GENERAL PURPOSE L-BAND DOWN CONVERTER

DESCRIPTION

The μ PC2795GV is Silicon monolithic IC designed for L-band down converter. This IC consists of double balanced mixer, local oscillator, local oscillation buffer amplifier, IF buffer amplifier, and voltage regulator.

The package is 8 -pin SSOP suitable for high-density surface mount.

FEATURES

- Wide band operation $\quad \mathrm{frF}_{\mathrm{RF}}=0.95$ to 2.15 GHz
- Supply voltage

5 V

- Low distortion $\quad \mathrm{IM} 3=55 \mathrm{dBc}$
- Packaged in 8-pin SSOP suitable for high-density mounting

ORDERING INFORMATION

PART NUMBER	PACKAGE	PACKAGE STYLE
μ PC2795GV-E1	8-pin plastic SSOP (175 mil)	Embossed tape 8 mm wide. 1 k/REEL Pin 1 indicates pull-out direction of tape

For evaluation sample order, please contact your local NEC office. (Part number for sample order: μ PC2795GV)

INTERNAL BLOCK DIAGRAM

Caution: Electro-static sensitive devices

PIN EXPLANATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	RATINGS	UNIT
Supply Voltage	Vcc		6.0	V
Power Dissipation	PD	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{* 1}$	250	
Operating Ambient Temperature	T_{A}		mW	
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-40 to +85	${ }^{\circ} \mathrm{C}$

*1 Mounted on $50 \times 50 \times 1.6 \mathrm{~mm}$ double epoxy glass board.

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	Vcc $^{\|c\|}$	4.5	5.0	5.5	V
Operating Ambient Temperature	TA_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} ;{ }^{+1}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Circuit Current	Icc	25.5	35.0	48.0	mA	no input signal
Lower Input Frequency	frF 1	-	-	0.95	GHz	
Upper Input Frequency	ffF	2.15	-	-	GHz	
Conversion Gain 1	CG1	8.0	11.0	14.0	dB	$\begin{aligned} & \mathrm{fRF}=950 \mathrm{MHz}, \text { PRF }=-30 \mathrm{dBm}, \\ & \mathrm{fiF}=402 \mathrm{MHz}, \text { Posc }=-10 \mathrm{dBm} \end{aligned}$
Conversion Gain 2	CG2	6.5	9.5	12.5	dB	$\begin{aligned} & \mathrm{frF}=2.15 \mathrm{GHz}, \mathrm{PRF}=-30 \mathrm{dBm}, \\ & \mathrm{fiF}=402 \mathrm{MHz}, \text { Posc }=-10 \mathrm{dBm} \end{aligned}$
Noise Figure 1	NF1	-	13.5	16.0	dB	$\begin{aligned} & \mathrm{fRF}_{\mathrm{RF}}=950 \mathrm{MHz}, \mathrm{fiF}=402 \mathrm{MHz}, \\ & \text { Posc }=-10 \mathrm{dBm} \end{aligned}$
Noise Figure 2	NF2	-	14.0	16.5	dB	$\begin{aligned} & f_{\text {RF }}=2.15 \mathrm{GHz}, \mathrm{fiF}=402 \mathrm{MHz}, \\ & \text { Posc }=-10 \mathrm{dBm} \end{aligned}$
Maximum Output Power 1	Po (sat) 1	2.0	5.0	-	dBm	$\begin{aligned} & \text { fRF }=950 \mathrm{MHz}, \text { PrF }=0 \mathrm{dBm}, \\ & \mathrm{fiF}^{=}=402 \mathrm{MHz}, \text { Posc }=-10 \mathrm{dBm} \end{aligned}$
Maximum Output Power 2	Po (sat) 2	0.0	3.5	-	dBm	$\begin{aligned} & f_{\text {fF }}=2.15 \mathrm{GHz}, \text { PRF }=0 \mathrm{dBm}, \\ & \mathrm{fiF}=402 \mathrm{MHz}, \text { Posc }=-10 \mathrm{dBm} \end{aligned}$

*1 By measurement circuit.

STANDARD CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} ;{ }^{[1}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
3rd Order Intermodulation Distortion 1	$\mathrm{IM}_{3} 1$	-	55	-	dBc	$\mathrm{frF}_{\mathrm{RF}}=950,980 \mathrm{MHz}, \mathrm{PRF}=-25 \mathrm{dBm}$, $\mathrm{fosc}=1430 \mathrm{MHz}, \mathrm{Posc}=-10 \mathrm{dBm}$
3rd Order Intermodulation Distortion 2	$\mathrm{IM}_{3} 2$	-	55	-	dBc	$\mathrm{fRF}=2.15,2.18 \mathrm{GHz}, \mathrm{PRF}=-25 \mathrm{dBm}$, $\mathrm{fosc}=2.63 \mathrm{GHz}, \mathrm{Posc}=-10 \mathrm{dBm}$
Oscillator Frequency	fosc^{2}	1.35	-	2.65	GHz	

*1 By measurement circuit.

TYPICAL CHARACTERISTICS

STANDARD CHARACTERISTICS

STANDARD CHARACTERISTICS (Vcc $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

OSC Frequency Range*1

RF Input Impedance (@1 pin)

START 900 MHz
STOP 3 GHz
MARKER $\operatorname{Re}[\Omega] \operatorname{Im}[\Omega]$
1: $950 \mathrm{MHz} 41.5 \quad-152(1.10 \mathrm{pF})$
$2: 2150 \mathrm{MHz} 11.2 \quad-54.9(1.35 \mathrm{pF})$

OSC Input Impedance (@8 pin)

START 900 MHz STOP 3 GHz
MARKER $\operatorname{Re}[\Omega] \operatorname{Im}[\Omega]$
1: $1350 \mathrm{MHz} 9.22 \quad-36.1$ (3.27 pF)
$2: 2630 \mathrm{MHz} 31.5 \quad 26.9(1.63 \mathrm{nH})$

IF Output Impedance

START 300 MHz STOP 600 MHz
MARKER $\operatorname{Re}[\Omega] \quad \operatorname{Im}[\Omega]$
$1: 402.8 \mathrm{MHz} \quad 9.48 \quad 11.2(9.40 \mathrm{nH})$
$2: 479.5 \mathrm{MHz} \quad 10.4 \quad 13.4(4.46 \mathrm{nH})$

MEASUREMENT CIRCUIT

APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

Illustration of the application circuit assembled on evaluation board

PACKAGE DIMENSIONS

8 PIN PLASTIC SSOP (unit : mm)

NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) A low pass filter must be attached to Vcc line.
(5) A matching circuit must be externally attached to output port.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales officers in case other soldering process is used or in case soldering is done under different conditions.

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
μ PC2795GV

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	VP15-00-3
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Reflow time: 10 seconds or below, Number of reflow process: 1, Exposure limit ${ }^{\text {Note }}$: None	WS60-00-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below, Flow time: 3 seconds or below, Exposure limit ${ }^{\text {Note }}$: None	

Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Do not apply more than single process at once, except for "Partial heating method".

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

