TOSHIBA TCD2553AD

TOSHIBA CCD IMAGE SENSOR CCD (Charge Coupled Device)

T C D 2 5 5 3 A D

The TCD2553AD is a high sensitive and low dark current 5340×3 elements linear image sensor.

The sensor can be used for image scanner. The device contains a row of 5340 elements x 3 line photodiodes, which provide a 24 line/mm (600DPI) across a A4 size paper. The device is operated by 5 V (Pulse), and 12 V power supply.

FEATURES

Number of Image Sensing Elements

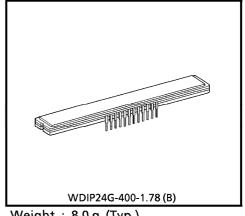
 $: 5340 \times 3$

Image Sensing Element Size : 8 μ m by 8 μ m on 8 μ m centers

: High sensitive and low dark Photo Sensing Region

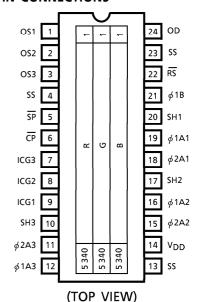
current PN photodiode

Clock : 2 phase (5 V) **Power Supply** : 12 V (DC) Package : 24 pin CERDIP


Distance Between Photodiode Array : 64 μ m, 8 line Internal Circuit : Electrical Shutter Function

S/H, Clamp Circuit

MAXIMUM RATINGS (Note 1)

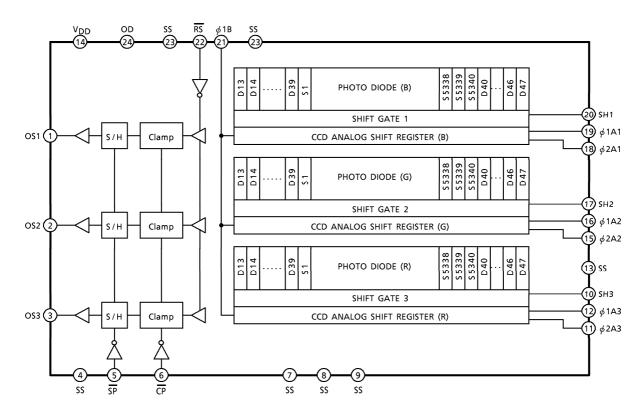

CHARACTERISTIC	SYMBOL	RATING	UNIT
Clock Pulse Voltage	Vφ		V
Shift Pulse Voltage	V _{SH}		V
Reset Pulse Voltage	VRS	-0.3~8	V
Clamp Pulse Voltage	VCP	-0.5~6	V
Sample and Hold Voltage	VSP		V
Electrical Shutter Voltage	V _{ICG}		V
Power Supply	V _{OD}	- 0.3~15	V
Digital Power Supply	V _{DD}	-0.5~15	V
Operating Temperature	T _{opr}	0~60	°C
Storage Temperature	T _{stg}	- 25∼85	°C

(Note 1): All voltage are with respect to SS terminals (Ground).

Weight: 8.0 g (Typ.)

PIN CONNECTIONS

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

CIRCUIT DIAGRAM

PIN NAMES

PIN No.	SYMBOL	NAME	PIN No.	SYMBOL	NAME
1	OS1	Signal Output 1 (Blue)	13	SS	Ground
2	OS2	Signal Output 2 (Green)	14	V_{DD}	Power (Digital)
3	OS3	Signal Output 3 (Red)	15	φ2A2	Clock 2 (Phase 2)
4	SS	Ground	16	φ1A2	Clock 2 (Phase 1)
5	SP	Sample and Hold Gate	17	SH2	Shift Gate 2
6	CP	Clamp Gate	18	φ2A1	Clock 1 (Phase 2)
7	SS	Ground	19	<i>φ</i> 1A1	Clock 1 (Phase 1)
8	SS	Ground	20	SH1	Shift Gate 1
9	SS	Ground	21	<i>ϕ</i> 1B	Final Stage Clock (Phase 1)
10	SH3	Shift Gate 3	22	RS	Reset Gate
11	φ 2 A3	Clock 3 (Phase 2)	23	SS	Ground
12	φ1A3	Clock 3 (Phase 1)	24	OD	Power (Analog)

OPTICAL / ELECTRICAL CHARACTERISTICS

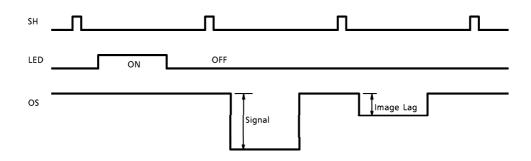
(Ta = 25°C, V_{OD} = V_{DD} = 12 V, V_{ϕ} = $V_{\overline{RS}}$ = 5 V (PULSE), f_{ϕ} = 1 MHz, $f_{\overline{RS}}$ = 1 MHz, $t_{\overline{INT}}$ = 10 ms, LIGHT SOURCE = A LIGHT SOURCE + CM500S FILTER (t = 1 mm), LOAD RESISTANCE = 100 k Ω)

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
	Red	R (R)	4.6	6.6	8.6		
Sensitivity	Green	R (G)	5.6	8.1	10.5	V / lx·s	(Note 2)
	Blue	R (B)	3.9	5.6	7.3		
Dhata Dasnansa Nan Unifam		PRNU (1)	_	10	20	%	(Note 3)
Photo Response Non Uniform	mity	PRNU (3)	_	3	12	mV	(Note 4)
Image Lag		IL	_	1	_	%	(Note 5)
Saturation Output Voltage		V _{SAT}	2.0	2.5	_	V	(Note 6)
Saturation Exposure		SE	<u> </u>	0.31	_		(Note 7)
Dark Signal Voltage		V _{DRK}	_	3	9	mV	(Note 8)
Dark Signal Non Uniformity		DSNU	_	4	12	mV	(Note 8)
DC Power Dissipation		PD	<u> </u>	200	400	mW	
Total Transfer Efficiency		TTE	92	_	_	%	
Output Impedance		ZO	<u> </u>	_	1	kΩ	
DC Compensation Output Voltage		Vos	3	5	7	V	(Note 9)
Random Noise		$N_{D}\sigma$	<u> </u>	0.8	<u> </u>	mV	(Note 10)
Reset Noise		V _{RSN}	_	200	_	mV	(Note 9)

- (Note 2): Responsivity is defined for each color of signal outputs average when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.
- (Note 3): PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

PRNU (1) =
$$\frac{\Delta \chi}{\overline{\chi}} \times 100$$
 (%)

When $\overline{\chi}$ is average of total signal output and $\Delta\chi$ is the maximum deviation from $\bar{\chi}$. The amount of incident light is shown below.


Red = $1/2 \cdot SE$

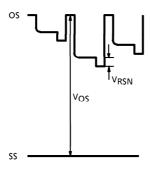
Green = $1/2 \cdot SE$

Bule = $1/4 \cdot SE$

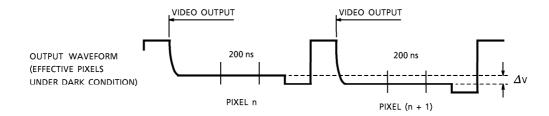
(Note 4): PRNU (3) is defined as maximum voltage with next pixel, where measured 5% of SE (Typ.).

(Note 5): Image Lag is defined as follows.

(Note 6): V_{SAT} is defined as minimum saturation output of all effective pixels.


(Note 7): Definition of SE

$$SE = \frac{V_{SAT}}{R_{G}} (Ix \cdot s)$$


(Note 8) : V_{DRK} is defined as average dark signal voltage of all effective pixels. DSNU is defined as different voltage between V_{DRK} and V_{MDK} , when V_{MDK} is maximum dark signal voltage.

(Note 9) : DC signal output voltage is defined as follows. Reset Noise Voltage is defined as follows.

(Note 10): Random noise is defined as the standard deviation (sigma) of the output level difference between two adjacent effective pixels under no illumination (i.e. dark conditions) calculated by the following procedure.

- 1) Two adjacent pixels (pixel n and n + 1) in one reading are fixed as measurement points.
- 2) Each of the output level at video output periods averaged over 200 ns period to get Vn and V (n + 1).
- 3) V(n + 1) is subtracted from Vn to get ΔV .

$$\Delta V = Vn - V(n + 1)$$

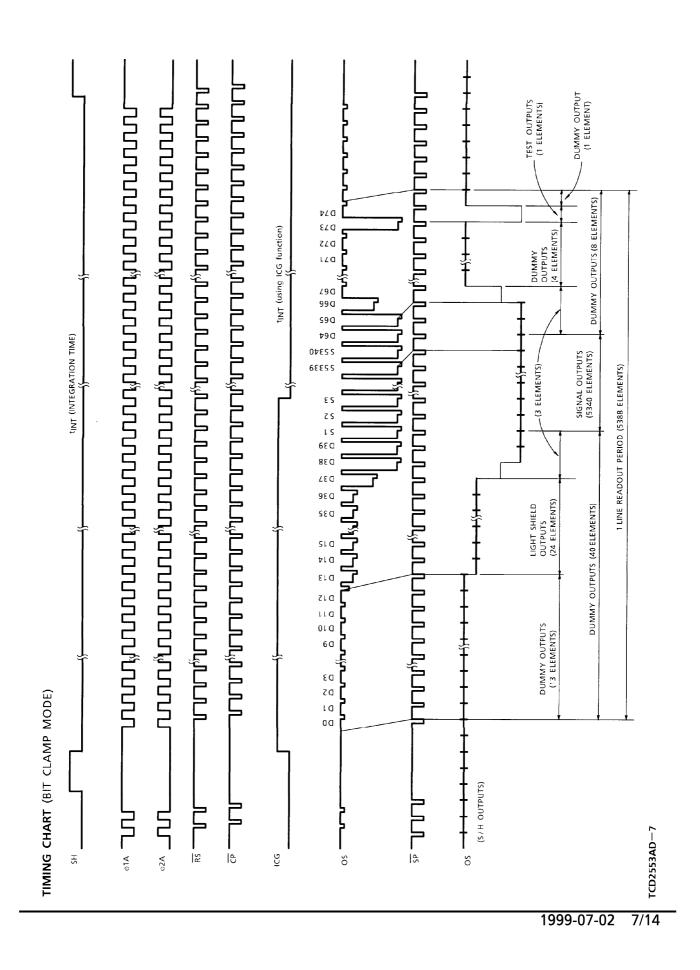
4) The standard deviation of ΔV is calculated after procedure 2) and 3) are repeated 30 times (30 readings).

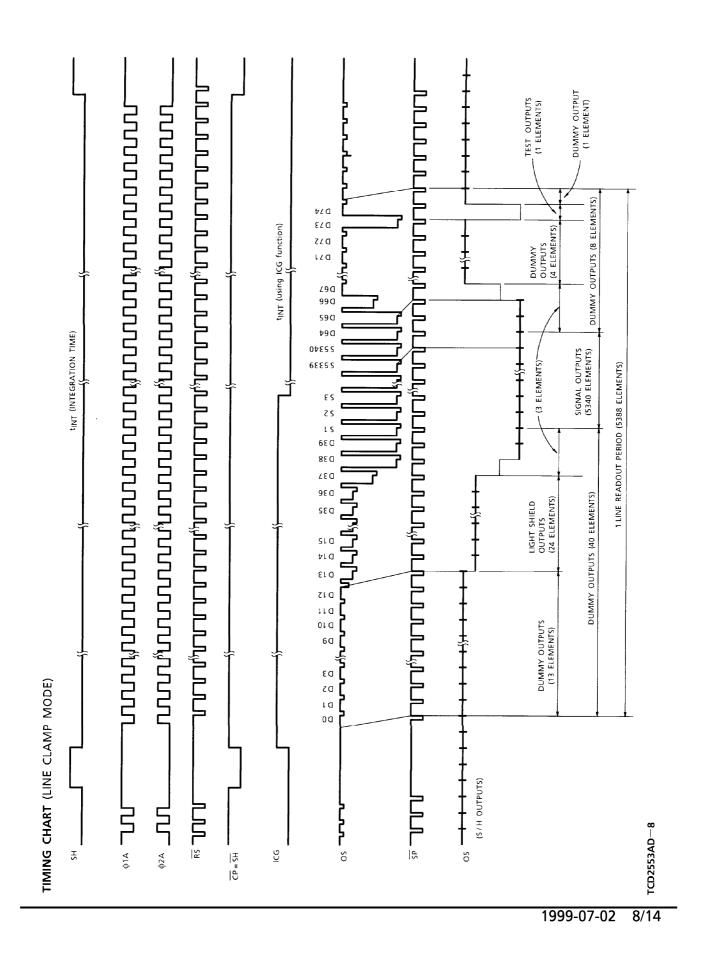
$$\overline{\Delta V} = \frac{1}{30} \int_{i=1}^{30} |\Delta Vi| \qquad \sigma = \sqrt{\frac{1}{30} \int_{i=1}^{30} (|\Delta Vi| - \overline{\Delta V})^2}$$

- 5) Procedure 2), 3) and 4) are repeated 10 times to get sigma value.
- 6) 10 sigma values are averaged.

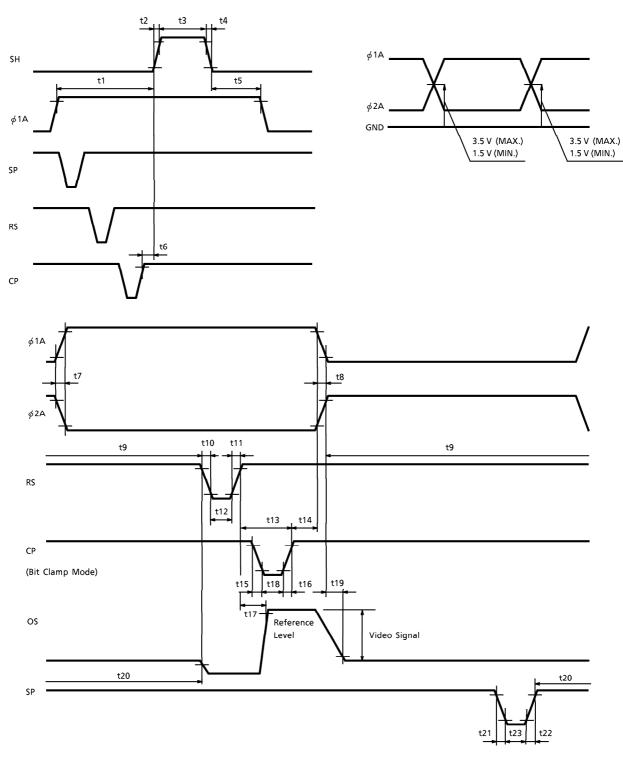
$$\overline{\sigma} = \frac{1}{10} \int_{i=1}^{10} \sigma_{i}$$

7) $\overline{\sigma}$ value calculated using the above procedure is observed $\sqrt{2}$ times larger than that measured relative to the ground level. So we specify random noise as follows.

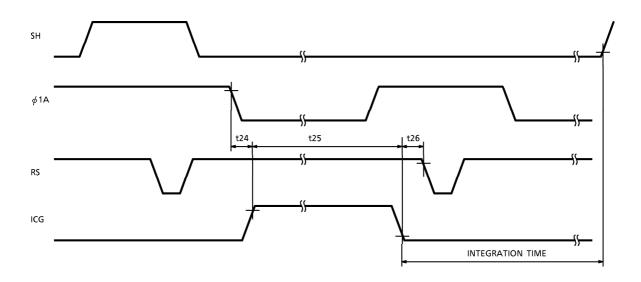

$$ND \ \sigma = \frac{1}{\sqrt{2}} \, \overline{\sigma}$$


OPERATING CONDITION

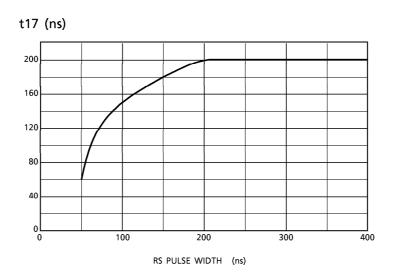
CHARACTERISTI	С	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clark Bulsa Valtaga	"H" Level	N/ /	4.5	5.0	5.5	V
Clock Pulse Voltage	"L" Level	$V\phi$	0	0	0.3	\ \ \
Shift Dules Valtage	"H" Level		4.5	5.0	5.5	V
Shift Pulse Voltage	"L" Level	v_{SH}	0	0	0.3	V
Baset Bules Valtage	"H" Level	\/ 	4.5	5.0	5.5	V
Reset Pulse Voltage	"L" Level	⊢ V RS	0	0	0.3	V
Claren Bules Valtare	"H" Level	\/_	4.5	5.0	5.5	V
Clamp Pulse Voltage	"L" Level	VCP	0	0	0.3	V
Sample and Hold Pulse	"H" Level	\ <u>/</u>	4.5	5.0	5.5	V
Voltage	"L" Level	VSP	0	0	0.3	V
Florenical Charten Valtana	"H" Level		4.5	5.0	5.5	
Electrical Shutter Voltage	"L" Level	VICG	0	0	0.3	V
Digital Power Supply	•	$V_{ m DD}$	11.4	12.0	13.0	V
Power Supply		V _{OD}	11.4	12.0	13.0	V


CLOCK CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Frequency	f∳	0.3	1	5	MHz
Reset Pulse Frequency	fRS	0.3	1	5	MHz
Sample and Hold Pulse Frequency	f <u>sp</u>	0.3	1	5	MHz
Clock Capacitance	C∮A	_	400	550	pF
Final Stage Clock Capacitance	C∮B	_	15	30	pF
Shift Gate Capacitance	C _{SH}	_	20	30	pF
Reset Gate Capacitance	CRS	_	20	30	pF
Clamp Gate Capacitance	CCP	_	20	30	pF
Sample and Hold Gate Capacitance	CSP	_	20	30	pF
ICG Gate Capacitance	C _{ICG}	_	20	30	pF



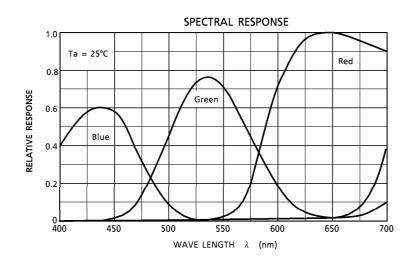
TIMING REQUIREMENTS


TIMING REQUIREMENTS

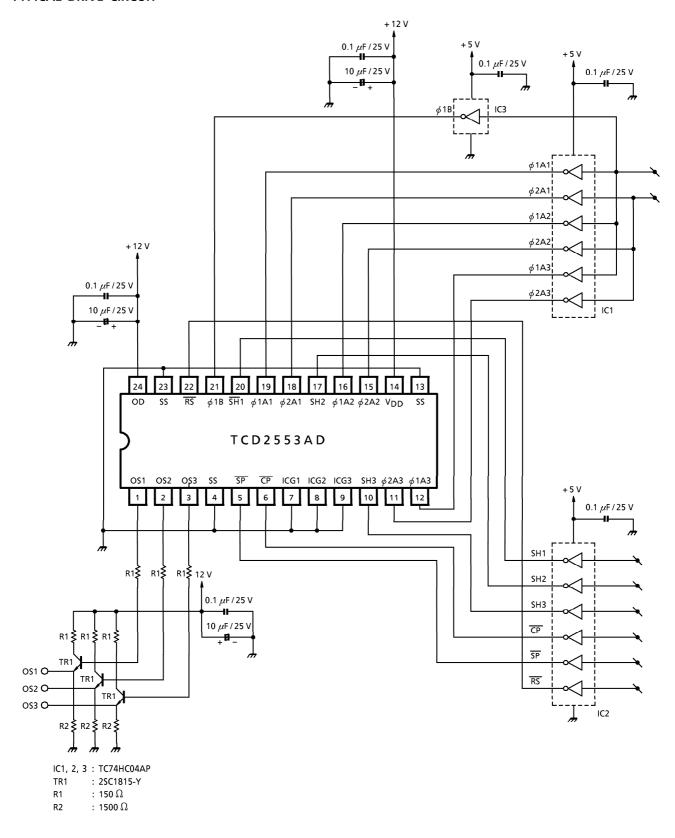
CHARACTERISTIC	SYMBOL	MIN.	TYP. (Note 11)	MAX.	UNIT	
Bulso Timing of SH and /1A	t1	120	1000	_	ns	
Pulse Timing of SH and ϕ 1A	t5	800	1000	_	115	
SH Pulse Rise Time, Fall Time	t2, t4	0	50	_	ns	
SH Pulse Width	t3	3000	5000	_	ns	
Pulse Timing of SH and CP	t6	0	500	_	ns	
ϕ 1A, ϕ 2A Pulse Rise Time, Fall Time	t7, t8	0	50	_	ns	
Pulse Timing of ϕ 1A and RS	t9	100		_	ns	
RS Pulse Rise Time, Fall Time	t10, t11	0	20	_	ns	
RS Pulse Width	t12	40	100	_	ns	
CP Pulse Rise Time, Fall Time	t15, t16	0	20	_	ns	
Pulse Timing of RS and CP	t13	120	200	_	ns	
Pulse Timing of ϕ 1A, ϕ 2A and CP	t14	10	50	_	ns	
Pulse Timing of RS and RS-noise	t17	(Note 13)		_	ns	
CP Pulse Width	t18	40	100	_	ns	
SP Pulse Rise Time, Fall Time	t21, t22	_	20	_	ns	
SP Pulse Width	t23	40	100	_	ns	
Pulse Timing of RS and SP	t20	0	20	_	ns	
Video Data Delay Time (Note 12)	t19	_	80	_	ns	
Pulse Timing of ϕ 1A and ICG	t24	0	10	_	ns	
ICG Pulse Width	t25	200	_	_	μ s	
Pulse Timing of ICG and RS	t26	100			ns	

(Note 11) : TYP. is the case of $f_{\mbox{RS}}$ = 1.0 MHz. (Note 12) : Load Resistance is 100 $k\Omega.$

(Note 13):


APPLICATION NOTE

FUNCTION	ON	OFF
Sample & Hold Function	SP Pulse	SP = Low
Electrical Shutter Function	ICG Pulse	ICG = Low


CLAMP MODE

CLAMP MEANS	CP INPUT PULSE
Bit Clamp	CP Pulse
Line Clamp	CP = SH

TYPICAL SPECTRAL RESPONSE

TYPICAL DRIVE CIRCUIT

CAUTION

1. Window Glass

The dust and stain on the glass window of the package degrade optical performance of CCD sensor.

Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N₂.

Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

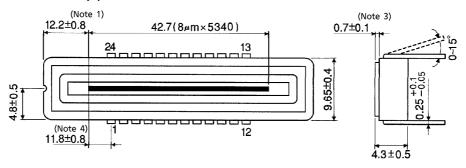
2. Electrostatic Breakdown

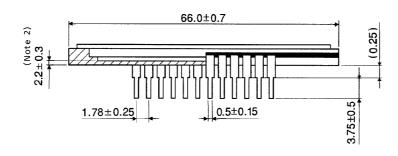
Store in shorting clip or in conductive foam to avoid electrostatic breakdown.

3. Incident Light

CCD sensor is sensitive to infrared light.

Note that infrared light component degrades resolution and PRNU of CCD sensor.


4. Lead Frame Forming


Since this package is not strong against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB.

OUTLINE DRAWING

WDIP24G-400-1.78 (B)

Unit: mm

(Note 1): No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.

(Note 2): TOP OF CHIP TO BOTTOM OF PACKAGE.

(Note 3): GLASS THICKNESS (n = 1.5)

(Note 4): No. 1 SENSOR ELEMENT (S1) TO EDGE OF NO. 1 PIN.

Weight: 8.0 g (Typ.)