Monolithic Digital IC

LB1877M

Brushless Motor Driver with Speed Control for Portable Cassette Recorders

Overview

The LB1877M is a motor driver well suited for driving motors of minicassette recorders, headphone stereos, and microcasette recorders that use a 3V power supply.

Package Dimensions

unit: mm

3036B-MFP20

Functions and Features

- Brushless sensorless motor drive (3-phase half-wave drive)
- Forward/reverse drive possible
- Built-in speed control function (voltage servo)
- Built-in reference voltage (0.9V)
- · Soft switching

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		6.0	V
Maximum output current	IO max		0.5	A
Allowable power dissipation	Pd max		0.5	W
Operating temperature	Topr		-10 to +80	°C
Storage temperature	Tstg		-40 to +150	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{CC}		1.8 to 5.0	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co.,Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25° C, V_{CC} = 2.4V

Deveryorter	Symbol	Conditions	Ratings		Linit	Measurement	
Parameter			min	typ	max	Unit	circuit
Power supply current	ICC1	S/S pin High level		4.0		mA	1
	ICC2	S/S pin Low level (standby)			20	μΑ	2
[S/S pin]	L			I			
S/S pin High level	SSH	Start	1.5		V _{CC}	V	3
S/S pin Low level	SSL	Stop	0		0.3	V	4
[DR pin]		1		I			
DR pin High level	DRH	Reverse	1.5		V _{CC}	V	9
DR pin Low level	DRL	Normal direction	0		0.3	V	10
[Internal reference voltage]		1		1			
Internal reference voltage	VREF	Output current 0 µA	0.8	0.9	1.0	V	11
Output current	IREF	Output current 250 μA			25	mV/250 μA	12
Reference voltage to power supply	$\Delta VREF/\Delta V_{CC}$	V _{CC} = 1.8 to 5.0V			5	mV/V	13
voltage characteristics							
Reference voltage to temperature	∆IREF/∆Ta	$V_{\rm CC} = 2.4 V$	- 0.1		0.3	mV/°C	Target
characteristics							
[OSC pin]	1	1	11	I			
Charge current	Isc		3.0	4.5	6.0	μA	14
[COM pin]	1	1	1	I			
Sink current	ICOM		17	24	33	μA	15
[LB pin]		1	1 1				<u> </u>
Charge current	ILB		4.5	6.5	9.0	μA	16
[VSP pin]	1	1	11	I			
Input voltage range	VIN	$V_{CC} = 2.4V$	0.15		1.8	V	17
Speed signal detection precision	VSP	VIN = 1V	420	500	580	mV	18
Speed signal relative precision	RSP		- 6		6	%	Target
Speed signal to power supply	$\Delta VSP / \Delta V_{CC}$	$V_{CC} = 1.8 \text{ to } 5.0 \text{V}$			2.5	mV/V	19
voltage characteristics							
Speed signal to temperature	∆VSP/∆Ta		- 0.1		0.2	mV/°C	Target
characteristics							Ŭ
[IN+ pin]							
Input voltage range	VIN+	$V_{CC} = 2.4V$	0.1		$V_{CC} - 0.7$	V	20
[OUT pin]	I				00		
Output current	IOUT	VIN+ = 1V	25	30	47.3	μA	21
[RI pin]	I						
Current detection precision	VRI	$RI = 10 k\Omega U, V, Wout = 2.3V$	10	20	35	mV	22
[U, V, WOUT pins]	I						
Output saturation voltage	Vsat	IO = 200 mA			0.25	V	23
[Thermal]		1	<u> </u>				
Thermal protection trigger temperature	TTSD			180		°C	Target
Temperature hysteresis width	ΔTTSD			15		°C	Target

Note: Items shown to be Target are not measured.

Pin Function

Pin number	Pin name	Function
20	UOUT	U-phase output
1	VOUT	V-phase output
2	WOUT	W-phase output
6	UB	U-phase base of 3-phase differential
5	VB	V-phase base of 3-phase differential
4	WB	W-phase base of 3-phase differential
18	VCC	Power supply
7	OSC	Startup oscillator pin
8	COM	Output waveform detection comparator voltage
3	P – GND	Output transistor and predriver ground
9	GND	Ground pin
11	S/S	Start/stop pin
19	DR	Forward/reverse pin
12	VREF	Reference voltage 0.9V
14	VSP	Output waveform peak detection pin
13	IN+	Error amp non-inverted pin
15	OUT	Error amp output pin
10	RI	Current feedback resistor connection pin
16	FC	Frequency response adjustment pin
17	LB	Motor start lockup prevention. Connect to GND via capacitor

Pin Assignment

Pin Description

Unit (resistance: Ω , capacitance: F)

Pin number	- Pin name	Pin voltage	Equivalent circuit	Pin function
18	VCC	1.8V to 5.0V		Power supply for all circuits
9	GND			Ground for all circuits except FC and power block.
12	VREF	0.7V to 0.9V		Internal reference voltage. Connected as speed control voltage to IN+ pin via external resistor.
7	OSC	1V to Vcc		Startup oscillator pin. Adjusts self-excitation frequency via external capacitor.
8	СОМ	1.3V to Vcc	To comparator input 10k To UOUT To VOUT 20k 20k 20k 20k 20k 20k 20k 20k 20k 20k 20k 20k 20k	Determines threshold voltage of waveform detection circuit. Connected to Vcc via an external resistor. Varies the startup threshold voltage.
14	VSP	0.1V to Vcc – 0.7V	To U,V,WOUT	Peak detection circuit output pin.
13	IN+		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Error amplifier non-inverted pin. Controls rotation speed via input pin voltage.
15	OUT		Drive current Current te	Error amplifier output pin. Connect external resistor between Vsp pins for feedback.
10	RI		10k š circuit 10k š 10k	Current feedback output pin. Connect external resistor between this pin and ground for current feedback adjustment.

Continued on next page

Continued from preceding page Unit (resistance: Ω, capacitance: F)							
Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function			
16	FC	Voltage input not allowed	Drive current $6k \ge 3S \ge 2k$ To RI pin $\frac{16}{16}$	Frequency characteristics adjustment pin. Connect to ground via capacitor.			
11	S/S	0 to Vcc	50k \$ \$50k	Start/stop pin.			
19	DR	0 to Vcc	50k≹ ≶50k	Forward/reverse rotation pin.			
20 1 2	UOUT VOUT WOUT	0 to 8V		U, V, W phase output pins. Connect to motor coils			
17	LB	0 to 1V		Motor start lockup prevention.			
3	P – GND			Power block ground.			

Continued on next page

Continued from preceding page

continued from preceding page							
Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function			
4	WB	Voltage		Base pins for U, V, W			
5	VB	input not		differential.			
6	UB	allowed		Connect to ground via			
				capacitor for soft switching			
			$\int \frac{1}{m} $				

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.