8-Bit Synchronous Binary Up Counter

The MC10E/100E016 is a high-speed synchronous, presettable, cascadable 8-bit binary counter. Architecture and operation are the same as the MC10H016 in the MECL 10H family, extended to 8-bits, as shown in the logic symbol.

The counter features internal feedback of $\overline{\mathrm{TC}}$, gated by the TCLD (terminal count load) pin. When TCLD is LOW (or left open, in which case it is pulled LOW by the internal pull-downs), the TC feedback is disabled, and counting proceeds continuously, with TC going LOW to indicate an all-one state. When TCLD is HIGH, the TC feedback causes the counter to automatically reload upon $\mathrm{TC}=$ LOW, thus functioning as a programmable counter. The Q_{n} outputs do not need to be terminated for the count function to operate properly. To minimize noise and power, unused Q outputs should be left unterminated.

- 700MHz Min. Count Frequency
- 1000ps CLK to Q, TC
- Internal TC Feedback (Gated)
- 8-Bit
- Fully Synchronous Counting and TC Generation
- Asynchronous Master Reset
- Extended 100E VEE Range of -4.2 V to -5.46 V
- $75 \mathrm{k} \Omega$ Input Pulldown Resistors

Pinout: 28-Lead PLCC (Top View)

FUNCTION TABLE

CE	PE	TCLD	MR	CLK	Function
X	L	X	L	Z	Load Parallel (P_{n} to $\left.\mathrm{Q}_{\mathrm{n}}\right)$
L	H	L	L	Z	Continuous Count
L	H	H	L	Z	Count; Load Parallel on $\overline{T C}=$ LOW
H	H	X	L	Z	Hold
X	X	X	L	ZZ	Masters Respond, Slaves Hold
X	X	X	H	X	Reset $\left(\mathrm{Q}_{\mathrm{n}}:=\right.$ LOW, $\overline{T C}:=$ HIGH $)$

$Z=$ clock pulse (low to high);
ZZ = clock pulse (high to low)

PIN NAMES

Pin	Function
P0 $-\mathrm{P}_{7}$	Parallel Data (Preset) Inputs
$\frac{\mathrm{Q}_{0}-\mathrm{Q}_{7}}{}$	Data Outputs
$\frac{\mathrm{CE}}{\mathrm{PE}}$	Count Enable Control Input
MR	Parallel Load Enable Control Input
$\frac{\text { CLK }}{\text { TC }}$	Master Reset
TCLD	Clock

* All V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ pins are tied together on the die.

8-BIT BINARY COUNTER LOGIC DIAGRAM

Note that this diagram is provided for understanding of logic operation only.
It should not be used for propagation delays as many gate functions are achieved internally without incurring a full gate delay

DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EE}}(\min)\right.$ to $\left.\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCO}}=\mathrm{GND}\right)$

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit	Condition
		min	typ	max	min	typ	max	min	typ	max		
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$	
IEE	$\begin{aligned} & \text { Power Supply Current } \\ & 10 \mathrm{E} \\ & 100 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 151 \\ & 151 \end{aligned}$		$\begin{aligned} & 181 \\ & 181 \end{aligned}$	$\begin{aligned} & 151 \\ & 151 \end{aligned}$		$\begin{aligned} & 181 \\ & 181 \end{aligned}$	$\begin{aligned} & 151 \\ & 174 \end{aligned}$		$\begin{aligned} & 181 \\ & 208 \end{aligned}$	mA	

AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EE}}(\min)\right.$ to $\left.\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCO}}=\mathrm{GND}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} \& \multirow[b]{2}{*}{Characteristic} \& \multicolumn{3}{|c|}{\(0^{\circ} \mathrm{C}\)} \& \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} \& \multicolumn{3}{|c|}{\(85^{\circ} \mathrm{C}\)} \& \multirow[b]{2}{*}{Unit} \& \multirow[b]{2}{*}{Condition} \\
\hline \& \& min \& typ \& max \& min \& typ \& max \& min \& typ \& max \& \& \\
\hline fCOUNT \& Max. Count Frequency \& 700 \& 900 \& \& 700 \& 900 \& \& 700 \& 900 \& \& MHz \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& \begin{tabular}{l}
Propagation Delay to Output \\
CLK to Q \\
MR to Q \\
CLK to \(\overline{T C}\) \\
MR to TC
\end{tabular} \& \[
\begin{aligned}
\& 600 \\
\& 600 \\
\& 550 \\
\& 625
\end{aligned}
\] \& \[
\begin{aligned}
\& 725 \\
\& 775 \\
\& 775 \\
\& 775
\end{aligned}
\] \& \[
\begin{gathered}
1000 \\
1000 \\
900 \\
1000
\end{gathered}
\] \& \[
\begin{aligned}
\& 600 \\
\& 600 \\
\& 550 \\
\& 625
\end{aligned}
\] \& \[
\begin{aligned}
\& 725 \\
\& 775 \\
\& 775 \\
\& 775
\end{aligned}
\] \& \[
\begin{gathered}
1000 \\
1000 \\
900 \\
1000
\end{gathered}
\] \& \[
\begin{aligned}
\& 600 \\
\& 600 \\
\& 550 \\
\& 625
\end{aligned}
\] \& \[
\begin{aligned}
\& 725 \\
\& 775 \\
\& 775 \\
\& 775
\end{aligned}
\] \& \[
\begin{aligned}
\& 1000 \\
\& 1000 \\
\& 1050 \\
\& 1000
\end{aligned}
\] \& ps \& \\
\hline \(\mathrm{t}_{\text {s }}\) \& Setup Time \(\frac{\mathrm{Pn}}{\frac{\mathrm{CE}}{\mathrm{PE}}}\) TCLD \& \[
\begin{aligned}
\& 150 \\
\& 600 \\
\& 600 \\
\& 500
\end{aligned}
\] \& \[
\begin{array}{r}
-30 \\
400 \\
400 \\
300
\end{array}
\] \& \& \[
\begin{aligned}
\& 150 \\
\& 600 \\
\& 600 \\
\& 500
\end{aligned}
\] \& \[
\begin{array}{r}
-30 \\
400 \\
400 \\
300
\end{array}
\] \& \& \[
\begin{aligned}
\& 150 \\
\& 600 \\
\& 600 \\
\& 500
\end{aligned}
\] \& \[
\begin{array}{r}
-30 \\
400 \\
400 \\
300
\end{array}
\] \& \& ps \& \\
\hline \(t_{\text {h }}\) \& Hold Time
\[
\begin{aligned}
\& \frac{\mathrm{Pn}}{\mathrm{CE}} \\
\& \frac{\mathrm{PE}}{} \\
\& \mathrm{TCLD}
\end{aligned}
\] \& \[
\begin{gathered}
350 \\
0 \\
0 \\
100
\end{gathered}
\] \& \[
\begin{gathered}
100 \\
-400 \\
-400 \\
-300
\end{gathered}
\] \& \& \[
\begin{gathered}
350 \\
0 \\
0 \\
100
\end{gathered}
\] \& \[
\begin{gathered}
100 \\
-400 \\
-400 \\
-300
\end{gathered}
\] \& \& \[
\begin{gathered}
350 \\
0 \\
0 \\
100
\end{gathered}
\] \& \[
\begin{gathered}
100 \\
-400 \\
-400 \\
-300
\end{gathered}
\] \& \& \& \\
\hline trR \& Reset Recovery Time \& 900 \& 700 \& \& 900 \& 700 \& \& 900 \& 700 \& \& ps \& \\
\hline tPW \& Minimum Pulse Width CLK, MR \& 400 \& \& \& 400 \& \& \& 400 \& \& \& ps \& \\
\hline tr

$\mathrm{t}_{\text {f }}$ \& Rise/Fall Times

$$
20-80 \%
$$ \& 300 \& 510 \& 800 \& 300 \& 510 \& 800 \& 300 \& 510 \& \& ps \&

\hline
\end{tabular}

FUNCTION TABLE

Function	PE	CE	MR	TCLD	CLK	P7-P4	P3	P2	P1	P0	Q7-Q4	Q3	Q2	Q1	Q0	TC
Load	L	X	L	X	Z	H	H	H	L	L	H	H	H	L	L	H
Count	H	L	L	L	Z	X	X	X	X	X	H	H	H	L	H	H
	H	L	L	L	Z	X	X	X	X	X	H	H	H	H	L	H
	H	L	L	L	Z	X	X	X	X	X	H	H	H	H	H	L
	H	L	L	L	Z	X	X	X	X	X	L	L	L	L	L	H
Load	L	X	L	X	Z	H	H	H	L	L	H	H	H	L	L	H
Hold	H	H	L	X	Z	X	X	X	X	X	H	H	H	L	L	H
	H	H	L	X	Z	X	X	X	X	X	H	H	H	L	L	H
Load On	H	L	L	H	Z	H	L	H	H	L	H	H	H	L	H	H
Terminal	H	L	L	H	Z	H	L	H	H	L	H	H	H	H	L	H
Count	H	L	L	H	Z	H	L	H	H	L	H	H	H	H	H	L
	H	L	L	H	Z	H	L	H	H	L	H	L	H	H	L	H
	H	L	L	H	Z	H	L	H	H	L	H	L	H	H	H	H
	H	L	L	H	Z	H	L	H	H	L	H	H	L	L	L	H
Reset	X	X	H	X	X	X	X	X	X	X	L	L	L	L	L	H

Applications Information

Cascading Multiple E016 Devices

For applications which call for larger than 8-bit counters multiple E016s can be tied together to achieve very wide bit width counters. The active low terminal count (TC) output and count enable input (CE) greatly facilitate the cascading of E016 devices. Two E016s can be cascaded without the need for external gating, however for counters wider than 16 bits external OR gates are necessary for cascade implementations.
Figure 1 below pictorially illustrates the cascading of 4 E016s to build a 32-bit high frequency counter. Note the E101 gates used to OR the terminal count outputs of the lower order E016s to control the counting operation of the higher order bits. When the terminal count of the preceding device (or devices) goes low (the counter reaches an all 1s state) the more significant E016 is set in its count mode and will count one binary digit upon the next positive clock transition. In addition, the preceding devices will also count one bit thus sending their terminal count outputs back to a high state
disabling the count operation of the more significant counters and placing them back into hold modes. Therefore, for an E016 in the chain to count, all of the lower order terminal count outputs must be in the low state. The bit width of the counter can be increased or decreased by simply adding or subtracting E016 devices from Figure 1 and maintaining the logic pattern illustrated in the same figure.

The maximum frequency of operation for the cascaded counter chain is set by the propagation delay of the TC output and the necessary setup time of the CE input and the propagation delay through the OR gate controlling it (for 16-bit counters the limitation is only the TC propagation delay and the CE setup time). Figure 1 shows EL01 gates used to control the count enable inputs, however, if the frequency of operation is lower a slower, ECL OR gate can be used. Using the worst case guarantees for these parameters from the ECLinPS data book, the maximum count frequency for a greater than 16-bit counter is 500 MHz and that for a 16 -bit counter is 625 MHz .

Figure 1. 32-Bit Cascaded E016 Counter

Applications Information (continued)

Note that this assumes the trace delay between the TC outputs and the CE inputs are negligible. If this is not the case estimates of these delays need to be added to the calculations.

Programmable Divider

The E016 has been designed with a control pin which makes it ideal for use as an 8 -bit programmable divider. The TCLD pin (load on terminal count) when asserted reloads the data present at the parallel input pin (Pn's) upon reaching terminal count (an all 1s state on the outputs). Because this feedback is built internal to the chip, the programmable division operation will run at very nearly the same frequency as the maximum counting frequency of the device. Figure 2 below illustrates the input conditions necessary for utilizing the E016 as a programmable divider set up to divide by 113.

Figure 2. Mod 2 to 256 Programmable Divider
To determine what value to load into the device to accomplish the desired division, the designer simply subtracts the binary equivalent of the desired divide ratio from the binary value for 256. As an example for a divide ratio of 113:

Pn's $=256-113=8 F_{16}=10001111$
where:

$$
\mathrm{P} 0=\mathrm{LSB} \text { and P7 = MSB }
$$

Forcing this input condition as per the setup in Figure 2 will result in the waveforms of Figure 3. Note that the TC output is used as the divide output and the pulse duration is equal to a
Table 1. Preset Values for Various Divide Ratios

Divide Ratio	Preset Data Inputs							
	P7	P6	P5	P4	P3	P2	P1	P0
2	H	H	H	H	H	H	H	L
3	H	H	H	H	H	H	L	H
4	H	H	H	H	H	H	L	L
5	H	H	H	H	H	L	H	H
-	\bullet	-	-	\bullet	\bullet	-	-	\bullet
-	-	-	-	-	\bullet	-	-	\bullet
112	H	L	L	H	L	L	L	L
113	H	L	L	L	H	H	H	H
114	H	L	L	L	H	H	H	L
-	-	-	-	-	-	-	\bullet	-
-	-	-	-	-	-	-	\bullet	-
254	L	L	L	L	L	L	H	L
255	L	L	L	L	L	L	L	H
256	L	L	L	L	L	L	L	L

full clock period. For even divide ratios, twice the desired divide ratio can be loaded into the E016 and the TC output can feed the clock input of a toggle flip flop to create a signal divided as desired with a 50% duty cycle.

A single E016 can be used to divide by any ratio from 2 to 256 inclusive. If divide ratios of greater than 256 are needed multiple E016s can be cascaded in a manner similar to that already discussed. When E016s are cascaded to build larger dividers the TCLD pin will no longer provide a means for loading on terminal count. Because one does not want to reload the counters until all of the devices in the chain have reached terminal count, external gating of the TC pins must be used for multiple E016 divider chains.

Figure 3. Divide by 113 E016 Programmable Divider Waveforms

Applications Information (continued)

Figure 4. 32-Bit Cascaded E016 Programmable Divider

Figure 4 on the following page shows a typical block diagram of a 32-bit divider chain. Once again to maximize the frequency of operation EL01 OR gates were used. For lower frequency applications a slower OR gate could replace the EL01. Note that for a 16 -bit divider the OR function feeding the PE (program enable) input CANNOT be replaced by a wire OR tie as the TC output of the least significant E016 must also feed the CE input of the most significant E016. If the two TC outputs were OR tied the cascaded count operation would not operate properly. Because in the cascaded form the PE feedback is external and requires external gating, the maximum frequency of operation will be significantly less than the same operation in a single device.

Maximizing E016 Count Frequency

The E016 device produces 9 fast transitioning single ended outputs, thus V_{CC} noise can become significant in situations where all of the outputs switch simultaneously in the same direction. This V_{CC} noise can negatively impact the maximum frequency of operation of the device. Since the device does not need to have the Q outputs terminated to count properly, it is recommended that if the outputs are not going to be used in the rest of the system they should be left unterminated. In addition, if only a subset of the Q outputs are used in the system only those outputs should be terminated. Not terminating the unused outputs will not only cut down the V_{CC} noise generated but will also save in total system power dissipation. Following these guidelines will allow designers to either be more aggressive in their designs or provide them with an extra margin to the published data book specifications.

OUTLINE DIMENSIONS

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{4}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

