and C are calculated from the following equations:
$\frac{1}{2} L\left(I_{C}\right)^{2}=\frac{1}{2} C\left(V_{C E f l y}\right)^{2}$
$\omega=2 \pi f=\frac{1}{\sqrt{L C}}$
Where $\mathrm{I}_{\mathrm{c}}=$ operating collector current, VCEfly= flyback voltage, $f=$ frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuit.

Figure 2: Switching Waveforms in a Deflection Circuit.

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	5.35		5.65	0.211		0.222
C	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.082
E	0.75		0.95	0.030		0.037
F	1.05		1.25	0.041		0.049
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
G	10.80		11.20	0.425		0.441
H	15.80		16.20	0.622		0.638
L					0.354	
L1	20.80		21.20	0.819		0.835
L2	19.10		19.90	0.752		0.783
L3	22.80		23.60	0.898		0.929
L4	40.50		42.50	1.594		1.673
L5	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
N	2.1		2.3	0.083		0.091
R					0.181	
DIA	3.5		3.7	0.138		0.146

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are granted by implication or otherwise under any patent or patent rights of Shill subroelectronics. Specification mentioned in this pubication are are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

[^0]: * Pulsed: Pulse duration = 300 ss, duty cycle 1.5 \%

