

QUICKSWITCH® PRODUCTS HIGH-PERFORMANCE CMOS ANALOG FOUR-CHANNEL SPDT MUX/DEMUX

FEATURES:

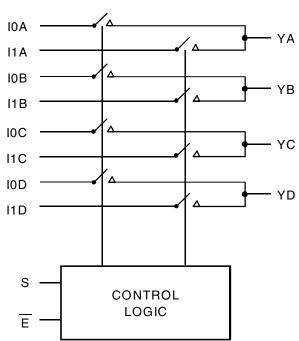
- Low ON resistance: rbs(on) = 5Ω
- Fast transition time: tTRAN = 6ns
- Wide bandwidth: 830MHz (-3dB point)
- · Crosstalk: -115dB at 50KHz, -100dB at 5MHz, -66dB at 30MHz
- Off-isolation: -90dB at 50KHz, -60dB at 5MHz, -50dB at 30MHz
- Single 5V supply
- · Can be used as multiplexer or demultiplexer
- · TTL-compatible control inputs
- Ultra-low quiescent current: 3µA
- Available in QSOP package

APPLICATIONS:

- · High-speed video signal switching/routing
- · HDTV-quality video signal routing
- Audio signal switching/routing
- · Data acquisition
- ATE systems
- Telecomm routing
- Switch between multiple video sources
- Token Ring transceivers
- High-speed networking

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:


The QS4A205 is a high-performance CMOS analog Four-Channel SPDT multiplexer/demultiplexer with individual enables. The low Onresistance of the QS4A205 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

The QS4A205 with 830MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. High performance and low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

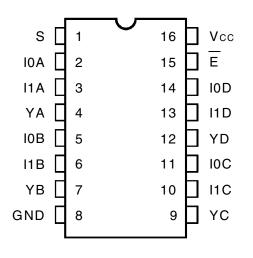
The QS4A205 is offered in the QSOP package and has several advantages over conventional packages such as PDIP and SOIC including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance resulting in lower ground bounce

The QS4A205 is characterized for operation at -40°C to +85°C.

1

The IDT logo is a registered trademark of Integrated Device Technology, Inc.


INDUSTRIAL TEMPERATURE RANGE

IDTQS4A205

HIGH-PERFORMANCE CMOS ANALOG FOUR-CHANNEL SPDT MUX/DEMUX

INDUSTRIAL TEMPERATURE RANGE

PINCONFIGURATION

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit	
VTERM ⁽²⁾	Supply Voltage to Ground	–0.5 to +7	V	
VTERM ⁽³⁾	DC Switch Voltage Vs	–0.5 to +7	V	
_	Analog Input Voltage	–0.5 to +7	V	
VTERM ⁽³⁾	DC Input Voltage VIN	–0.5 to +7	V	
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V	
Ιουτ	DC Output Current	120	mA	
Рмах	Maximum Power Dissipation	0.7	W	
Tstg	Storage Temperature	-65 to +150	°C	

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1MHz, VIN = 0V, VOUT = 0V)							
Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit		
CMUX (OFF)	MUX Off Capacitance	\overline{E} = VCC, VIN = VOUT = 0V	5.6	-	рF		
CDEMUX (OFF)	DEMUX Off Capacitance	$\overline{\mathbf{E}} = \mathbf{V}\mathbf{C}\mathbf{C}, \mathbf{V}\mathbf{I}\mathbf{N} = \mathbf{V}\mathbf{O}\mathbf{U}\mathbf{T} = 0\mathbf{V}$	7.4	_	рF		
CMUX (ON)	MUX On Capacitance	$\overline{E} = 0V, Vin = Vout = 0V$	12	_	рF		
CDEMUX (ON)	DEMUX On Capacitance	$\overline{E} = 0V$, VIN = VOUT = 0V	15	_	рF		

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I/O	Description	
IxA	I/O	Demux Port A	
IxB	I/O	Demux Port B	
IxC	I/O	Demux Port C	
IxD	I/O	Demux Port D	
Ē	I	EnableInput	
S		Select Input	
YA-YD	I/O	Mux Port A-D	

FUNCTION TABLE⁽¹⁾

Enable	Select	MUX/DEMUX Ports				
Ē	S	YA	YB	YC	YD	Function
Н	Х	Z	Z	Z	Z	Disable
L	L	10A	I0B	I0C	I0D	Select 0
L	Н	I1A	I1B	I1C	I1D	Select 1

NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

QSOP TOP VIEW

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

 ${\it Following\,Conditions\,Apply\,Unless\,Otherwise\,Specified:}$

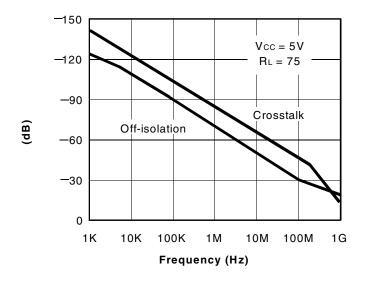
Industrial: TA = -40° C to $+85^{\circ}$ C, VCC = 5V $\pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Analog S	witch		·			
Vin	Analog Signal Range ⁽²⁾		-0.5	1	Vcc - 1	V
rds(on)	Drain-source ON resistance ^(2,3)	Vcc = Min., VIN = 0V, ION = 30mA	—	5	7	Ω
		Vcc = Min., VIN = 2.4V, ION = 15mA	—	13	17	
IC(OFF)	Channel Off Leakage Current	$I_N = V_{CC} \text{ or } 0V; Y_N = 0V \text{ or } V_{CC}; \overline{E} = V_{CC}$	—	2	_	nA
IC(ON)	Channel On Leakage Current	$I_N = Y_N = 0V$	—	2	_	nA
		(each channel is turned on sequentially)				
Digital Co	ontrol					
Vih	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	—	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	—	-	0.8	V
Dynamic	Characteristics					
TRANS	Switching Time of MUX S to Y	$RL = 1K\Omega$, $CL = 100pF$	0.5	-	6.6	ns
ton(ĒN)	Enable Turn-On Time, E to Y	RL = 1KΩ, CL = 100pF	0.5	—	6	ns
toff(EN)	Enable Turn-Off Time, E to Y	$RL = 1K\Omega$, $CL = 100pF$	0.5	_	6	ns
t PD	Group Delay ^(2,4)	$RL = 1K\Omega$, $CL = 100pF$	—	-	250	ps
f3dB	-3dB Bandwidth	VIN = 1Vp-p, RL = 75Ω	—	830	_	MHz
	Off-isolation	VIN = 1Vp-p, RL = 75Ω, f = 5MHz	—	-60	_	dB
Xtalk	Crosstalk	VIN = 1Vp-p, RL = 75Ω, f = 5MHz	—	-100	_	dB
Qci	Charge Injection		_	1.5	_	рC

NOTES:

1. Typical values are at Vcc = 5.0V, TA = $25^{\circ}C$.

2. Max value is guaranteed but not production tested.


3. Measured by voltage drop between A and C pins or B and D pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A, C, or B, D) pins.

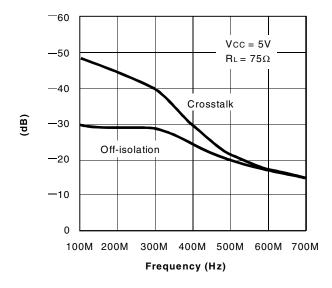
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

Symbol Parameter		Test Conditions	Max.	Unit
ICCO	Quiescent Power	Vcc = Max., VIN = GND or Vcc, f = 0	3	μA

TYPICAL CHARACTERISTICS

Off-isolation and Crosstalk vs. Frequency

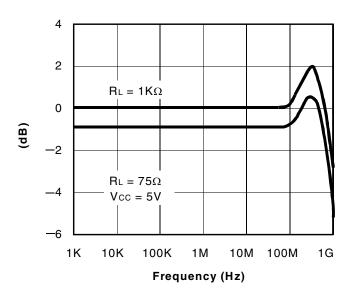

NOTES:

NOTES:

1. Crosstalk = 20 log |Vo/Vs|

2. Off-isolation = 20 log |Vo/Vs|

1. Crosstalk = 20 log |Vo/Vs| 2. Off-isolation = 20 log |Vo/Vs|

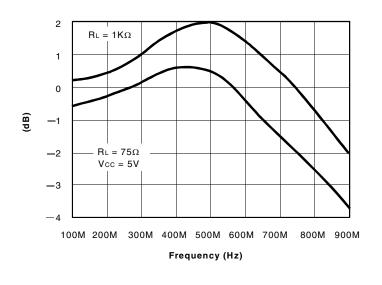


Off-isolation and Crosstalk vs. Frequency

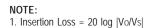
NOTES: 1. Crosstalk = 20 log |Vo/Vs| 2. Off-isolation = 20 log |Vo/Vs|

-160 Vcc = 5VCrosstalk -140 R∟ = 75Ω -120(dB) -100Off-isolation -80 -60 -40 10K 20K 30K 40K 50K 60K 70K Frequency (Hz)

Off-isolation and Crosstalk vs. Frequency



Insertion Loss vs. Frequency


NOTE: 1. Insertion Loss = 20 log |Vo/Vs|

4

TYPICAL CHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

3.0

2.5

On-Resistance vs. Vin

1.5

VIN (Volts)

2.0

1.0

Vcc = 4.75V

18

16

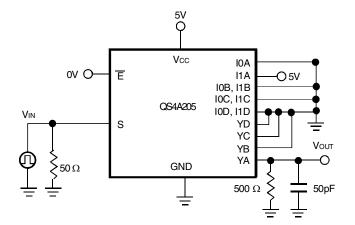
14

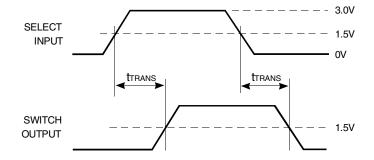
12

10

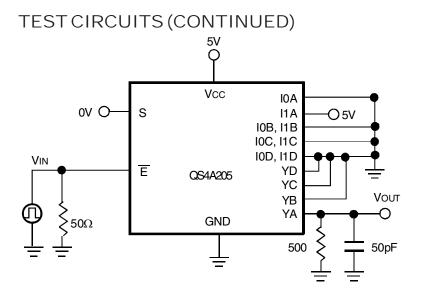
8

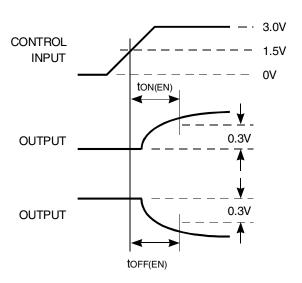
6

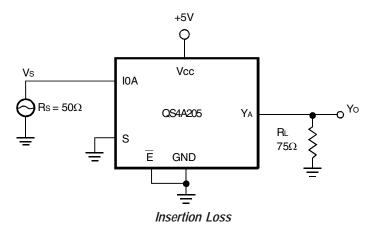

4

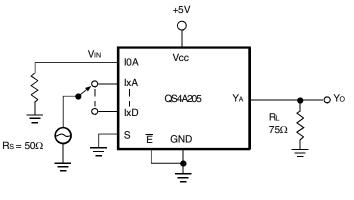

0.0

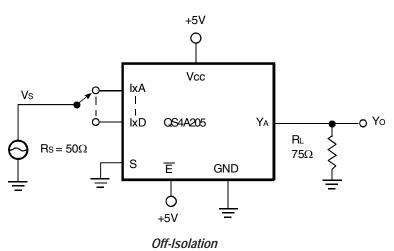
0.5


r DS(On) - Drain Source On-resistance(0)


TESTCIRCUITS

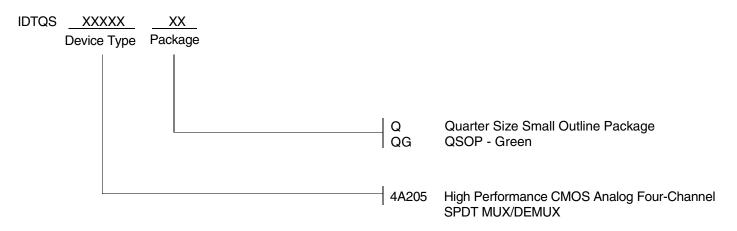



Transition Time


Enable Switching Time

Crosstalk

NOTE: 1. Insertion Loss = 20 log |Vo/Vs|



NOTE: 1. Off-isolation = 20 log |Vo/Vs|

1. Crosstalk = 20 log |Vo/Vs|

NOTE:

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com *for Tech Support:* logichelp@idt.com (408) 654-6459